
L17: RESTful APIs & SQL – Online-Shop Backend

Session 17 – Lecture

Dauer: 90 Minuten

Lernziele: LZ 2 (Relationale DB & SQL praktisch anwenden)

Block: 4 – Theorie, Optimierung & Polyglot

Willkommen zur siebzehnten Session! Heute verbinden wir zwei Welten: RESTful APIs und SQL. Sie lernen,
wie moderne Web-APIs funktionieren und wie HTTP-Requests in SQL-Queries übersetzt werden. Das
Besondere: Wir simulieren eine vollständige REST-API direkt im Browser – mit echter SQL-Ausführung in
PGlite!

Stellen Sie sich vor: Sie bauen das Backend für einen Online-Shop. Frontend-Developer schicken HTTP-
Requests an Ihre API, und Sie müssen diese in SQL-Queries übersetzen. Genau das üben wir heute –
praxisnah und interaktiv!

Motivation: Warum REST & SQL?
Bevor wir loslegen, schauen wir uns an, wie RESTful APIs in der Praxis eingesetzt werden.

Szenario: Online-Shop Architecture

┐──────────────┌stcudorpTEGPTTH┐─────────────┌

│IPATSER││resworB│

│)dnekcaB(││)dnetnorF(│

┘──────────────└┘─────────────└

stcudorpMORF*TCELES

┐──────────────┌

│LQSergtsoP│

│esabataD│

┘──────────────└

In echten Systemen übersetzt ein Backend-Server (z.B. Node.js, Python, Java) HTTP-Requests in SQL-
Queries. Heute lernen Sie genau diese Übersetzung – und bauen sie selbst!

Live-Demo: Echte REST-API erkunden

Schauen wir uns zuerst eine echte öffentliche API an: die Fake Store API. Öffnen Sie die folgenden URLs in
einem neuen Tab und beobachten Sie die JSON-Responses:

Interaktive Demo: API im Browser testen

[object Promise]
Unexpected token '<', "<!DOCTYPE "... is not valid JSON

Beeindruckend, oder? Diese Daten kommen von einem echten Server. Heute bauen Sie eine identische API –
aber die Daten kommen aus Ihrer eigenen SQL-Datenbank im Browser!

Teil 1: Was ist eine REST-API?
REST steht für „Representational State Transfer“ – ein Architekturstil für Web-APIs. Klingt kompliziert? Ist es
nicht! Im Kern geht es um vier einfache HTTP-Methoden.

HTTP-Methoden & CRUD
REST nutzt HTTP-Methoden, um Operationen auf Ressourcen auszuführen. Diese mappen direkt auf SQL-
Operationen!

🛍️ Alle Produkte: https://fakestoreapi.com/products

📦 Ein Produkt: https://fakestoreapi.com/products/1

📂 Kategorien: https://fakestoreapi.com/products/categories

🔍 Elektronik: https://fakestoreapi.com/products/category/electronics

async function loadFakeStoreProducts() {
 try {
 const response = await fetch('https://fakestoreapi.com/products?l
 =5');
 const products = await response.json();

 console.table(products);
 } catch (error) {
 console.error(error.message);
 }
}

loadFakeStoreProducts();

1
2
3

4
5
6
7
8
9
10
11
12



https://fakestoreapi.com/products
https://fakestoreapi.com/products/1
https://fakestoreapi.com/products/categories
https://fakestoreapi.com/products/category/electronics

GET Daten abrufen (Read) SELECT GET /products

POST
Neue Daten erstellen
(Create)

INSERT POST /products

PUT
Daten aktualisieren
(Update)

UPDATE
PUT
/products/5

DELETE Daten löschen (Delete) DELETE
DELETE
/products/5

Das Schöne: HTTP-Methoden und SQL-Operationen haben eine natürliche 1:1-Beziehung. GET wird zu
SELECT, POST zu INSERT, DELETE zu DELETE!

URL-Struktur & Ressourcen
REST-APIs arbeiten mit Ressourcen, die über URLs identifiziert werden. Ressourcen entsprechen meist
Datenbank-Tabellen.

URL-Pattern:

Konkrete Beispiele:

https://api.example.com/ressource
https://api.example.com/ressource/{id}
https://api.example.com/ressource?filter=value

HTTP-
Methode

Bedeutung
SQL-
Operation

Beispiel-URL



GET /products Alle Produkte
SELECT * FROM
products

GET /products/5 Produkt mit ID 5
SELECT * FROM
products WHERE
product_id = 5

GET /products?
category=Electronics

Gefilterte Produkte

SELECT * FROM
products WHERE
category =
'Electronics'

GET
/customers/3/orders

Bestellungen von
Kunde 3

SELECT * FROM orders
WHERE customer_id = 3

Sehen Sie das Muster? URLs beschreiben die Daten, die Sie wollen – und Sie übersetzen das in SQL!

HTTP-Status Codes
APIs kommunizieren Erfolg oder Fehler über HTTP-Status Codes. Die wichtigsten sollten Sie kennen.

200 OK Erfolg
Daten erfolgreich
abgerufen/geändert

201 Created Ressource erstellt Nach erfolgreichem INSERT

400 Bad Request Ungültige Anfrage Fehlende/falsche Parameter

404 Not Found
Ressource nicht
gefunden

Keine Daten in Datenbank

500 Internal Server
Error

Server-Fehler SQL-Fehler, Constraint-Verletzung

Diese Codes helfen dem Frontend zu verstehen, was passiert ist – ohne die Response-Daten zu parsen!

JSON als Datenformat

URL Beschreibung SQL-Äquivalent

Status Code Bedeutung Wann verwenden?

REST-APIs senden und empfangen Daten im JSON-Format. JSON ist leichtgewichtig und JavaScript-nativ.

Response-Beispiel:

Ihre SQL-Query-Ergebnisse werden in dieses Format konvertiert – automatisch durch die API-Schicht!

Teil 2: HTTP → SQL Mapping
Jetzt wird es praktisch! Wir schauen uns an, wie jede HTTP-Operation in eine SQL-Query übersetzt wird.

GET → SELECT
GET-Requests rufen Daten ab – das einfachste Mapping.

Pattern 1: Alle Ressourcen

Pattern 2: Eine Ressource nach ID

Pattern 3: Gefilterte Ressourcen

{
 "data": [
 {
 "product_id": 1,
 "product_name": "Laptop",
 "price": 999.99
 },
 {
 "product_id": 2,
 "product_name": "Mouse",
 "price": 29.99
 }
],
 "status": "success",
 "count": 2
}

GET /products
↓
SELECT * FROM products ORDER BY product_name;

GET /products/5
↓
SELECT * FROM products WHERE product_id = 5;

GET /products?category=Electronics
↓
SELECT p.*
FROM products p









Pattern 4: Verschachtelte Ressourcen (Joins)

Sehen Sie das Muster? URL-Parameter werden zu WHERE-Bedingungen, verschachtelte Pfade zu Joins!

POST → INSERT
POST-Requests erstellen neue Daten. Der Request-Body enthält die Werte.

Request:

SQL-Translation:

Wichtig: RETURNING gibt die neu erstellte Zeile zurück – inklusive auto-generierter ID! Das ist das Ergebnis
der POST-Response.

Response:

INNER JOIN product_categories pc ON p.product_id = pc.product_id
INNER JOIN categories c ON pc.category_id = c.category_id
WHERE c.category_name = 'Electronics';

GET /customers/3/orders
↓
SELECT o.*
FROM orders o
WHERE o.customer_id = 3
ORDER BY o.order_date DESC;

POST /products
Content-Type: application/json

{
 "product_name": "Webcam",
 "price": 89.99
}

INSERT INTO products (product_name, price)
VALUES ('Webcam', 89.99)
RETURNING product_id, product_name, price;

{
 "data": {
 "product_id": 10,
 "product_name": "Webcam",
 "price": 89.99
 },
 "status": "success",
 "message": "Product created"
}









DELETE → DELETE
DELETE-Requests entfernen Daten.

Request:

SQL-Translation:

Response:

Achtung: Was passiert, wenn das Produkt in order_items referenziert wird? Foreign Key Constraint! Das ist
ein 500-Fehler – dazu später mehr.

PUT/PATCH → UPDATE (Optional)
PUT aktualisiert eine komplette Ressource, PATCH nur Teile davon. Heute fokussieren wir auf POST und
DELETE, aber hier das Konzept:

Datenbank-Setup: Online-Shop
Bevor wir mit der API-Implementierung starten, initialisieren wir unsere Datenbank. Wir nutzen das
bekannte E-Commerce-Schema.

DELETE /products/7

DELETE FROM products WHERE product_id = 7;

{
 "status": "success",
 "message": "Product deleted",
 "deleted_id": 7
}

PUT /products/5
Content-Type: application/json

{
 "product_name": "Gaming Mouse Pro",
 "price": 39.99
}

UPDATE products
SET product_name = 'Gaming Mouse Pro',
 price = 39.99
WHERE product_id = 5
RETURNING *;











-- Locations
CREATE TABLE locations (
 location_id INTEGER PRIMARY KEY,
 city TEXT NOT NULL,
 postal_code TEXT NOT NULL,
 country TEXT DEFAULT 'Germany'
);

-- Categories
CREATE TABLE categories (
 category_id INTEGER PRIMARY KEY,
 category_name TEXT NOT NULL UNIQUE,
 description TEXT
);

-- Customers
CREATE TABLE customers (
 customer_id INTEGER PRIMARY KEY,
 first_name TEXT NOT NULL,
 last_name TEXT NOT NULL,
 email TEXT UNIQUE,
 street TEXT,
 street_number TEXT,
 location_id INTEGER REFERENCES locations(location_id)
);

-- Orders
CREATE TABLE orders (
 order_id INTEGER PRIMARY KEY,
 customer_id INTEGER REFERENCES customers(customer_id),
 order_date DATE,
 total_amount DECIMAL(10,2),
 status TEXT
);

-- Products
CREATE TABLE products (
 product_id SERIAL PRIMARY KEY,
 product_name TEXT NOT NULL,
 price DECIMAL(10,2)
);

-- Product_Categories
CREATE TABLE product_categories (
 product_id INTEGER REFERENCES products(product_id),
 category_id INTEGER REFERENCES categories(category_id),
 PRIMARY KEY (product_id, category_id)
);

-- Order_Items

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50



CREATE TABLE order_items (
 order_item_id INTEGER PRIMARY KEY,
 order_id INTEGER REFERENCES orders(order_id),
 product_id INTEGER REFERENCES products(product_id),
 quantity INTEGER,
 line_total DECIMAL(10,2)
);

-- Sample Data
INSERT INTO locations VALUES (1, 'Berlin', '10115', 'Germany'), (2,
 'Hamburg', '20095', 'Germany');
INSERT INTO categories VALUES (1, 'Electronics', 'Electronic devices'
 'Furniture', 'Office furniture');
INSERT INTO customers VALUES
 (1, 'Alice', 'Smith', 'alice@example.com', 'Main St', '42', 1),
 (2, 'Bob', 'Johnson', 'bob@example.com', 'Oak Ave', '15', 2);
INSERT INTO products (product_name, price) VALUES
 ('Laptop', 999.99), ('Mouse', 29.99), ('Keyboard', 79.99),
 ('Monitor', 299.99), ('Desk Chair', 199.99);
INSERT INTO product_categories VALUES (1,1), (2,1), (3,1), (4,1), (5,
INSERT INTO orders VALUES (101, 1, '2024-01-15', 299.99, 'delivered')
 , 2, '2024-01-22', 999.99, 'delivered');
INSERT INTO order_items VALUES (1, 101, 4, 1, 299.99), (2, 102, 1, 1,
 .99);

51
52
53
54
55
56
57
58
59
60

61

62
63
64
65
66
67
68
69

70

-- Locations

CREATE TABLE locations (

 location_id INTEGER PRIMARY KEY,

 city TEXT NOT NULL,

 postal_code TEXT NOT NULL,

 country TEXT DEFAULT 'Germany'

)

ok

-- Categories

CREATE TABLE categories (

 category_id INTEGER PRIMARY KEY,

 category_name TEXT NOT NULL UNIQUE,

 description TEXT

)

ok

-- Customers

CREATE TABLE customers (

 customer_id INTEGER PRIMARY KEY,

 first_name TEXT NOT NULL,

 last_name TEXT NOT NULL,

 email TEXT UNIQUE,

 street TEXT,

 street_number TEXT,

 location_id INTEGER REFERENCES locations(location_id)

)

ok

-- Orders

CREATE TABLE orders (

 order_id INTEGER PRIMARY KEY,

 customer_id INTEGER REFERENCES customers(customer_id),

 order_date DATE,

 total_amount DECIMAL(10,2),

 status TEXT

)

ok

-- Products

CREATE TABLE products (

 product_id SERIAL PRIMARY KEY,

 product_name TEXT NOT NULL,

 price DECIMAL(10,2)

)

ok

-- Product_Categories

CREATE TABLE product_categories (

 product_id INTEGER REFERENCES products(product_id),

 category_id INTEGER REFERENCES categories(category_id),

 PRIMARY KEY (product_id, category_id)

)

ok

-- Order_Items

CREATE TABLE order_items (

 order_item_id INTEGER PRIMARY KEY,

 order_id INTEGER REFERENCES orders(order_id),

 product_id INTEGER REFERENCES products(product_id),

 quantity INTEGER,

 line_total DECIMAL(10,2)

)

ok

-- Sample Data

INSERT INTO locations VALUES (1, 'Berlin', '10115', 'Germany'), (2, 'Hamburg',

'20095', 'Germany')

ok

INSERT INTO categories VALUES (1, 'Electronics', 'Electronic devices'), (2, 'Furniture',

'Office furniture')

ok

INSERT INTO customers VALUES

 (1, 'Alice', 'Smith', 'alice@example.com', 'Main St', '42', 1),

 (2, 'Bob', 'Johnson', 'bob@example.com', 'Oak Ave', '15', 2)

ok

INSERT INTO products (product_name, price) VALUES

 ('Laptop', 999.99), ('Mouse', 29.99), ('Keyboard', 79.99),

 ('Monitor', 299.99), ('Desk Chair', 199.99)

ok

INSERT INTO product_categories VALUES (1,1), (2,1), (3,1), (4,1), (5,2)

ok

INSERT INTO orders VALUES (101, 1, '2024-01-15', 299.99, 'delivered'), (102, 2,

'2024-01-22', 999.99, 'delivered')

ok

INSERT INTO order_items VALUES (1, 101, 4, 1, 299.99), (2, 102, 1, 1, 999.99)

ok

Perfekt! Unsere Datenbank ist bereit. Jetzt implementieren wir die API-Schicht!

Playground

ERDIAGRAM1



dbdiagram.io

Teil 3: API-Setup – fetch-Override
Hier kommt die Magie: Wir überschreiben die globale fetch -Funktion, um HTTP-Requests abzufangen
und in SQL-Queries zu übersetzen!

Architektur:

https://dbdiagram.io/
https://dbdiagram.io/embed?c=VGFibGUgY2F0ZWdvcmllcyB7CiAgY2F0ZWdvcnlfaWQgaW50IFtwaywgbm90IG51bGxdCiAgY2F0ZWdvcnlfbmFtZSB0ZXh0IFtub3QgbnVsbCwgdW5pcXVlXQogIGRlc2NyaXB0aW9uIHRleHQKfQoKVGFibGUgY3VzdG9tZXJzIHsKICBjdXN0b21lcl9pZCBpbnQgW3BrLCBub3QgbnVsbF0KICBmaXJzdF9uYW1lIHRleHQgW25vdCBudWxsXQogIGxhc3RfbmFtZSB0ZXh0IFtub3QgbnVsbF0KICBlbWFpbCB0ZXh0IFt1bmlxdWVdCiAgc3RyZWV0IHRleHQKICBzdHJlZXRfbnVtYmVyIHRleHQKICBsb2NhdGlvbl9pZCBpbnQKfQoKVGFibGUgbG9jYXRpb25zIHsKICBsb2NhdGlvbl9pZCBpbnQgW3BrLCBub3QgbnVsbF0KICBjaXR5IHRleHQgW25vdCBudWxsXQogIHBvc3RhbF9jb2RlIHRleHQgW25vdCBudWxsXQogIGNvdW50cnkgdGV4dAp9CgpUYWJsZSBvcmRlcl9pdGVtcyB7CiAgb3JkZXJfaXRlbV9pZCBpbnQgW3BrLCBub3QgbnVsbF0KICBvcmRlcl9pZCBpbnQKICBwcm9kdWN0X2lkIGludAogIHF1YW50aXR5IGludAogIGxpbmVfdG90YWwgZGVjaW1hbCgxMCwyKQp9CgpUYWJsZSBvcmRlcnMgewogIG9yZGVyX2lkIGludCBbcGssIG5vdCBudWxsXQogIGN1c3RvbWVyX2lkIGludAogIG9yZGVyX2RhdGUgZGF0ZQogIHRvdGFsX2Ftb3VudCBkZWNpbWFsKDEwLDIpCiAgc3RhdHVzIHRleHQKfQoKVGFibGUgcHJvZHVjdF9jYXRlZ29yaWVzIHsKICBwcm9kdWN0X2lkIGludCBbcGssIG5vdCBudWxsXQogIGNhdGVnb3J5X2lkIGludCBbcGssIG5vdCBudWxsXQp9CgpUYWJsZSBwcm9kdWN0cyB7CiAgcHJvZHVjdF9pZCBpbnQgW3BrLCBub3QgbnVsbF0KICBwcm9kdWN0X25hbWUgdGV4dCBbbm90IG51bGxdCiAgcHJpY2UgZGVjaW1hbCgxMCwyKQp9CgpSZWY6IGN1c3RvbWVycy5sb2NhdGlvbl9pZCA%2BIGxvY2F0aW9ucy5sb2NhdGlvbl9pZApSZWY6IG9yZGVycy5jdXN0b21lcl9pZCA%2BIGN1c3RvbWVycy5jdXN0b21lcl9pZApSZWY6IHByb2R1Y3RfY2F0ZWdvcmllcy5jYXRlZ29yeV9pZCA%2BIGNhdGVnb3JpZXMuY2F0ZWdvcnlfaWQKUmVmOiBwcm9kdWN0X2NhdGVnb3JpZXMucHJvZHVjdF9pZCA%2BIHByb2R1Y3RzLnByb2R1Y3RfaWQKUmVmOiBvcmRlcl9pdGVtcy5vcmRlcl9pZCA%2BIG9yZGVycy5vcmRlcl9pZApSZWY6IG9yZGVyX2l0ZW1zLnByb2R1Y3RfaWQgPiBwcm9kdWN0cy5wcm9kdWN0X2lk

esabataDresworBedoCtpircSavaJ

─────────────────────────────────

)'stcudorpmoc.nozama-elttil:ptth'(hctef

│

?moc.nozama-elttil:gnufürP-LRU>──├

│

neppamLQSuzetuoR→AJ>──└

│

nerhüfsuaetilGPniLQS>──├

│

nebegkcüruzesnopseR-NOSJ>──└

Implementation (vorgegeben):

Router.js

// ========== Einfacher Router (inspiriert von Express.js) ==========
class SimpleRouter {
 constructor() {
 this.routes = { GET: {}, POST: {}, DELETE: {} };
 this._requestBody = null;
 }

 get(path, handler) {
 this.routes.GET[path] = { pattern: this._pathToRegex(path), handl
 }

 post(path, handler) {
 this.routes.POST[path] = { pattern: this._pathToRegex(path), hand
 }

 delete(path, handler) {
 this.routes.DELETE[path] = { pattern: this._pathToRegex(path), ha
 };
 }

 _pathToRegex(path) {
 // Konvertiert /products/:id zu Regex mit Named Groups
 const paramNames = [];
 const regexPattern = path
 .replace(/:\w+/g, (match) => {
 paramNames.push(match.slice(1)); // ':id' -> 'id'
 return '([^/]+)'; // Match alles außer /
 })
 .replace(/\//g, '\\/'); // Escape /

 return { regex: new RegExp(`^${regexPattern}$`), paramNames };
 }

 async handle(method, path, body) {
 // Body für POST-Handler verfügbar machen
 if (body) {
 try {
 this._requestBody = JSON.parse(body);
 } catch (e) {
 this._requestBody = body;
 }
 }

 const routes = this.routes[method] || {};

 for (const [routePath, route] of Object.entries(routes)) {
 const match = path.match(route.pattern.regex);
 if (match) {

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47



 // Extrahiere Parameter (z.B. { id: '5' })
 const params = {};
 route.pattern.paramNames.forEach((name, i) => {
 params[name] = match[i + 1];
 });

 try {
 return await route.handler(params, this._requestBody);
 } catch (error) {
 return {
 status: 'error',
 message: `Handler error: ${error.message}`,
 httpStatus: 500
 };
 }
 }
 }

 return { status: 'error', message: 'Endpoint not found', httpStat
 404 };
 }
}

// Router-Instanz erstellen
const router = new SimpleRouter();
window.router = router;

48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

67
68
69
70
71
72

Fetch.js

// ========== Globaler fetch-Override ==========
window.originalFetch = window.fetch;

window.fetch = async function(url, options = {}) {
 // Nur little-amazon.com abfangen
 if (typeof url === 'string' && url.startsWith('http://little-amazon
)) {
 const path = url.replace('http://little-amazon.com', '');
 const method = options.method || 'GET';

 try {
 const result = await router.handle(method, path, options.body);
 return new Response(JSON.stringify(result), {
 status: result.httpStatus || 200,
 headers: { 'Content-Type': 'application/json' }
 });
 } catch (error) {
 return new Response(JSON.stringify({
 status: 'error',
 message: error.message
 }), {
 status: 500,
 headers: { 'Content-Type': 'application/json' }
 });
 }
 }

 // Normale Requests durchreichen
 return window.originalFetch(url, options);
};

// ========== Routen definieren (TODO: Implementieren Sie die Handler
 ==========

// Syntax-Beispiele (noch nicht implementiert):
//
// router.get('/products', async (params) => {
// // Handler für GET /products
// return { status: 'success', data: [...], httpStatus: 200 };
// });
//
// router.get('/products/:id', async (params) => {
// const productId = params.id; // ✨ Parameter automatisch extrah
// // Handler für GET /products/:id
// });
//
// router.post('/products', async (params) => {
// const data = router._requestBody; // Body als JSON-Objekt

1
2
3
4
5
6

7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46



✅ Little Amazon API mit Router loaded!
📚 Routen-Syntax: router.get("/products/:id", async (params) => { ...
})
ℹ️ Response-Format: { status: "success"|"error", data: [...],
httpStatus: 200|404|500 }
undefined

Perfekt! Jetzt haben wir einen eleganten Router! Statt verschachtelter if/else nutzen Sie
router.get('/products/:id', handler) – genau wie in Express.js oder Next.js!

Teil 4: Hands-on – SELECT Queries
Beginnen wir mit GET-Requests. Ihre Aufgabe: Schreiben Sie SQL-Queries für verschiedene API-Endpunkte!

Aufgabe 1: Alle Produkte laden
Implementieren Sie GET /products – zeigen Sie alle Produkte an.

TODO: Ersetzen Sie den Handler mit Ihrer SQL-Query

// // Handler für POST /products
// });
//
// router.delete('/products/:id', async (params) => {
// const productId = params.id;
// // Handler für DELETE /products/:id
// });

console.log('✅ Little Amazon API mit Router loaded!');
console.log('📚 Routen-Syntax: router.get("/products/:id", async (par
 => { ... })');
console.log('ℹ️ Response-Format: { status: "success"|"error", data:
 httpStatus: 200|404|500 }');

// TODO: Implementieren Sie den Handler für GET /products
router.get('/products', async (params) => {
 // Ihre SQL-Query hier:
 const query = `
 -- SELECT alle Produkte, sortiert nach product_name

 `;

 const result = await db.query(query);
 return {
 status: 'success',
 data: result.rows,
 count: result.rows.length,
 httpStatus: 200
 };
});

47
48
49
50
51
52
53
54
55
56

57

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16



✅ GET /products implementiert

Test: Rufen Sie die API auf!

[]

Sobald Ihre Query funktioniert, sehen Sie die Produktliste! Falls „not implemented“ erscheint, fehlt noch die
SQL-Query.

Aufgabe 2: Produkt nach ID
Implementieren Sie GET /products/{id} – zeigen Sie ein einzelnes Produkt.

TODO: Erweitern Sie handleGET() um ID-Routing

});

console.debug('✅ GET /products implementiert');

try {
 const response = await fetch('http://little-amazon.com/products');
 const data = await response.json();

 if (data.status === 'error') {
 throw new Error(data.message || 'Unknown error');
 }

 console.table(data.data);
} catch (error) {
 console.error(error.message);
}

router.get('/products/:id', async (params) => {
 const productId = params.id;

 const query = `
 -- TODO: product_id = ${productId}

 `;

 const result = await db.query(query);

 if (result.rows.length === 0) {
 return { status: 'error', message: 'Product not found', httpStatu
 };
 }

 return { status: 'success', data: result.rows, httpStatus: 200 };
});

16
17
18

1
2
3
4
5
6
7
8
9
10
11
12

1
2
3
4
5
6
7
8
9
10
11
12

13
14
15
16
17





✅ GET /products/:id implementiert

Product not found

Aufgabe 3: Produkte einer Kategorie (JOIN)
Implementieren Sie GET /products/category/{name} – nutzen Sie einen JOIN!

TODO: Erweitern Sie handleGET() um Kategorie-Filter

✅ GET /products/category/{name} implementiert

console.debug('✅ GET /products/:id implementiert');

try {
 const response = await fetch('http://little-amazon.com/products/2')
 const data = await response.json();

 if (data.status === 'error') {
 throw new Error(data.message || 'Unknown error');
 }

 console.table(data.data);
} catch (error) {
 console.error(error.message);
}

router.get('/products/category/:name', async (params) => {
 const categoryName = decodeURIComponent(params.name);

 const query = `
 -- TODO: SELECT mit JOIN über product_categories und categories
 -- WHERE c.category_name = '${categoryName}'

 `;

 const result = await db.query(query);
 return { status: 'success', data: result.rows, count: result.rows.l
 };
});

console.debug('✅ GET /products/category/{name} implementiert');

try {
 const response = await fetch('http://little-amazon.com/products/cat

17
18

1
2
3
4
5
6
7
8
9
10
11
12

1
2
3
4
5
6
7
8
9
10
11

12
13
14

1
2







[]

Aufgabe 4: Kunden mit Bestellungen (JOIN + Aggregation)
Implementieren Sie GET /customers/{id}/orders – zeigen Sie alle Bestellungen eines Kunden.

✅ GET /customers implementiert
✅ GET /customers/:id/orders implementiert

p p p
 /Electronics');
 const data = await response.json();

 if (data.status === 'error') {
 throw new Error(data.message || 'Unknown error');
 }

 console.table(data.data);
} catch (error) {
 console.error(error.message);
}

router.get('/customers', async () => {
 const query = `
 -- TODO: SELECT alle Kunden
 `;

 const result = await db.query(query);
 return { status: 'success', data: result.rows, count: result.rows.l
 };
});

console.debug('✅ GET /customers implementiert');

router.get('/customers/:id/orders', async (params) => {
 const customerId = params.id;

 const query = `
 -- WHERE c.customer_id = '${customerId}'

 `;

 const result = await db.query(query);
 return { status: 'success', data: result.rows, count: result.rows.l
 };
});

console.debug('✅ GET /customers/:id/orders implementiert');

3
4
5
6
7
8
9
10
11
12

1
2
3
4
5
6
7

8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

23
24
25



[]

Teil 5: Hands-on – INSERT Queries
Jetzt wird es spannend: POST-Requests erstellen neue Daten! Der Request-Body enthält die Werte als JSON.

Aufgabe 5: Neues Produkt hinzufügen
Implementieren Sie POST /products – erstellen Sie ein neues Produkt.

TODO: Implementieren Sie POST-Handler mit Body-Parsing

try {
 const response = await fetch('http://little-amazon.com/customers/1
 /orders');
 const data = await response.json();

 if (data.status === 'error') {
 throw new Error(data.message || 'Unknown error');
 }

 console.table(data.data);
} catch (error) {
 console.error(error.message);
}

// TODO: Implementieren Sie POST /products
router.post('/products', async (params) => {
 const data = router._requestBody || {};

 // Validierung
 if (!data.product_name || !data.price) {
 return {
 status: 'error',
 message: 'Missing required fields: product_name, price',
 httpStatus: 400
 };
 }

 if (data.price < 0) {
 return {
 status: 'error',
 message: 'Price must be positive',
 httpStatus: 400
 };
 }

 // TODO: INSERT-Query mit RETURNING

1
2

3
4
5
6
7
8
9
10
11
12

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22





✅ POST /products implementiert

Test: Produkt erstellen

Produktname:

Preis (€):

Hinweis: In echten Systemen würden Sie Prepared Statements nutzen, um SQL-Injection zu verhindern!

</details>

Aufgabe 6: Produkte löschen (DELETE)
Implementieren Sie POST /customers – erstellen Sie einen neuen Kunden.

DELETE-Handler

y
 const query = `
 -- Ihre INSERT-Query hier

 RETURNING product_id, product_name, price;
 `;

 const result = await db.query(query);
 return {
 status: 'success',
 message: 'Product created',
 data: result.rows[0],
 httpStatus: 201
 };
});

console.debug('✅ POST /products implementiert');

Webcam

89.99

➕ Produkt erstellen

// TODO: Implementieren Sie DELETE /products/:id
router.delete('/products/:id', async (params) => {
 const productId = params.id;

 // Prüfen ob Produkt existiert
 const checkQuery = `SELECT product_id FROM products WHERE product_i
 ${productId}`;
 const checkResult = await db.query(checkQuery);

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

1
2
3
4
5
6

7
8



✅ DELETE /products/:id implementiert

Test: Mini-Shop mit Löschen-Funktion

💡 Wichtig

Aufgabe 8: Kunde löschen (CASCADE-Problem)

 if (checkResult.rows.length === 0) {
 return { status: 'error', message: 'Product not found', httpStatu
 };
 }

 try {
 const deleteProductQuery = `
 -- Ihre DELETE-Query für products hier

 `;

 await db.query(deleteProductQuery);

 return {
 status: 'success',
 message: 'Product deleted',
 deleted_id: parseInt(productId),
 httpStatus: 200
 };
 } catch (error) {
 // Foreign Key Constraint Fehler abfangen
 if (error.message.includes('foreign key constraint')) {
 return {
 status: 'error',
 message: 'Cannot delete product: still referenced in other ta
 detail: error.message,
 httpStatus: 409 // Conflict
 };
 }
 throw error;
 }
});

console.debug('✅ DELETE /products/:id implementiert');

🛒 Shop laden

8
9
10

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

Was passiert, wenn Sie einen Kunden löschen, der Bestellungen hat? Foreign Key Constraint! Genau wie
beim Produkt-Löschen.

Probieren Sie es aus:

Unexpected token '.'

router(.delete('/customers/:id', async (params) => {
 const customerId = params.id;

 // Prüfen ob Kunde existiert
 const checkQuery = `SELECT customer_id FROM customers WHERE custome
 ${customerId}`;
 const checkResult = await db.query(checkQuery);

 if (checkResult.rows.length === 0) {
 return { status: 'error', message: 'Customer not found', httpStat
 404 };
 }

 try {
 const result = await db.query(`DELETE FROM customers WHERE custom
 = ${customerId}`);
 return {
 status: 'success',
 message: 'Customer deleted',
 deleted_id: parseInt(customerId),
 httpStatus: 200
 };
 } catch (error) {
 // Foreign Key Constraint Fehler abfangen
 if (error.message.includes('foreign key constraint')) {
 return {
 status: 'error',
 message: 'Cannot delete customer: still referenced in other t
 ,
 detail: error.message,
 httpStatus: 409 // Conflict
 };
 }
 throw error;
 }
});

// Versuchen Sie Kunde 1 zu löschen (hat Bestellungen!)
const response = await fetch('http://little-amazon.com/customers/1', {
 method: 'DELETE'
});
const data = await response.json();

1
2
3
4
5

6
7
8
9

10
11
12
13

14
15
16
17
18
19
20
21
22
23
24
25

26
27
28
29
30
31
32

1
2
3
4
5





{"status":"error","message":"Endpoint not found","httpStatus":404}

Sie bekommen einen Fehler! Die Datenbank verhindert das Löschen wegen der Foreign Key Referenzen in
der orders -Tabelle. Das ist gewollt – Datenkonsistenz!

Lösungen für Foreign Key Probleme:

Teil 7: Error-Handling
Fehler gehören zur Realität! Lassen Sie uns verschiedene Fehlertypen simulieren und richtig behandeln.

404: Ressource nicht gefunden
Wenn eine Query keine Daten zurückgibt, sollten Sie 404 zurückgeben.

400: Ungültige Daten
Validieren Sie Inputs, bevor Sie SQL ausführen!

p j ;
console.log(data);

1. Reihenfolge beachten: Erst abhängige Daten löschen, dann Hauptdaten `sql DELETE FROM
productcategories WHERE productid = 5; DELETE FROM products WHERE product_id = 5; `

2. Soft Delete: Setzen Sie deleted = true statt echtem DELETE `sql UPDATE products SET
deleted = true WHERE product_id = 5; `

3. CASCADE: ON DELETE CASCADE in der Tabellendefinition `sql CREATE TABLE
product_categories (productid INTEGER REFERENCES products(productid) ON DELETE CASCADE, …);
`

4. Transaktionen: Mehrere Deletes atomar ausführen `sql BEGIN; DELETE FROM orderitems WHERE
productid = 5; DELETE FROM productcategories WHERE productid = 5; DELETE FROM products WHERE
product_id = 5; COMMIT; `

// Beispiel: GET /products/9999
const result = await db.query('SELECT * FROM products WHERE product_i
 9999');

if (result.rows.length === 0) {
 return {
 status: 'error',
 message: 'Product not found',
 httpStatus: 404
 };
}

// Beispiel: Negativer Preis

6

1
2

3
4
5
6
7
8
9
10





500: SQL-Fehler
Foreign Key Constraints, Syntax-Fehler, etc. führen zu 500-Fehlern.

Beispiel: Foreign Key Constraint

HTTP 409 (Conflict) ist der richtige Code für Foreign Key Constraint Fehler – es ist kein Server-Fehler, sondern
ein Konflikt mit der Datenintegrität!

Wrap-up & Best Practices

if (data.price < 0) {
 return {
 status: 'error',
 message: 'Price must be positive',
 httpStatus: 400
 };
}

// Beispiel: Fehlende Pflichtfelder
if (!data.product_name || !data.price) {
 return {
 status: 'error',
 message: 'Missing required fields: product_name, price',
 httpStatus: 400
 };
}

try {
 const result = await db.query(`SELECT * FROM product_list`);
 return { status: 'success', data: result.rows };
} catch (error) {
 console.error('SQL Error:', error);

 // Spezifische Fehlerbehandlung
 if (error.message.includes('foreign key constraint')) {
 return {
 status: 'error',
 message: 'Cannot delete: record is still referenced by other tables',
 detail: error.message,
 httpStatus: 409 // Conflict
 };
 }

 return {
 status: 'error',
 message: `Database error: ${error.message}`,
 httpStatus: 500
 };
}



Fassen wir zusammen, was Sie heute gelernt haben!

HTTP → SQL Mapping:

Best Practices:

SQL-Injection Warnung:

In echten Backends würden Sie niemals String-Interpolation nutzen! Heute geht es aber nur um das Konzept
– die Daten bleiben im Browser.

Pro-Tipp: Lernen Sie ein echtes Backend-Framework (Express.js, FastAPI, Spring Boot) – die
Konzepte von heute sind 1:1 übertragbar!

Referenzen & Weiterführendes

✅ GET → SELECT (mit WHERE für Filter, JOIN für Relations)

✅ POST → INSERT (mit RETURNING für Response)

✅ DELETE → DELETE (mit Existenz-Check)

✅ PUT → UPDATE (optional, ähnlich zu POST)

✅ Routing-Pattern: Nutzen Sie Router-Syntax wie router.get('/products/:id',
handler)

✅ Parameter-Extraktion: Zugriff über params.id statt manueller Regex

✅ Validierung: Prüfen Sie Inputs, bevor Sie SQL ausführen

✅ Error-Handling: Nutzen Sie passende HTTP-Status Codes

✅ RETURNING: Bei INSERT/UPDATE/DELETE die geänderten Daten zurückgeben

✅ Existenz-Checks: Vor DELETE prüfen, ob Ressource existiert

⚠️ SQL-Injection: In echten Systemen IMMER Prepared Statements nutzen!

⚠️ Transaktionen: Bei Multi-Step-Operations (z.B. Bestellung + Items)

// ❌ GEFÄHRLICH (heute OK, weil nur lokal im Browser):
const query = `SELECT * FROM users WHERE email = '${userInput}'`;

// ✅ SICHER (echte Systeme):
const query = 'SELECT * FROM users WHERE email = $1';
const result = await db.query(query, [userInput]);



REST-API Design: Roy Fielding's Dissertation (2000)

Fake Store API: https://fakestoreapi.com (zum Üben)

MDN Web Docs: Fetch API & HTTP-Methoden

OWASP: SQL-Injection Prevention

HTTP-Status Codes: RFC 7231

https://fakestoreapi.com/

