L17: RESTful APIs & SQL - Online-Shop Backend

Session 17 - Lecture
Dauer: 90 Minuten
Lernziele: LZ 2 (Relationale DB & SQL praktisch anwenden)

Block: 4 - Theorie, Optimierung & Polyglot

Willkommen zur siebzehnten Session! Heute verbinden wir zwei Welten: RESTful APIs und SQL. Sie lernen,
wie moderne Web-APIs funktionieren und wie HTTP-Requests in SQL-Queries libersetzt werden. Das
Besondere: Wir simulieren eine vollstandige REST-API direkt im Browser - mit echter SQL-Ausfiihrung in
PGlite!

Stellen Sie sich vor: Sie bauen das Backend fiir einen Online-Shop. Frontend-Developer schicken HTTP-
Requests an lhre API, und Sie miissen diese in SQL-Queries libersetzen. Genau das Giben wir heute -
praxisnah und interaktiv!

Motivation: Warum REST & SQL?

Bevor wir loslegen, schauen wir uns an, wie RESTful APIs in der Praxis eingesetzt werden.

Szenario: Online-Shop Architecture

HTTP GET /products

Browser REST API
(Frontend) (Backend)

v

l SELECT * FROM products

PostgreSQL
Database

In echten Systemen Uibersetzt ein Backend-Server (z.B. Node.js, Python, Java) HTTP-Requests in SQL-
Queries. Heute lernen Sie genau diese Ubersetzung - und bauen sie selbst!

Live-Demo: Echte REST-API erkunden

Schauen wir uns zuerst eine echte 6ffentliche API an: die Fake Store API. Offnen Sie die folgenden URLs in
einem neuen Tab und beobachten Sie die JSON-Responses:

[& Alle Produkte: https://fakestoreapi.com/products

& Ein Produkt: https://fakestoreapi.com/products/1

J Kategorien: https://fakestoreapi.com/products/categories

o O Elektronik: https://fakestoreapi.com/products/category/electronics

Interaktive Demo: APl im Browser testen

1~ async function loadFakeStoreProducts() {

2 try {

3 const response = await fetch('https://fakestoreapi.com/products?l
=5")3

4 const products = await response.json();

5

6 console.table(products);

7~ } catch (error) {

8 console.error (error.message);

g }

10 1}

11

12 TloadFakeStoreProducts();

[object Promise]

Beeindruckend, oder? Diese Daten kommen von einem echten Server. Heute bauen Sie eine identische API -
aber die Daten kommen aus lhrer eigenen SQL-Datenbank im Browser!

Teil 1: Was ist eine REST-API?

REST steht fiir ,Representational State Transfer® - ein Architekturstil flir Web-APIs. Klingt kompliziert? Ist es
nicht! Im Kern geht es um vier einfache HTTP-Methoden.

HTTP-Methoden & CRUD

REST nutzt HTTP-Methoden, um Operationen auf Ressourcen auszufiihren. Diese mappen direkt auf SQL-
Operationen!

https://fakestoreapi.com/products
https://fakestoreapi.com/products/1
https://fakestoreapi.com/products/categories
https://fakestoreapi.com/products/category/electronics

HTTP- SQL-

Bedeutung . Beispiel-URL
Methode Operation
GET Daten abrufen (Read) SELECT | GET /products |
Neue Daten erstellen
POST (Create) INSERT | POST /products |
reate
Daten aktualisieren PUT
PUT UPDATE
(Update) /products/5 |
DELETE
DELETE Daten l0schen (Delete DELETE
() /products/5|

Das Schone: HTTP-Methoden und SQL-Operationen haben eine natirliche 1:1-Beziehung. GET wird zu
SELECT, POST zu INSERT, DELETE zu DELETE!

URL-Struktur & Ressourcen

REST-APIs arbeiten mit Ressourcen, die Gber URLs identifiziert werden. Ressourcen entsprechen meist
Datenbank-Tabellen.

URL-Pattern:

https://api.example.com/ressource
https://api.example.com/ressource/{id}
https://api.example.com/ressource?filter=value

Konkrete Beispiele:

URL

|GET /products|

|GET /products/5|

|GET /products?

category=Electronics

[T

/customers/3/orders|

Beschreibung

Alle Produkte

Produkt mit ID 5

Gefilterte Produkte

Bestellungen von
Kunde 3

SQL-Aquivalent

| SELECT * FROM

products|

| SELECT * FROM
products WHERE
product_id = 5

| SELECT * FROM
products WHERE
category =

'Electronics'|

SELECT * FROM orders
WHERE customer_id = 3|

Sehen Sie das Muster? URLs beschreiben die Daten, die Sie wollen - und Sie libersetzen das in SQL!

HTTP-Status Codes

APIs kommunizieren Erfolg oder Fehler Uber HTTP-Status Codes. Die wichtigsten sollten Sie kennen.

Status Code Bedeutung Wann verwenden?
Daten erfolgreich

200 OK Erfolg -
abgerufen/geandert

201 Created Ressource erstellt Nach erfolgreichem INSERT

400 Bad Request Ungiiltige Anfrage Fehlende/falsche Parameter

Ressource nicht . .
404 Not Found Keine Daten in Datenbank

gefunden

500 Internal Server

Server-Fehler SQL-Fehler, Constraint-Verletzung

Error

Diese Codes helfen dem Frontend zu verstehen, was passiert ist - ohne die Response-Daten zu parsen!

JSON als Datenformat

REST-APIs senden und empfangen Daten im JSON-Format. JSON ist leichtgewichtig und JavaScript-nativ.

Response-Beispiel:

{
"data": [
{
"product_id": 1,
"product_name": "Laptop",
"price'": 999.99

"product_id": 2,
"product_name'": "Mouse",
"price": 29.99
}
1,

"status'": '"success'",
"count": 2

Ihre SQL-Query-Ergebnisse werden in dieses Format konvertiert - automatisch durch die API-Schicht!
Teil 2: HTTP - SQL Mapping

Jetzt wird es praktisch! Wir schauen uns an, wie jede HTTP-Operation in eine SQL-Query libersetzt wird.
GET - SELECT

GET-Requests rufen Daten ab - das einfachste Mapping.

Pattern 1: Alle Ressourcen

GET /products
N
SELECT * FROM products ORDER BY product_name;

Pattern 2: Eine Ressource nach ID

GET /products/5
N2
SELECT * FROM products WHERE product_id = 5;

Pattern 3: Gefilterte Ressourcen

GET /products?category=Electronics
N2

SELECT p.x*

FROM products p

INNER JOIN product_categories pc ON p.product_id = pc.product_id
INNER JOIN categories c ON pc.category_id = c.category_id
WHERE c.category_name = 'Electronics';

Pattern 4: Verschachtelte Ressourcen (Joins)

GET /customers/3/orders

N

SELECT o.%

FROM orders o

WHERE o.customer_id = 3
ORDER BY o.order_date DESC;

Sehen Sie das Muster? URL-Parameter werden zu WHERE-Bedingungen, verschachtelte Pfade zu Joins!
POST - INSERT

POST-Requests erstellen neue Daten. Der Request-Body enthalt die Werte.

Request:

POST /products
Content-Type: application/json

{

"product_name'": "Webcam",
"price": 89.99
}

SQL-Translation:

INSERT INTO products (product_name, price)
VALUES ('Webcam', 89.99)
RETURNING product_id, product_name, price;

Wichtig: RETURNING gibt die neu erstellte Zeile zurlick - inklusive auto-generierter ID! Das ist das Ergebnis
der POST-Response.

Response:
{
"data": {
"product_id": 10,
"product_name'": "Webcam",
"price": 89.99
b
"status'": "success",
"message": "Product created"

DELETE - DELETE

DELETE-Requests entfernen Daten.

Request:

DELETE /products/7

SQL-Translation:

DELETE FROM products WHERE product_id = 7;

Response:

{
"status": "success",
"message": "Product deleted",

"deleted_1id": 7
}

Achtung: Was passiert, wenn das Produkt in order_items referenziert wird? Foreign Key Constraint! Das ist
ein 500-Fehler - dazu spater mehr.

PUT/PATCH - UPDATE (Optional)

PUT aktualisiert eine komplette Ressource, PATCH nur Teile davon. Heute fokussieren wir auf POST und
DELETE, aber hier das Konzept:

PUT /products/5
Content-Type: application/json

{

"product_name": "Gaming Mouse Pro",
"price": 39.99
}

UPDATE products

SET product_name = 'Gaming Mouse Pro',
price = 39.99

WHERE product_id = 5

RETURNING =*;

Datenbank-Setup: Online-Shop

Bevor wir mit der API-Implementierung starten, initialisieren wir unsere Datenbank. Wir nutzen das
bekannte E-Commerce-Schema.

1
2
3

O 0o N o U1~

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
a7
48
49
50

-— Locations
~ CREATE TABLE locations (
location_id INTEGER PRIMARY KEY,
city TEXT NOT NULL,
postal_code TEXT NOT NULL,
country TEXT DEFAULT 'Germany'

)3

-— Categories
~ CREATE TABLE categories (
category_id INTEGER PRIMARY KEY,
category_name TEXT NOT NULL UNIQUE,
description TEXT

)3

-— Customers

= CREATE TABLE customers (
customer_id INTEGER PRIMARY KEY,
first_name TEXT NOT NULL,
last_name TEXT NOT NULL,
email TEXT UNIQUE,
street TEXT,
street_number TEXT,
location_id INTEGER REFERENCES locations(location_id)

)3

-— Orders
= CREATE TABLE orders (
order_id INTEGER PRIMARY KEY,
customer_id INTEGER REFERENCES customers(customer_id),
order_date DATE,
total_amount DECIMAL(10,2),
status TEXT

)3

-— Products
= CREATE TABLE products (
product_id SERIAL PRIMARY KEY,
product_name TEXT NOT NULL,
price DECIMAL(10,2)

)3

-- Product_Categories
= CREATE TABLE product_categories (
product_id INTEGER REFERENCES products(product_-id),
category_id INTEGER REFERENCES categories(category_id),
PRIMARY KEY (product_id, category_id)

)3

-- Order_Items

51~

52
53
54
55
56
57
58
59
60

61

62
63
64
65
66
67
68
69

70

CREATE TABLE order_items (
order_item_id INTEGER PRIMARY KEY,
order_id INTEGER REFERENCES orders(order_id),
product_id INTEGER REFERENCES products(product_id),
quantity INTEGER,
line_total DECIMAL(10,2)

)3

-- Sample Data

INSERT INTO locations VALUES (1, 'Berlin', '10115', 'Germany'), (2,

"Hamburg', '20095', 'Germany');

INSERT INTO categories VALUES (1, 'Electronics', 'Electronic devices'

'"Furniture', 'Office furniture');
INSERT INTO customers VALUES
(1, '"Alice', 'Smith', 'alice@example.com', 'Main St'
(2, 'Bob', 'Johnson', 'bobexample.com', 'Oak Ave',
INSERT INTO products (product_name, price) VALUES

) '42') 1)’

'15', 2);

('Laptop', 999.99), ('Mouse', 29.99), ('Keyboard', 79.99),

('"Monitor', 299.99), ('Desk Chair', 199.99);

INSERT INTO product_categories VALUES (1,1), (2,1), (3,1), (4,1), (5,
INSERT INTO orders VALUES (101, 1, '2024-01-15', 299.99, 'delivered')

, 2, '2024-01-22', 999.99, 'delivered');
INSERT INTO order_items VALUES (1, 101, 4, 1, 299.99),
.99);

(2, 102, 1, 1,

-- Locations

CREATE TABLE locations (
location_id INTEGER PRIMARY KEY,
city TEXT NOT NULL,
postal_code TEXT NOT NULL,
country TEXT DEFAULT 'Germany'

)

ok

-- Categories

CREATE TABLE categories (
category_id INTEGER PRIMARY KEY,
category name TEXT NOT NULL UNIQUE,
description TEXT

)

ok

-- Customers

CREATE TABLE customers (
customer_id INTEGER PRIMARY KEY,
first_name TEXT NOT NULL,
last_name TEXT NOT NULL,

email TEXT UNIQUE,

street TEXT,

street_number TEXT,

location_id INTEGER REFERENCES locations(location_id)

-- Orders
CREATE TABLE orders (
order_id INTEGER PRIMARY KEY,
customer_id INTEGER REFERENCES customers(customer_id),
order_date DATE,
total_amount DECIMAL(10,2),
status TEXT

-- Products

CREATE TABLE products (
product_id SERIAL PRIMARY KEY,
product_ name TEXT NOT NULL,
price DECIMAL(10,2)

)

ok

-- Product_Categories

CREATE TABLE product_categories (
product_id INTEGER REFERENCES products(product_id),
category_id INTEGER REFERENCES categories(category_id),
PRIMARY KEY (product_id, category_id)

)

ok

-- Order_Items

CREATE TABLE order_items (
order_item_id INTEGER PRIMARY KEY,
order_id INTEGER REFERENCES orders(order_id),
product_id INTEGER REFERENCES products(product_id),
quantity INTEGER,
line_total DECIMAL(10,2)

-- Sample Data
INSERT INTO locations VALUES (1, 'Berlin’, '10115', '‘Germany'), (2, '"Hamburg’',
'20095', 'Germany')

ok

INSERT INTO categories VALUES (1, 'Electronics’, 'Electronic devices'), (2, 'Furniture’,
'Office furniture')

ok

INSERT INTO customers VALUES
(1, 'Alice’, 'Smith’, 'alice@example.com’, 'Main St', '42', 1),
(2, 'Bob’, 'Johnson’, 'bob@example.com’, 'Oak Ave', '15', 2)

ok

INSERT INTO products (product_name, price) VALUES
(‘Laptop’, 999.99), (‘Mouse’, 29.99), (‘Keyboard’, 79.99),
(‘Monitor’, 299.99), (‘Desk Chair', 199.99)

ok

INSERT INTO product_categories VALUES (1,1), (2,1), (3,1), (4,1), (5,2)

ok

INSERT INTO orders VALUES (101, 1, '2024-01-15', 299.99, 'delivered'), (102, 2,
'2024-01-22', 999.99, 'delivered’)

ok

INSERT INTO order_items VALUES (1, 101, 4, 1, 299.99), (2, 102, 1, 1, 999.99)

ok

Perfekt! Unsere Datenbank ist bereit. Jetzt implementieren wir die API-Schicht!

Playground

1 ERDIAGRAM

Teil 3: API-Setup - fetch-Override

Hier kommt die Magie: Wir tiberschreiben die globale —Funktion, um HTTP-Requests abzufangen
und in SQL-Queries zu libersetzen!

Architektur:

https://dbdiagram.io/
https://dbdiagram.io/embed?c=VGFibGUgY2F0ZWdvcmllcyB7CiAgY2F0ZWdvcnlfaWQgaW50IFtwaywgbm90IG51bGxdCiAgY2F0ZWdvcnlfbmFtZSB0ZXh0IFtub3QgbnVsbCwgdW5pcXVlXQogIGRlc2NyaXB0aW9uIHRleHQKfQoKVGFibGUgY3VzdG9tZXJzIHsKICBjdXN0b21lcl9pZCBpbnQgW3BrLCBub3QgbnVsbF0KICBmaXJzdF9uYW1lIHRleHQgW25vdCBudWxsXQogIGxhc3RfbmFtZSB0ZXh0IFtub3QgbnVsbF0KICBlbWFpbCB0ZXh0IFt1bmlxdWVdCiAgc3RyZWV0IHRleHQKICBzdHJlZXRfbnVtYmVyIHRleHQKICBsb2NhdGlvbl9pZCBpbnQKfQoKVGFibGUgbG9jYXRpb25zIHsKICBsb2NhdGlvbl9pZCBpbnQgW3BrLCBub3QgbnVsbF0KICBjaXR5IHRleHQgW25vdCBudWxsXQogIHBvc3RhbF9jb2RlIHRleHQgW25vdCBudWxsXQogIGNvdW50cnkgdGV4dAp9CgpUYWJsZSBvcmRlcl9pdGVtcyB7CiAgb3JkZXJfaXRlbV9pZCBpbnQgW3BrLCBub3QgbnVsbF0KICBvcmRlcl9pZCBpbnQKICBwcm9kdWN0X2lkIGludAogIHF1YW50aXR5IGludAogIGxpbmVfdG90YWwgZGVjaW1hbCgxMCwyKQp9CgpUYWJsZSBvcmRlcnMgewogIG9yZGVyX2lkIGludCBbcGssIG5vdCBudWxsXQogIGN1c3RvbWVyX2lkIGludAogIG9yZGVyX2RhdGUgZGF0ZQogIHRvdGFsX2Ftb3VudCBkZWNpbWFsKDEwLDIpCiAgc3RhdHVzIHRleHQKfQoKVGFibGUgcHJvZHVjdF9jYXRlZ29yaWVzIHsKICBwcm9kdWN0X2lkIGludCBbcGssIG5vdCBudWxsXQogIGNhdGVnb3J5X2lkIGludCBbcGssIG5vdCBudWxsXQp9CgpUYWJsZSBwcm9kdWN0cyB7CiAgcHJvZHVjdF9pZCBpbnQgW3BrLCBub3QgbnVsbF0KICBwcm9kdWN0X25hbWUgdGV4dCBbbm90IG51bGxdCiAgcHJpY2UgZGVjaW1hbCgxMCwyKQp9CgpSZWY6IGN1c3RvbWVycy5sb2NhdGlvbl9pZCA%2BIGxvY2F0aW9ucy5sb2NhdGlvbl9pZApSZWY6IG9yZGVycy5jdXN0b21lcl9pZCA%2BIGN1c3RvbWVycy5jdXN0b21lcl9pZApSZWY6IHByb2R1Y3RfY2F0ZWdvcmllcy5jYXRlZ29yeV9pZCA%2BIGNhdGVnb3JpZXMuY2F0ZWdvcnlfaWQKUmVmOiBwcm9kdWN0X2NhdGVnb3JpZXMucHJvZHVjdF9pZCA%2BIHByb2R1Y3RzLnByb2R1Y3RfaWQKUmVmOiBvcmRlcl9pdGVtcy5vcmRlcl9pZCA%2BIG9yZGVycy5vcmRlcl9pZApSZWY6IG9yZGVyX2l0ZW1zLnByb2R1Y3RfaWQgPiBwcm9kdWN0cy5wcm9kdWN0X2lk

JavaScript Code Browser Database

fetch('http://little-amazon.com/products’)

—> URL-Prufung: little-amazon.com?

—> JA - Route zu SQL mappen

—> SQL in PGlite ausfuhren

—> JSON-Response zuruckgeben

Implementation (vorgegeben):

1 // ========== Einfacher Router (inspiriert von Express.js) =========3
2~ class SimpleRouter {

B constructor() {

4 this.routes = { GET: {}, POST: {}, DELETE: {} };

5 this._requestBody = null;

6 }

-

8~ get(path, handler) {

9 this.routes.GET[path] = { pattern: this._pathToRegex(path), handl
10 }
11
12~ post(path, handler) {

13 this.routes.POST[path] = { pattern: this._pathToRegex(path), hand
14 }

15

16~ delete(path, handler) {

17 this.routes.DELETE[path] = { pattern: this._pathToRegex(path), ha

b

18 }

19
20~ _pathToRegex(path) {
21 // Konvertiert /products/:id zu Regex mit Named Groups
22 const paramNames = [];
23 const regexPattern = path
24 - .replace(/:\w+/g, (match) => {
25 paramNames.push(match.slice(1)); // ':id' -> 'id'
26 return '([A/]1+)'; // Match alles auler /
27 })
28 .replace(/\//g, '"\\/"); // Escape /
29
30 return { regex: new RegExp("${regexPattern}s’), paramNames };
31 }
32
33~ async handle(method, path, body) {
34 // Body fur POST-Handler verfligbar machen
35~ if (body) {

36~ try {

37 this._requestBody = JSON.parse(body);

38~ } catch (e) {

39 this._requestBody = body;
40 }
41 }
42
43 const routes = this.routes[method] || {};
44
45 - for (const [routePath, route] of Object.entries(routes)) {
46 const match = path.match(route.pattern.regex);
47 ~ if (match) {

48 // Extrahiere Parameter (z.B. { id: '5' })

49 const params = {};

50 - route.pattern.paramNames.forEach((name, i) => {

51 params[name] = match[i + 1];

52 1)

53

54 -~ try {

55 return await route.handler (params, this._requestBody);

56~ } catch (error) {

57~ return {

58 status: 'error',

59 message: Handler error: ${error.message} ,

60 httpStatus: 500

61 };

62 }

63 }

64 }

65

66 return { status: 'error', message: 'Endpoint not found', httpStat
404 };

67 }

68 }

69

70 // Router-Instanz erstellen
71 const router = new SimpleRouter();
72 window.router = router;

1 // ========== Globaler fetch-Override ==========

2 window.originalFetch = window.fetch;

3

4 - window.fetch = async function(url, options = {}) {

5 // Nur little-amazon.com abfangen

6 if (typeof url === 'string' && url.startsWith('http://little-amazon

) {

7 const path = url.replace('http://little-amazon.com', '');

8 const method = options.method || 'GET';

9

10~ try {

11 const result = await router.handle(method, path, options.body);
12~ return new Response(JSON.stringify(result), {

13 status: result.httpStatus || 200,

14 headers: { 'Content-Type': 'application/json' }

15 1)

16~ } catch (error) {

17~ return new Response(JSON.stringify({

18 status: 'error',

19 message: error.message
20~ 3, {
21 status: 500,
22 headers: { 'Content-Type': 'application/json' }
23 1)

24 }

25 }

26

27 // Normale Requests durchreichen

28 return window.originalFetch(url, options);

29 };

30

31 // ========== Routen definieren (TODO: Implementieren Sie die Handler
32

33 // Syntax-Beispiele (noch nicht implementiert):

34 //

35~ // router.get('/products', async (params) => {

36 // // Handler flr GET /products

37 // return { status: 'success', data: [...], httpStatus: 200 };
38 // });

39 //
40~ // router.get('/products/:id', async (params) => {
41 // const productld = params.id; // Parameter automatisch extrah
42 // // Handler flir GET /products/:id
43 // });
44 //
45~ // router.post('/products', async (params) => {
46 // const data = router._requestBody; // Body als JSON-Objekt

47 // // Handler fir POST /products

48 // });

49 //

50~ // router.delete('/products/:id', async (params) => {

51 // const productId = params.id;

52 // // Handler fir DELETE /products/:id

53 // });

54

55 console.log('[4 Little Amazon API mit Router loaded!');

56 console.log('S® Routen-Syntax: router.get("/products/:id", async (par
=>{ ... ")

57 console.log('lll] Response-Format: { status: "success"|"error", data:
httpStatus: 200|404|500 }');

W Little Amazon API mit Router loaded!
& Routen-Syntax: router.get("/products/:id", async (params) => {

1)

i Response-Format: { status: "success"|"error", data: [...],
httpStatus: 200|404|500 }
undefined

Perfekt! Jetzt haben wir einen eleganten Router! Statt verschachtelter if/else nutzen Sie

|router.get('/products/:id', handler)|—genaqueinExpmssjsoderNextﬁ!

Teil 4: Hands-on - SELECT Queries

Beginnen wir mit GET-Requests. lhre Aufgabe: Schreiben Sie SQL-Queries fiir verschiedene API-Endpunkte!

Aufgabe 1: Alle Produkte laden

HnMemenﬁaensm|GET /products|—zdgensmaHeFWoduMean

TODO: Ersetzen Sie den Handler mit lhrer SQL-Query

1 // : Implementieren Sie den Handler flUr GET /products
2~ router.get('/products', async (params) => {
3 // Ihre SQL-Query hier:

4 const query =

5 -— SELECT alle Produkte, sortiert nach product_name
6

7 "

8

9 const result = await db.query(query);
10~ return {

11 status: 'success',

12 data: result.rows,

13 count: result.rows.length,

14 httpStatus: 200

15 }3

1A 1Y -

18 console.debug('[4 GET /products implementiert');

B GET /products implementiert

Test: Rufen Sie die API auf!

1~ try {
B 2 const response = await fetch('http://little-amazon.com/products');
B 3 const data = await response.json();

4

5= if (data.status === 'error') {

6 throw new Error(data.message || 'Unknown error');

7 }

8

9 console.table(data.data);

10~ } catch (error) {

11 console.error(error.message);

12 }

[|
| —

Sobald Ihre Query funktioniert, sehen Sie die Produktliste! Falls ,not implemented“ erscheint, fehlt noch die
SQL-Query.

Aufgabe 2: Produkt nach ID

Hndemenﬁmensm|GET /products/{id}|—zdgm1§eemehueMesH©duM.

TODO: Erweitern Sie handleGET() um ID-Routing

1- router.get('/products/:id', async (params) => {

2 const productId = params.id;

3

4 const query =

5 -- TODO: product_id = ${productId}

6

7 5

8

9 const result = await db.query(query);

10

11~ if (result.rows.length === 0) {

12 return { status: 'error', message: 'Product not found', httpStatu
b

13 }

14

15 return { status: 'success', data: result.rows, httpStatus: 200 };

16 1)

17

18 console.debug('[%4 GET /products/:id implementiert');

B GET /products/:id implementiert

1~ try {
B 2 const response = await fetch('http://little-amazon.com/products/2")
B 3 const data = await response.json();

4

5= if (data.status === 'error') {

6 throw new Error(data.message || 'Unknown error');

7 }

8

9 console.table(data.data);

10~ } catch (error) {

11 console.error(error.message) ;

12 }

Aufgabe 3: Produkte einer Kategorie (JOIN)

Imp@wmnﬂemn5m|GET /products/category/{name}|—nuUen§eemenJOW!

TODO: Erweitern Sie handleGET() um Kategorie-Filter

1~ router.get('/products/category/:name', async (params) => {

2 const categoryName = decodeURIComponent(params.name);

3

4 const query =

5 —-—- TODO: SELECT mit JOIN Uber product_categories und categories

6 -- WHERE c.category_name = '${categoryName}'

-

8 ;

9

10 const result = await db.query(query);

11 return { status: 'success', data: result.rows, count: result.rows.l
}s

12 1)

13

14 console.debug('["4 GET /products/category/{name} implementiert');

M GET /products/category/{name} implementiert

1~ try {
— 2 const response = await fetch('http://little—amazon.com/products/caJ

E

/Electronics');

B 3 const data = await response.json();
4
5~ if (data.status === 'error') {
6 throw new Error(data.message || 'Unknown error');
7 }
8
9 console.table(data.data);
10~ } catch (error) {
11 console.error(error.message) ;
12 }

Aufgabe 4: Kunden mit Bestellungen (JOIN + Aggregation)

HnMemenﬁmensm|GET /customers/{id}/orders|—zdgen5maueBeﬁemﬂ@eneMesKunden

1~ router.get('/customers', async () => {

2 const query = °

3 -— TODO: SELECT alle Kunden

4 s

5

6 const result = await db.query(query);

7 return { status: 'success', data: result.rows, count: result.rows.l
b

8 1);

9

10

11 console.debug('["4 GET /customers implementiert');

12

13~ router.get('/customers/:id/orders', async (params) => {

14 const customerId = params.id;

15

16 const query =

17 -— WHERE c.customer_id = '${customerId}’

18

19 s

20

21 const result = await db.query(query);

22 return { status: 'success', data: result.rows, count: result.rows.l
b

23 1);

24

25 console.debug('[4 GET /customers/:id/orders implementiert');

M GET /customers implementiert

W8 GET /customers/:id/orders implementiert

1~ try {
%] 2 const response = await fetch('http://little-amazon.com/customers/1
/orders');

B 3 const data = await response.json();
4
5= if (data.status === 'error') {
6 throw new Error(data.message || 'Unknown error');
7 }
8
9 console.table(data.data);
10~ } catch (error) {
11 console.error(error.message) ;
12 }

Teil 5: Hands-on - INSERT Queries

Jetzt wird es spannend: POST-Requests erstellen neue Daten! Der Request-Body enthalt die Werte als JSON.

Aufgabe 5: Neues Produkt hinzufiigen

HnMemenUmensm|POST /products|—emkﬂen§eeMrmueandum.

TODO: Implementieren Sie POST-Handler mit Body-Parsing

1 // : Implementieren Sie POST /products
2~ router.post('/products', async (params) => {
3 const data = router._requestBody || {};
4
5 // Validierung
6~ if (!data.product_name || !data.price) {
7~ return {
8 status: 'error',
9 message: 'Missing required fields: product_name, price',
10 httpStatus: 400
ALl 13
12 }
13
14~ if (data.price < 0) {
15+ return {
16 status: 'error',
17 message: 'Price must be positive',
18 httpStatus: 400
19 }s
20 }
21

22 // : INSERT-Query mit RETURNING

23 const query =

24 -- Ihre INSERT-Query hier

25

26 RETURNING product_id, product_name, price;
27 s

28

29 const result = await db.query(query);
30~ return {

31 status: 'success',

32 message: 'Product created',
33 data: result.rows[0],

34 httpStatus: 201

35 +s

36 1);

37

38 console.debug('[4 POST /products implementiert');

B POST /products implementiert

Test: Produkt erstellen

Produktname:

Webcam

Preis (€):

89.99

-~ Produkt erstellen

Hinweis: In echten Systemen wiirden Sie Prepared Statements nutzen, um SQL-Injection zu verhindern!

</details>

Aufgabe 6: Produkte l1oschen (DELETE)

Hnmemenﬁmensm|POST /customers|—emkﬂensmehmnneuenKundmm

DELETE-Handler

1 // : Implementieren Sie DELETE /products/:id

2~ router.delete('/products/:id', async (params) => {

3 const productId = params.id;

4

5 // Prifen ob Produkt existiert

6 const checkQuery = “SELECT product_id FROM products WHERE product_i
${productld} ;

7 const checkResult = await db.query(checkQuery);

3

9~ if (checkResult.rows.length === 0) {

10 return { status: 'error', message: 'Product not found', httpStatu
b

11 }

12

13~ try {

14 const deleteProductQuery =

15 -— Ihre DELETE-Query fur products hier

16

17 i

18

19 await db.query(deleteProductQuery);

20

21~ return {

22 status: 'success',

23 message: 'Product deleted',

24 deleted_id: parselnt(productId),

25 httpStatus: 200

26 }s

27 } catch (error) {

28 // Foreign Key Constraint Fehler abfangen

29 - if (error.message.includes('foreign key constraint')) {

30~ return {

31 status: 'error',

32 message: 'Cannot delete product: still referenced in other ta

33 detail: error.message,

34 httpStatus: 409 // Conflict

35 b5

36 }

37 throw error;

38 }

39 1);

40

41 console.debug('[%4 DELETE /products/:id implementiert');

B DELETE /products/:id implementiert

Test: Mini-Shop mit Loschen-Funktion

7 Shop laden

> ¢ Wichtig

Aufgabe 8: Kunde loschen (CASCADE-Problem)

Was passiert, wenn Sie einen Kunden l6schen, der Bestellungen hat? Foreign Key Constraint! Genau wie
beim Produkt-Loschen.

Probieren Sie es aus:

El 1- router(.delete('/customers/:id', async (params) => {
2 const customerId = params.id;
3
4 // Prifen ob Kunde existiert
5 const checkQuery = “SELECT customer_id FROM customers WHERE custome

${customerId};
6 const checkResult = await db.query(checkQuery);
-
8- if (checkResult.rows.length === 0) {
9 return { status: 'error', message: 'Customer not found', httpStat
404 1},
10 }
11
12~ try {
13 const result = await db.query(DELETE FROM customers WHERE custom
= ${customerId}’);
14 - return {
15 status: 'success',
16 message: 'Customer deleted',
17 deleted_id: parseInt(customerId),
18 httpStatus: 200
19 b
20 - } catch (error) {
21 // Foreign Key Constraint Fehler abfangen
22~ if (error.message.includes('foreign key constraint')) {
23~ return {
24 status: 'error',
25 message: 'Cannot delete customer: still referenced in other t
J

26 detail: error.message,
27 httpStatus: 409 // Conflict
28 +s3
29 }
30 throw error;
31 }

B32 1);

1 // Versuchen Sie Kunde 1 zu loéschen (hat Bestellungen!)

Ed2 - const response = await fetch('http://little-amazon.com/customers/1', {
3 method: 'DELETE'
4 1);

El5 const data = await response.json();

6 console.log(data);

{"status":"error","message":"Endpoint not found","httpStatus":404}

Sie bekommen einen Fehler! Die Datenbank verhindert das Loschen wegen der Foreign Key Referenzen in

der -Tabelle. Das ist gewollt - Datenkonsistenz!

Losungen fiir Foreign Key Probleme:

1. Reihenfolge beachten: Erst abhangige Daten |6schen, dann Hauptdaten |:| sql DELETE FROM
productcategories WHERE productid = 5; DELETE FROM products WHERE product_id = 5; |:|

2. Soft Delete: Setzen Sie| deleted = true |statt echtem DELETE |:| sql UPDATE products SET
deleted = true WHERE product_id = 5; |:|

3. CASCADE:|ON DELETE CASCADE|inderTabeHendeﬁnhkn1[}sqlCREATETABLE
product_categories (productid INTEGER REFERENCES products(productid) ON DELETE CASCADE, ...);|:|

4. Transaktionen: Mehrere Deletes atomar ausfiihren |:| sql BEGIN; DELETE FROM orderitems WHERE
productid = 5; DELETE FROM productcategories WHERE productid = 5; DELETE FROM products WHERE
product_id = 5; COMMIT; [|

Teil 7: Error-Handling

Fehler gehoren zur Realitat! Lassen Sie uns verschiedene Fehlertypen simulieren und richtig behandeln.

404: Ressource nicht gefunden

Wenn eine Query keine Daten zuriickgibt, sollten Sie 404 zurtickgeben.

1 // Beispiel: GET /products/9999
%] 2 const result = await db.query('SELECT * FROM products WHERE product_i
9999');
3
4~ 4f (result.rows.length === 0) {

5= return {

6 status: 'error',

7 message: 'Product not found',
8 httpStatus: 404

<) }s

10 }

400: Ungiiltige Daten

Validieren Sie Inputs, bevor Sie SQL ausfiihren!

// Beispiel: Negativer Preis

if (data.price < 0) {
return {
status: 'error',
message: 'Price must be positive',
httpStatus: 400

b

+

// Beispiel: Fehlende Pflichtfelder

if (!data.product_name || !data.price) {
return {

status: 'error',
message: 'Missing required fields: product_name, price',
httpStatus: 400
s
+

500: SQL-Fehler

Foreign Key Constraints, Syntax-Fehler, etc. flihren zu 500-Fehlern.

Beispiel: Foreign Key Constraint

try {
const result = await db.query(SELECT * FROM product_list’);
return { status: 'success', data: result.rows };

} catch (error) {
console.error('SQL Error:', error);

// Spezifische Fehlerbehandlung
if (error.message.includes('foreign key constraint')) {
return {
status: 'error',
message: 'Cannot delete: record is still referenced by other tables'
detail: error.message,
httpStatus: 409 // Conflict
b3
}

return {
status: 'error',
message: Database error: ${error.message} ,
httpStatus: 500
+s
+

HTTP 409 (Conflict) ist der richtige Code fiir Foreign Key Constraint Fehler - es ist kein Server-Fehler, sondern
ein Konflikt mit der Datenintegritat!

Wrap-up & Best Practices

Fassen wir zusammen, was Sie heute gelernt haben!
HTTP - SQL Mapping:
. GET — SELECT (mit WHERE fur Filter, JOIN fiir Relations)
. POST — INSERT (mit RETURNING fiir Response)
. DELETE — DELETE (mit Existenz-Check)
. PUT — UPDATE (optional, dhnlich zu POST)

Best Practices:

o Routing-Pattern: Nutzen Sie Router-Syntax Wie| router.get('/products/:id',
handler)

. Parameter-Extraktion: Zugriff Uber statt manueller Regex

o Validierung: Priifen Sie Inputs, bevor Sie SQL ausfiihren

. Error-Handling: Nutzen Sie passende HTTP-Status Codes
. RETURNING: Bei INSERT/UPDATE/DELETE die gedanderten Daten zurlickgeben

o Existenz-Checks: Vor DELETE priifen, ob Ressource existiert

)\ SQL-Injection: In echten Systemen IMMER Prepared Statements nutzen!

I\ Transaktionen: Bei Multi-Step-Operations (z.B. Bestellung + Items)

SQL-Injection Warnung;:

// XK GEFAHRLICH (heute OK, weil nur lokal im Browser):
const query = "SELECT * FROM users WHERE email = 'S${userInput}'";

// SICHER (echte Systeme):
const query = 'SELECT x FROM users WHERE email = $1';
const result = await db.query(query, [userInput]);

In echten Backends wiirden Sie niemals String-Interpolation nutzen! Heute geht es aber nur um das Konzept
- die Daten bleiben im Browser.

Pro-Tipp: Lernen Sie ein echtes Backend-Framework (Express.js, FastAPI, Spring Boot) - die
Konzepte von heute sind 1:1 tUbertragbar!

Referenzen & Weiterfithrendes

REST-API Design: Roy Fielding's Dissertation (2000)

Fake Store API: https://fakestoreapi.com (zum Uben)

MDN Web Docs: Fetch API & HTTP-Methoden
OWASP: SQL-Injection Prevention

HTTP-Status Codes: RFC 7231

https://fakestoreapi.com/

