
Session 8 – SQL Data Definition (DDL) & Manipulation (DML)

Session-Typ: Lecture Dauer: 90 Minuten Lernziele: LZ 2 (SQL-Praxis)

Intro: Von Abfragen zu Strukturen
Bisher haben Sie gelernt, Daten abzufragen – SELECT, WHERE, GROUP BY, alles in Session 7. Aber wie
kommen die Tabellen überhaupt in die Datenbank? Wie definieren Sie Spalten, Datentypen, Constraints?
Und wie fügen Sie Daten ein, ändern sie, löschen sie? Das ist der nächste Schritt: Von der Abfrageebene zur
Strukturebene.

Heute lernen Sie:

Warum ist das wichtig? Weil Ihre Datenbank nur so gut ist wie Ihr Schema. Falsche Datentypen führen zu
Performance-Problemen. Fehlende Constraints führen zu Inkonsistenzen. Unsichere Updates können Ihre
gesamte Datenbank zerstören. Diese Session gibt Ihnen die Kontrolle.

Datenbank vorbereiten
Wir starten mit einer einfachen Sandbox-Datenbank. Keine Sorge – alles läuft im Browser, nichts wird
dauerhaft gespeichert. Sie können experimentieren, Fehler machen, lernen.

DDL (Data Definition Language): CREATE, ALTER, DROP – Ihre Werkzeuge für Schema-Design

DML (Data Manipulation Language): INSERT, UPDATE, DELETE – Daten schreiben, nicht nur lesen

Constraints: PRIMARY KEY, FOREIGN KEY, UNIQUE, CHECK – Datenintegrität sichern

Best Practices: Sichere Schema-Evolution, häufige Fehler vermeiden

-- Sandbox initialisieren
CREATE TABLE IF NOT EXISTS demo_test (id INTEGER, name TEXT);
INSERT INTO demo_test VALUES (1, 'Test');
SELECT 'Datenbank bereit!' AS status;

1
2
3
4



-- Sandbox initialisieren

CREATE TABLE IF NOT EXISTS demo_test (id INTEGER, name TEXT)

ok

INSERT INTO demo_test VALUES (1, 'Test')

ok

SELECT 'Datenbank bereit!' AS status

1 rows

-- Interaktives Terminal (nutzen Sie es für eigene Experimente)

SELECT * FROM demo_test

1 rows

Was ist DDL & DML?
SQL ist keine monolithische Sprache. Es gibt Kategorien: DDL für Schema-Definition, DML für
Datenmanipulation, DCL für Zugriffsrechte, TCL für Transaktionen. Heute fokussieren wir DDL und DML – das
Fundament für alles Weitere.

SQL-Kategorien im Überblick

Datenbank bereit!

-- Interaktives Terminal (nutzen Sie es für eigene Experimente)
SELECT * FROM demo_test;

1 Test

1
2

1

1

status

id name



Data
Definition
Language

DDL
Schema
erstellen/
ändern

CREATE ,
ALTER ,
DROP

Heute

Data
Manipulation
Language

DML
Daten
lesen/schreiben

SELECT ,
INSERT ,
UPDATE ,
DELETE

Heute

Data Control
Language

DCL Zugriffsrechte
GRANT ,
REVOKE

Später

Transaction
Control
Language

TCL Transaktionen
BEGIN ,
COMMIT ,
ROLLBACK

Session 11+

Heute: DDL (Struktur) + DML (Daten)
DDL ist wie der Bauplan Ihres Hauses: Sie definieren Räume (Tabellen), Türen (Foreign Keys), Regeln
(Constraints). DML ist das Leben im Haus: Sie stellen Möbel auf (INSERT), verschieben sie (UPDATE), werfen
sie raus (DELETE).

DDL – Tabellen erstellen (CREATE TABLE)
CREATE TABLE ist Ihr wichtigster DDL-Befehl. Sie definieren den Tabellennamen, die Spalten, die
Datentypen, die Constraints. Schauen wir uns die Grundsyntax an.

Grundsyntax

Minimal-Beispiel:

CREATE TABLE products (
 id INTEGER,
 name TEXT,
 price DECIMAL(10, 2)
);

Kategorie Abkürzung Zweck Befehle Session

1
2
3
4
5



CREATE TABLE products (

 id INTEGER,

 name TEXT,

 price DECIMAL(10, 2)

)

ok

Was passiert hier?

Aber das ist zu simpel. In der Praxis wollen Sie mehr Kontrolle: Ein Primärschlüssel, NOT NULL für
Pflichtfelder, DEFAULT-Werte. Schauen wir uns eine realistischere Version an.

Realistisches Beispiel mit Constraints

CREATE TABLE products (

 product_id INTEGER PRIMARY KEY,

 name TEXT NOT NULL,

 description TEXT,

 price DECIMAL(10, 2) NOT NULL CHECK (price >= 0),

 stock INTEGER DEFAULT 0,

 created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP

)

relation "products" already exists

Was ist neu?

Tabelle products wird erstellt

3 Spalten: id (Ganzzahl), name (Text), price (Dezimalzahl mit 2 Nachkommastellen)

Keine Constraints – jeder Wert ist erlaubt, auch NULL

CREATE TABLE products (
 product_id INTEGER PRIMARY KEY,
 name TEXT NOT NULL,
 description TEXT,
 price DECIMAL(10, 2) NOT NULL CHECK (price >= 0),
 stock INTEGER DEFAULT 0,
 created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
);

1
2
3
4
5
6
7
8



Testen:

-- Funktioniert:

INSERT INTO products (product_id, name, price)

VALUES (1, 'Laptop', 999.99)

column "product_id" of relation "products" does not exist

Sie können Primärschlüssel auch inline definieren oder als separaten Constraint. Beides funktioniert, aber
die separate Form ist flexibler – vor allem bei Composite Keys.

Primärschlüssel: Inline vs. Constraint

Inline (einfach):

Als Constraint (flexibel):

Composite Key (mehrere Spalten):

PRIMARY KEY : product_id ist eindeutig + NOT NULL

NOT NULL : name und price sind Pflichtfelder

CHECK : price muss >= 0 sein (keine negativen Preise!)

DEFAULT : stock ist standardmäßig 0, created_at wird automatisch gesetzt

-- Funktioniert:
INSERT INTO products (product_id, name, price)
VALUES (1, 'Laptop', 999.99);

-- Funktioniert NICHT (price negativ):
INSERT INTO products (product_id, name, price)
VALUES (2, 'Mouse', -10.00);

CREATE TABLE orders (
 order_id INTEGER PRIMARY KEY,
 customer_name TEXT
);

CREATE TABLE orders (
 order_id INTEGER,
 customer_name TEXT,
 CONSTRAINT pk_orders PRIMARY KEY (order_id)
);

CREATE TABLE order_items (
 order_id INTEGER,
 product_id INTEGER,

tit INTEGER

1
2
3
4
5
6
7

1
2
3
4









CREATE TABLE order_items (

 order_id INTEGER,

 product_id INTEGER,

 quantity INTEGER,

 PRIMARY KEY (order_id, product_id)

)

ok

Wann Composite Keys?

Datentypen-Überblick
Datentypen sind wichtig für Speichereffizienz, Performance und Validierung. Ein INTEGER braucht weniger
Platz als TEXT. Eine DECIMAL-Zahl ist präziser als FLOAT. Datum-Typen ermöglichen Zeitberechnungen.
Schauen wir uns die wichtigsten an.

Numerische Typen

-2 31-1 4 Bytes IDs, Zähler, ganze Zahlen

-2 63-1 8 Bytes
Große IDs, Zeitstempel
(Unix)

Präzise
Dezimalzahl

Variabel
Geld, Preise (keine
Rundungsfehler!)

Approximativ 4/8 Bytes
Wissenschaftliche
Berechnungen

Beispiel: Warum DECIMAL für Geld?

 quantity INTEGER,
 PRIMARY KEY (order_id, product_id)
);

Wenn Eindeutigkeit nur durch Kombination gegeben ist

Beispiel: Ein Produkt kann in mehreren Bestellungen vorkommen, aber pro Bestellung nur einmal

31 bis 2

63 bis 2

-- FLOAT hat Rundungsfehler:
SELECT 0 1 + 0 2 AS float sum; -- Ergebnis: 0 30000000000000004

INTEGER /
INT

BIGINT

DECIMAL(p,s
)

FLOAT /
DOUBLE

Bereich Speicher Wann nutzen?Typ

4
5
6

1
2



-- FLOAT hat Rundungsfehler:

SELECT 0.1 + 0.2 AS float_sum

1 rows

-- Ergebnis: 0.30000000000000004

-- DECIMAL ist präzise:

SELECT CAST(0.1 AS DECIMAL(10,2)) + CAST(0.2 AS DECIMAL(10,2)) AS decimal_sum

1 rows

Text-Typen haben verschiedene Längen. VARCHAR begrenzt die Länge, TEXT ist unbegrenzt. In PGlite.und
PostgreSQL gibt es keinen Performance-Unterschied mehr, aber in älteren Systemen (MySQL) schon.

Text-Typen

CHAR(n) Fix n Zeichen Festlängen-Codes (z.B. Ländercodes ‚DE‘, ‚US‘)

VARCHAR(n) Variabel bis n Namen, E-Mails mit Längenbegrenzung

TEXT Unbegrenzt Beschreibungen, Kommentare, JSON

Beispiel:

SELECT 0.1 + 0.2 AS float_sum; -- Ergebnis: 0.30000000000000004

-- DECIMAL ist präzise:
SELECT CAST(0.1 AS DECIMAL(10,2)) + CAST(0.2 AS DECIMAL(10,2)) AS
 decimal_sum;

0.3

0.30

CREATE TABLE users (
 country_code CHAR(2), -- Immer 2 Zeichen: 'DE', 'US'
 email VARCHAR(255), -- Max. 255 Zeichen
 bio TEXT -- Unbegrenzt
);

Typ Max. Länge Wann nutzen?

2
3
4
5

1
2
3
4
5

1

1

float_sum

decimal_sum



CREATE TABLE users (

 country_code CHAR(2), -- Immer 2 Zeichen: 'DE', 'US'

 email VARCHAR(255), -- Max. 255 Zeichen

 bio TEXT -- Unbegrenzt

)

ok

Datum- und Zeit-Typen sind essenziell für zeitbasierte Analysen. DATE speichert nur das Datum, TIMESTAMP
speichert Datum + Uhrzeit, INTERVAL repräsentiert Zeitdauern.

Datum & Zeit

DATE YYYY-MM-DD 2025-11-04
Geburtstage,
Events

TIME HH:MM:SS 14:30:00 Öffnungszeiten

TIMESTAM
P

YYYY-MM-DD
HH:MM:SS

2025-11-04
14:30:00

Logs, created_at

INTERVAL Duration '3 days', ‚2 hours‘ Zeitrechnungen

Beispiel: Zeitberechnungen

CREATE TABLE events (
 event_id INTEGER PRIMARY KEY,
 event_name TEXT,
 event_date DATE,
 start_time TIMESTAMP
);

INSERT INTO events VALUES
 (1, 'Konferenz', '2025-12-15', '2025-12-15 09:00:00');

-- 3 Tage vor dem Event:
SELECT
 event_name,
 event_date,
 event_date - INTERVAL '3 days' AS reminder_date
FROM events;

Typ Format Beispiel Wann nutzen?

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16



CREATE TABLE events (

 event_id INTEGER PRIMARY KEY,

 event_name TEXT,

 event_date DATE,

 start_time TIMESTAMP

)

ok

INSERT INTO events VALUES

 (1, 'Konferenz', '2025-12-15', '2025-12-15 09:00:00')

ok

-- 3 Tage vor dem Event:

SELECT

 event_name,

 event_date,

 event_date - INTERVAL '3 days' AS reminder_date

FROM events

1 rows

Boolean und Spezialtypen runden das Bild ab. BOOLEAN für Ja/Nein-Flags, JSON für strukturierte Daten,
ARRAY für Listen.

Boolean & Spezialtypen

BOOLEAN TRUE, FALSE, NULL is_active Flags, Status

JSON JSON-Objekt {"key": "value"} Flexible Daten

ARRAY Liste [1, 2, 3] Tags, Listen

UUID Universally Unique ID 550e8400-e29b... Verteilte IDs

Beispiel: JSON-Spalte

Konferenz 2025-12-15 2025-12-12

CREATE TABLE products_ext (
 product_id INTEGER PRIMARY KEY,

name TEXT

Typ Werte Beispiel Wann nutzen?

1
2
3

1

event_name event_date reminder_date



CREATE TABLE products_ext (

 product_id INTEGER PRIMARY KEY,

 name TEXT,

 metadata JSON -- Flexible Zusatzdaten

)

ok

INSERT INTO products_ext VALUES

 (1, 'Laptop', '{"brand": "Dell", "warranty_years": 3}')

ok

-- JSON abfragen (PGlite.:

SELECT

 name,

 metadata->>'brand' AS brand,

 metadata->>'warranty_years' AS warranty

FROM products_ext

1 rows

DDL – Tabellen ändern (ALTER TABLE)
Schemas ändern sich. Sie fügen Spalten hinzu, ändern Datentypen, löschen veraltete Felder. ALTER TABLE ist
Ihr Werkzeug für Schema-Evolution. Aber Vorsicht: Manche Operationen sind riskant bei großen Tabellen.

Spalten hinzufügen (ADD COLUMN)

Syntax:

 name TEXT,
 metadata JSON -- Flexible Zusatzdaten
);

INSERT INTO products_ext VALUES
 (1, 'Laptop', '{"brand": "Dell", "warranty_years": 3}');

-- JSON abfragen (PGlite.:
SELECT
 name,
 metadata->>'brand' AS brand,
 metadata->>'warranty_years' AS warranty
FROM products_ext;

Laptop Dell 3

3
4
5
6
7
8
9
10
11
12
13
14
15

1

name brand warranty

Beispiel:

-- Neue Spalte hinzufügen:

ALTER TABLE products

ADD COLUMN category TEXT DEFAULT 'Uncategorized'

ok

-- Prüfen:

SELECT * FROM products

0 rows

💡 Best Practice: Neue Spalten mit DEFAULT oder NULL hinzufügen, um Lock-Probleme zu vermeiden.
Spalten ändern ist komplexer. Sie können Datentypen ändern, Defaults setzen, Constraints hinzufügen. Aber
nicht alle Datenbanken unterstützen alle Operationen gleich.

Spalten ändern (ALTER COLUMN)

Datentyp ändern:

Default setzen/ändern:

ALTER TABLE table_name
ADD COLUMN column_name datatype [constraints];

-- Neue Spalte hinzufügen:
ALTER TABLE products
ADD COLUMN category TEXT DEFAULT 'Uncategorized';

-- Prüfen:
SELECT * FROM products;

-- In PostgreSQL/PGlite.
ALTER TABLE products
ALTER COLUMN price TYPE DECIMAL(12, 2);

-- In MySQL:
ALTER TABLE products
MODIFY COLUMN price DECIMAL(12, 2);

ALTER TABLE products
ALTER COLUMN stock SET DEFAULT 10;

1
2
3
4
5
6

id name price category









⚠️ Achtung bei Datentyp-Änderungen:

Spalten löschen ist riskant. Sobald weg, sind die Daten weg. Überlegen Sie zweimal, bevor Sie DROP
COLUMN nutzen. Manchmal ist es besser, eine Spalte zu „verstecken“ (in Views) statt zu löschen.

Spalten löschen (DROP COLUMN)

Syntax:

⚠️ Vorsicht:

Alternative: Soft Delete

Statt Spalte zu löschen:

Tabellen können umbenannt werden. Das ist nützlich, wenn Sie Schema-Migrationen machen oder alte
Versionen als Backup behalten wollen.

Tabelle umbenennen (RENAME TO)

Syntax:

Beispiel:

TEXT → INTEGER : Funktioniert nur, wenn alle Werte Zahlen sind

INTEGER → BIGINT : Meist sicher

Bei großen Tabellen: Kann lange dauern!

ALTER TABLE products
DROP COLUMN description;

Daten werden permanent gelöscht

Kann nicht rückgängig gemacht werden (außer via Backup)

Bei FOREIGN KEY Constraints: Kann fehlschlagen

-- Spalte umbenennen (verstecken):
ALTER TABLE products
RENAME COLUMN description TO _deprecated_description;

-- Oder in Views weglassen:
CREATE VIEW products_view AS
SELECT product_id, name, price FROM products;

ALTER TABLE old_name RENAME TO new_name;

-- Backup erstellen:
CREATE TABLE products_backup AS SELECT * FROM products;

-- Original umbenennen:

1
2
3
4









-- Backup erstellen:

CREATE TABLE products_backup AS SELECT * FROM products

ok

-- Original umbenennen:

ALTER TABLE products RENAME TO products_v1

ok

-- Neue Version wird zu "products":

CREATE TABLE products AS SELECT * FROM products_v1

ok

DDL – Tabellen löschen (DROP TABLE)
DROP TABLE ist der gefährlichste DDL-Befehl. Einmal ausgeführt, ist die Tabelle weg – inklusive aller Daten.
Nutzen Sie IF EXISTS, um Fehler zu vermeiden, und CASCADE/RESTRICT, um Abhängigkeiten zu kontrollieren.

Grundsyntax

Einfaches DROP:

Mit Sicherheitsnetz:

⚠️ Gefahr:

CASCADE und RESTRICT steuern, was mit abhängigen Objekten passiert. CASCADE löscht alles mit (Views,
Foreign Keys), RESTRICT verhindert das Löschen, wenn Abhängigkeiten existieren.

 Original umbenennen:
ALTER TABLE products RENAME TO products_v1;

-- Neue Version wird zu "products":
CREATE TABLE products AS SELECT * FROM products_v1;

DROP TABLE products;

DROP TABLE IF EXISTS products;

Tabelle wird sofort gelöscht

Alle Daten gehen verloren

Kann nicht rückgängig gemacht werden (außer Backup/Transaktion)

4
5
6
7
8





CASCADE vs. RESTRICT

RESTRICT (Standard):

CASCADE (Vorsicht!):

Beispiel:

-- Fehlschlägt, wenn andere Tabellen via FOREIGN KEY abhängen:
DROP TABLE products RESTRICT;

-- Löscht Tabelle UND alle abhängigen Objekte (Views, FKs):
DROP TABLE products CASCADE;

CREATE TABLE categories (
 category_id INTEGER PRIMARY KEY,
 name TEXT
);

CREATE TABLE products_fk (
 product_id INTEGER PRIMARY KEY,
 name TEXT,
 category_id INTEGER,
 FOREIGN KEY (category_id) REFERENCES categories(category_id)
);

-- Fehlschlägt (products_fk hängt davon ab):
DROP TABLE categories RESTRICT;

-- Funktioniert (löscht auch FOREIGN KEY Constraint):
DROP TABLE categories CASCADE;

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17







CREATE TABLE categories (

 category_id INTEGER PRIMARY KEY,

 name TEXT

)

ok

CREATE TABLE products_fk (

 product_id INTEGER PRIMARY KEY,

 name TEXT,

 category_id INTEGER,

 FOREIGN KEY (category_id) REFERENCES categories(category_id)

)

ok

-- Fehlschlägt (products_fk hängt davon ab):

DROP TABLE categories RESTRICT

cannot drop table categories because other objects depend on it

💡 Best Practice: Immer RESTRICT nutzen, außer Sie wissen genau, was Sie tun.

Constraints – Datenintegrität sichern
Constraints sind Regeln, die Ihre Daten schützen. PRIMARY KEY verhindert Duplikate, FOREIGN KEY sichert
Beziehungen, CHECK validiert Werte. Ohne Constraints ist Ihre Datenbank ein Wilder Westen – jeder Wert ist
erlaubt.

Warum Constraints?

Ohne Constraints:

Mit Constraints:

CREATE TABLE orders_bad (
 order_id INTEGER,
 customer_id INTEGER,
 total DECIMAL(10,2)
);

-- Alles erlaubt:
INSERT INTO orders_bad VALUES (1, NULL, -100); -- ❌ Kein Kunde, negativer
INSERT INTO orders_bad VALUES (1, 999, 50); -- ❌ Duplikat-ID, nicht
 -existierender Kunde





PRIMARY KEY
PRIMARY KEY ist der wichtigste Constraint. Er garantiert Eindeutigkeit und NOT NULL. Jede Tabelle sollte
einen Primärschlüssel haben – er ist die Identität jeder Zeile.

Single-Column vs. Composite Keys

Single-Column (häufigster Fall):

Composite Key (mehrere Spalten):

CREATE TABLE customers (
 customer_id INTEGER PRIMARY KEY,
 name TEXT NOT NULL
);

CREATE TABLE orders_good (
 order_id INTEGER PRIMARY KEY,
 customer_id INTEGER NOT NULL,
 total DECIMAL(10,2) CHECK (total >= 0),
 FOREIGN KEY (customer_id) REFERENCES customers(customer_id)
);

-- Schutz aktiviert:
INSERT INTO orders_good VALUES (1, NULL, 50); -- ❌ customer_id NOT NULL
INSERT INTO orders_good VALUES (1, 999, 50); -- ❌ customer_id existier
INSERT INTO orders_good VALUES (1, 1, -100); -- ❌ total CHECK fehlschl

CREATE TABLE users (
 user_id INTEGER PRIMARY KEY,
 username TEXT UNIQUE,
 email TEXT
);

CREATE TABLE enrollments (
 student_id INTEGER,
 course_id INTEGER,
 enrollment_date DATE,
 PRIMARY KEY (student_id, course_id) -- Ein Student kann jeden Kurs
 einmal belegen
);

1
2
3
4
5

6







CREATE TABLE enrollments (

 student_id INTEGER,

 course_id INTEGER,

 enrollment_date DATE,

 PRIMARY KEY (student_id, course_id) -- Ein Student kann jeden Kurs nur einmal

belegen

)

ok

Wann Composite Keys?

Natürliche vs. künstliche Keys: Natürlich = aus Daten (E-Mail, ISBN), künstlich = generiert (Auto-Increment
ID). Künstliche Keys sind meist besser, weil sie unveränderlich sind.

Natürliche vs. künstliche Keys

Natürlicher Key (aus Daten):

Künstlicher Key (generiert):

Wann was?

Viele-zu-Viele-Beziehungen (Student ↔ Kurs)

Zeitreihendaten (sensor_id, timestamp)

CREATE TABLE books (
 isbn TEXT PRIMARY KEY, -- ISBN ist natürlich eindeutig
 title TEXT,
 author TEXT
);

CREATE TABLE books_auto (
 book_id INTEGER PRIMARY KEY, -- Auto-generiert
 isbn TEXT UNIQUE,
 title TEXT,
 author TEXT
);





Unveränderlich ❌ (z.B. E-Mail ändert sich) ✅

Performance ⚠️ (Text-Keys langsamer) ✅ (Integer schnell)

Lesbarkeit ✅ (ISBN sagt etwas aus) ❌ (ID 4711 ist abstrakt)

💡 Empfehlung: Künstlicher Primärschlüssel + natürlicher UNIQUE Constraint

FOREIGN KEY
FOREIGN KEY verbindet Tabellen. Er garantiert, dass Beziehungen gültig sind: Jede Bestellung muss einem
existierenden Kunden gehören. Das ist referenzielle Integrität.

Referenzielle Integrität

Beispiel: Kunden und Bestellungen

CREATE TABLE users_best (
 user_id INTEGER PRIMARY KEY,
 email TEXT UNIQUE NOT NULL,
 username TEXT
);

CREATE TABLE customers_fk (
 customer_id INTEGER PRIMARY KEY,
 name TEXT NOT NULL
);

CREATE TABLE orders_fk (
 order_id INTEGER PRIMARY KEY,
 customer_id INTEGER NOT NULL,
 order_date DATE,
 FOREIGN KEY (customer_id) REFERENCES customers_fk(customer_id)
);

INSERT INTO customers_fk VALUES (1, 'Alice'), (2, 'Bob');

-- Funktioniert (customer_id 1 existiert):
INSERT INTO orders_fk VALUES (101, 1, '2025-11-04');

-- Fehlschlägt (customer_id 999 existiert nicht):
INSERT INTO orders_fk VALUES (102, 999, '2025-11-04');

Kriterium Natürlich Künstlich

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19





CREATE TABLE customers_fk (

 customer_id INTEGER PRIMARY KEY,

 name TEXT NOT NULL

)

ok

CREATE TABLE orders_fk (

 order_id INTEGER PRIMARY KEY,

 customer_id INTEGER NOT NULL,

 order_date DATE,

 FOREIGN KEY (customer_id) REFERENCES customers_fk(customer_id)

)

ok

INSERT INTO customers_fk VALUES (1, 'Alice'), (2, 'Bob')

ok

-- Funktioniert (customer_id 1 existiert):

INSERT INTO orders_fk VALUES (101, 1, '2025-11-04')

ok

-- Fehlschlägt (customer_id 999 existiert nicht):

INSERT INTO orders_fk VALUES (102, 999, '2025-11-04')

insert or update on table "orders_fk" violates foreign key constraint

"orders_fk_customer_id_fkey"

Was passiert bei Verstößen?

ON DELETE und ON UPDATE steuern, was passiert, wenn der referenzierte Datensatz gelöscht oder geändert
wird. CASCADE löscht/ändert mit, SET NULL setzt NULL, RESTRICT verhindert die Aktion.

ON DELETE / ON UPDATE

INSERT : Fehlschlag, wenn referenzierter Key nicht existiert

UPDATE : Fehlschlag, wenn neuer Wert nicht existiert

DELETE : Abhängig von ON DELETE (siehe unten)

CASCADE
Abhängige Zeilen werden auch
gelöscht

Abhängige Zeilen werden
aktualisiert

SET NULL FK wird auf NULL gesetzt FK wird auf NULL gesetzt

RESTRICT Löschen/Ändern wird verhindert Löschen/Ändern wird verhindert

NO
ACTION

Wie RESTRICT (Standard) Wie RESTRICT (Standard)

Beispiel: ON DELETE CASCADE

CREATE TABLE authors (
 author_id INTEGER PRIMARY KEY,
 name TEXT
);

CREATE TABLE books_cascade (
 book_id INTEGER PRIMARY KEY,
 title TEXT,
 author_id INTEGER,
 FOREIGN KEY (author_id) REFERENCES authors(author_id) ON DELETE CAS
);

INSERT INTO authors VALUES (1, 'Tolkien');
INSERT INTO books_cascade VALUES (1, 'Hobbit', 1), (2, 'LOTR', 1);

-- Autor löschen → Bücher werden auch gelöscht:
DELETE FROM authors WHERE author_id = 1;

SELECT * FROM books_cascade; -- Leer!

Option Bei DELETE Bei UPDATE

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19



CREATE TABLE authors (

 author_id INTEGER PRIMARY KEY,

 name TEXT

)

ok

CREATE TABLE books_cascade (

 book_id INTEGER PRIMARY KEY,

 title TEXT,

 author_id INTEGER,

 FOREIGN KEY (author_id) REFERENCES authors(author_id) ON DELETE CASCADE

)

ok

INSERT INTO authors VALUES (1, 'Tolkien')

ok

INSERT INTO books_cascade VALUES (1, 'Hobbit', 1), (2, 'LOTR', 1)

ok

-- Autor löschen → Bücher werden auch gelöscht:

DELETE FROM authors WHERE author_id = 1

ok

SELECT * FROM books_cascade

0 rows

-- Leer!

ok

Beispiel: ON DELETE SET NULL

CREATE TABLE books_setnull (
 book_id INTEGER PRIMARY KEY,
 title TEXT,
 author_id INTEGER,
 FOREIGN KEY (author_id) REFERENCES authors(author_id) ON DELETE SET NULL

book_id title author_id



💡 Wann was nutzen?

Self-Referencing Foreign Keys sind nützlich für hierarchische Daten: Jeder Mitarbeiter hat einen Manager, der
selbst ein Mitarbeiter ist. Jede Kategorie kann eine übergeordnete Kategorie haben.

Self-Referencing (Hierarchien)

Beispiel: Mitarbeiter-Hierarchie

);

-- Autor löschen → author_id wird NULL:
DELETE FROM authors WHERE author_id = 1;
-- Bücher bleiben, aber ohne Autor

CASCADE: Abhängige Daten sind ohne Parent sinnlos (z.B. Bestellpositionen ohne Bestellung)

SET NULL: Beziehung optional (z.B. Autor gelöscht, Buch bleibt)

RESTRICT: Keine Löschung, solange Abhängigkeiten bestehen (Standard, sicher)

CREATE TABLE employees (
 employee_id INTEGER PRIMARY KEY,
 name TEXT,
 manager_id INTEGER,
 FOREIGN KEY (manager_id) REFERENCES employees(employee_id)
);

INSERT INTO employees VALUES
 (1, 'CEO', NULL), -- Kein Manager (Top)
 (2, 'CTO', 1), -- Manager: CEO
 (3, 'Dev Lead', 2), -- Manager: CTO
 (4, 'Developer', 3); -- Manager: Dev Lead

-- Wer ist der Manager von Developer?
SELECT
 e.name AS employee,
 m.name AS manager
FROM employees e
LEFT JOIN employees m ON e.manager_id = m.employee_id
WHERE e.name = 'Developer';

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20



CREATE TABLE employees (

 employee_id INTEGER PRIMARY KEY,

 name TEXT,

 manager_id INTEGER,

 FOREIGN KEY (manager_id) REFERENCES employees(employee_id)

)

ok

INSERT INTO employees VALUES

 (1, 'CEO', NULL), -- Kein Manager (Top)

 (2, 'CTO', 1), -- Manager: CEO

 (3, 'Dev Lead', 2), -- Manager: CTO

 (4, 'Developer', 3)

ok

-- Manager: Dev Lead

-- Wer ist der Manager von Developer?

SELECT

 e.name AS employee,

 m.name AS manager

FROM employees e

LEFT JOIN employees m ON e.manager_id = m.employee_id

WHERE e.name = 'Developer'

1 rows

Use Cases:

UNIQUE, NOT NULL, CHECK, DEFAULT
Diese Constraints sind einfacher, aber nicht weniger wichtig. UNIQUE verhindert Duplikate, NOT NULL
erzwingt Werte, CHECK validiert Bedingungen, DEFAULT setzt Standardwerte.

UNIQUE – Eindeutigkeit ohne Primary Key

Developer Dev Lead

Organisationshierarchien

Kategorie-Bäume (Produkte → Elektronik → Laptops)

Threads/Kommentare (parentcommentid)

1

employee manager

Syntax:

Unterschied zu PRIMARY KEY:

NULL-Verhalten:

INSERT INTO users_unique VALUES (1, 'alice@example.com', 'alice')

relation "users_unique" does not exist

Composite UNIQUE:

NOT NULL ist der einfachste Constraint, aber extrem wichtig. Er verhindert NULL-Werte in Spalten, die immer
einen Wert haben müssen.

NOT NULL – Pflichtfelder

Syntax:

CREATE TABLE users_unique (
 user_id INTEGER PRIMARY KEY,
 email TEXT UNIQUE NOT NULL,
 username TEXT UNIQUE
);

PRIMARY KEY: Eindeutig + NOT NULL + nur 1 pro Tabelle

UNIQUE: Eindeutig, aber NULL erlaubt (mehrfach!), mehrere pro Tabelle

INSERT INTO users_unique VALUES (1, 'alice@example.com', 'alice');
INSERT INTO users_unique VALUES (2, 'bob@example.com', NULL); -- OK
INSERT INTO users_unique VALUES (3, 'charlie@example.com', NULL); -- O
 (NULL != NULL)

CREATE TABLE reservations (
 reservation_id INTEGER PRIMARY KEY,
 room_number INTEGER,
 date DATE,
 UNIQUE (room_number, date) -- Raum kann pro Tag nur 1x gebucht werden
);

CREATE TABLE products_nn (
 product_id INTEGER PRIMARY KEY,
 name TEXT NOT NULL,
 price DECIMAL(10,2) NOT NULL,
 description TEXT -- NULL erlaubt
);

1
2
3









Warum wichtig?

Beispiel:

-- Fehlschlägt (name ist NOT NULL):

INSERT INTO products_nn (product_id, price) VALUES (1, 99.99)

relation "products_nn" does not exist

CHECK ermöglicht benutzerdefinierte Validierung. Sie können Bereiche prüfen, Muster validieren,
Bedingungen zwischen Spalten definieren.

CHECK – Benutzerdefinierte Validierung

Syntax:

Beispiele:

NULL ist nicht 0, nicht leerer String – es ist „unbekannt“

Berechnungen mit NULL geben NULL zurück

WHERE-Bedingungen können scheitern

-- Fehlschlägt (name ist NOT NULL):
INSERT INTO products_nn (product_id, price) VALUES (1, 99.99);

-- Funktioniert:
INSERT INTO products_nn (product_id, name, price) VALUES (1, 'Laptop',
 .99);

CHECK (condition)

CREATE TABLE products_check (
 product_id INTEGER PRIMARY KEY,
 name TEXT NOT NULL,
 price DECIMAL(10,2) CHECK (price >= 0),
 discount_percent INTEGER CHECK (discount_percent BETWEEN 0 AND 100),
 stock INTEGER CHECK (stock >= 0),
 release_date DATE CHECK (release_date >= CURRENT_DATE)
);

1
2
3
4
5

1
2
3
4
5
6
7
8







CREATE TABLE products_check (

 product_id INTEGER PRIMARY KEY,

 name TEXT NOT NULL,

 price DECIMAL(10,2) CHECK (price >= 0),

 discount_percent INTEGER CHECK (discount_percent BETWEEN 0 AND 100),

 stock INTEGER CHECK (stock >= 0),

 release_date DATE CHECK (release_date >= CURRENT_DATE)

)

ok

Multi-Column Checks:

Enum-Simulation:

CREATE TABLE orders_status (

 order_id INTEGER PRIMARY KEY,

 status TEXT CHECK (status IN ('pending', 'shipped', 'delivered', 'cancelled'))

)

ok

-- Fehlschlägt (ungültiger Status):

INSERT INTO orders_status VALUES (1, 'in_transit')

new row for relation "orders_status" violates check constraint "orders_status_status_check"

DEFAULT setzt Standardwerte, wenn beim INSERT kein Wert angegeben wird. Praktisch für Zeitstempel,
Flags, Status.

CREATE TABLE discounts (
 discount_id INTEGER PRIMARY KEY,
 start_date DATE,
 end_date DATE,
 CHECK (end_date > start_date) -- Ende muss nach Start sein
);

CREATE TABLE orders_status (
 order_id INTEGER PRIMARY KEY,
 status TEXT CHECK (status IN ('pending', 'shipped', 'delivered',
 'cancelled'))
);

-- Fehlschlägt (ungültiger Status):
INSERT INTO orders_status VALUES (1, 'in_transit');

1
2
3

4
5
6
7





DEFAULT – Standardwerte

Syntax:

CREATE TABLE products_default (

 product_id INTEGER PRIMARY KEY,

 name TEXT NOT NULL,

 price DECIMAL(10,2) NOT NULL,

 stock INTEGER DEFAULT 0,

 is_active BOOLEAN DEFAULT TRUE,

 created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP

)

ok

Nutzung:

CREATE TABLE products_default (
 product_id INTEGER PRIMARY KEY,
 name TEXT NOT NULL,
 price DECIMAL(10,2) NOT NULL,
 stock INTEGER DEFAULT 0,
 is_active BOOLEAN DEFAULT TRUE,
 created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
);

-- Ohne stock, is_active, created_at:
INSERT INTO products_default (product_id, name, price)
VALUES (1, 'Laptop', 999.99);

SELECT * FROM products_default;
-- → stock = 0, is_active = TRUE, created_at = jetzt

1
2
3
4
5
6
7
8

1
2
3
4
5
6





-- Ohne stock, is_active, created_at:

INSERT INTO products_default (product_id, name, price)

VALUES (1, 'Laptop', 999.99)

ok

SELECT * FROM products_default

1 rows

-- → stock = 0, is_active = TRUE, created_at = jetzt

ok

Funktionen als Default:

DML – INSERT
Jetzt verlassen wir DDL und gehen zu DML: Daten manipulieren. INSERT fügt neue Zeilen ein. Sie können
einzelne Zeilen einfügen, mehrere gleichzeitig, oder Daten aus anderen Tabellen kopieren.

Einzelne Zeile einfügen

Syntax:

Beispiel:

1 Laptop 999.99 0 true 2026-01-16T08:44:47.165Z

CREATE TABLE logs (
 log_id INTEGER PRIMARY KEY,
 message TEXT,
 timestamp TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
 random_id TEXT DEFAULT (gen_random_uuid()::TEXT)
);

INSERT INTO table_name (column1, column2, ...)
VALUES (value1, value2, ...);

CREATE TABLE customers_insert (
 customer_id INTEGER PRIMARY KEY,
 name TEXT NOT NULL,
 email TEXT,
 registered_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP

1
2
3
4
5

1

product_id name price stock is_active created_at







CREATE TABLE customers_insert (

 customer_id INTEGER PRIMARY KEY,

 name TEXT NOT NULL,

 email TEXT,

 registered_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP

)

ok

INSERT INTO customers_insert (customer_id, name, email)

VALUES (1, 'Alice', 'alice@example.com')

ok

SELECT * FROM customers_insert

1 rows

Alle Spalten (Reihenfolge wie in CREATE TABLE):

Bulk Insert ist effizienter als viele einzelne INSERTs. Statt 100 Befehle schreiben Sie einen mit 100
Wertepaaren.

Mehrere Zeilen gleichzeitig (Bulk Insert)

Syntax:

);

INSERT INTO customers_insert (customer_id, name, email)
VALUES (1, 'Alice', 'alice@example.com');

SELECT * FROM customers_insert;

1 Alice alice@example.com 2026-01-16T08:44:43.325Z

INSERT INTO customers_insert
VALUES (2, 'Bob', 'bob@example.com', CURRENT_TIMESTAMP);

INSERT INTO table_name (columns)
VALUES
 (values1),
 (values2),
 (values3),
 ...;

6
7
8
9
10
11

1

customer_id name email registered_at





Beispiel:

INSERT INTO customers_insert (customer_id, name, email) VALUES

 (3, 'Charlie', 'charlie@example.com'),

 (4, 'Diana', 'diana@example.com'),

 (5, 'Eve', 'eve@example.com')

ok

SELECT * FROM customers_insert

4 rows

Performance-Vorteil:

INSERT … SELECT kopiert Daten aus einer anderen Tabelle. Praktisch für Backups, Datenmigrationen,
berechnete Tabellen.

INSERT … SELECT

Syntax:

Beispiel: Backup erstellen

INSERT INTO customers_insert (customer_id, name, email) VALUES
 (3, 'Charlie', 'charlie@example.com'),
 (4, 'Diana', 'diana@example.com'),
 (5, 'Eve', 'eve@example.com');

SELECT * FROM customers_insert;

1 Alice alice@example.com 2026-01-16T08:44:43.325Z

3 Charlie charlie@example.com 2026-01-16T08:44:44.319Z

4 Diana diana@example.com 2026-01-16T08:44:44.319Z

5 Eve eve@example.com 2026-01-16T08:44:44.319Z

1 INSERT mit 1000 Zeilen: ~10ms

1000 einzelne INSERTs: ~1000ms

INSERT INTO target_table (columns)
SELECT columns FROM source_table WHERE condition;

CREATE TABLE customers_backup (
 customer_id INTEGER,

name TEXT

1
2
3
4
5
6

1
2
3

1

2

3

4

customer_id name email registered_at







CREATE TABLE customers_backup (

 customer_id INTEGER,

 name TEXT,

 email TEXT,

 backup_date DATE DEFAULT CURRENT_DATE

)

ok

INSERT INTO customers_backup (customer_id, name, email)

SELECT customer_id, name, email FROM customers_insert

ok

SELECT * FROM customers_backup

4 rows

Beispiel: Gefilterte Kopie

Upsert (INSERT … ON CONFLICT) ist ein fortgeschrittenes Pattern: „Füge ein, oder update, wenn schon
vorhanden." Praktisch für Daten-Synchronisation.

INSERT … ON CONFLICT (Upsert)

 name TEXT,
 email TEXT,
 backup_date DATE DEFAULT CURRENT_DATE
);

INSERT INTO customers_backup (customer_id, name, email)
SELECT customer_id, name, email FROM customers_insert;

SELECT * FROM customers_backup;

3 Charlie charlie@example.com 2026-01-16

4 Diana diana@example.com 2026-01-16

5 Eve eve@example.com 2026-01-16

1 Alice alice_updated@example.com 2026-01-16

-- Nur Kunden mit E-Mail:
INSERT INTO customers_backup (customer_id, name, email)
SELECT customer_id, name, email
FROM customers_insert
WHERE email IS NOT NULL;

3
4
5
6
7
8
9
10
11

1

2

3

4

customer_id name email backup_date



Problem: Was, wenn die ID schon existiert?

Lösung: ON CONFLICT DO UPDATE

INSERT INTO customers_insert (customer_id, name, email)

VALUES (1, 'Alice Updated', 'alice_new@example.com')

ON CONFLICT (customer_id) DO UPDATE

SET

 name = EXCLUDED.name,

 email = EXCLUDED.email

ok

SELECT * FROM customers_insert WHERE customer_id = 1

1 rows

ON CONFLICT DO NOTHING:

💡 Use Cases:

-- Fehlschlägt (customer_id 1 existiert schon):
INSERT INTO customers_insert (customer_id, name, email)
VALUES (1, 'Alice Updated', 'alice_new@example.com');

INSERT INTO customers_insert (customer_id, name, email)
VALUES (1, 'Alice Updated', 'alice_new@example.com')
ON CONFLICT (customer_id) DO UPDATE
SET
 name = EXCLUDED.name,
 email = EXCLUDED.email;

SELECT * FROM customers_insert WHERE customer_id = 1;

1 Alice

Updated

alice_new@example.com 2026-01-

16T08:44:43.325Z

-- Ignoriere Duplikate:
INSERT INTO customers_insert (customer_id, name, email)
VALUES (1, 'Alice', 'alice@example.com')
ON CONFLICT (customer_id) DO NOTHING;

Daten-Sync aus externen Systemen

Idempotente Pipelines (mehrfaches Ausführen = gleiches Ergebnis)

1
2
3
4
5
6
7
8

1

customer_id name email registered_at







DML – UPDATE
UPDATE ändert bestehende Daten. Der gefährlichste Befehl ist UPDATE ohne WHERE – dann werden ALLE
Zeilen geändert. Immer mit WHERE filtern!

UPDATE mit WHERE

Syntax:

Beispiel:

-- Einzelne Zeile ändern:

UPDATE customers_insert

SET email = 'alice_updated@example.com'

WHERE customer_id = 1

ok

SELECT * FROM customers_insert WHERE customer_id = 1

1 rows

⚠️ GEFAHR: UPDATE ohne WHERE

💡 Best Practice: Immer WHERE nutzen, außer Sie wollen wirklich alle Zeilen ändern.

UPDATE table_name
SET column1 = value1, column2 = value2, ...
WHERE condition;

-- Einzelne Zeile ändern:
UPDATE customers_insert
SET email = 'alice_updated@example.com'
WHERE customer_id = 1;

SELECT * FROM customers_insert WHERE customer_id = 1;

1 Alice alice_updated@example.com 2026-01-16T08:44:43.325Z

-- ALLE Zeilen werden geändert!
UPDATE customers_insert
SET name = 'Unknown';

-- Jetzt heißen ALLE Kunden "Unknown"!

1
2
3
4
5
6

1

customer_id name email registered_at







Sie können mehrere Spalten gleichzeitig ändern und berechnete Updates machen.

Mehrere Spalten & berechnete Updates

Mehrere Spalten:

Berechnete Updates:

UPDATE customers_insert
SET
 name = 'Alice Smith',
 email = 'alice.smith@example.com'
WHERE customer_id = 1;

CREATE TABLE products_update (
 product_id INTEGER PRIMARY KEY,
 name TEXT,
 price DECIMAL(10,2),
 stock INTEGER
);

INSERT INTO products_update VALUES
 (1, 'Laptop', 1000.00, 50),
 (2, 'Mouse', 25.00, 200);

-- Preiserhöhung um 10%:
UPDATE products_update
SET price = price * 1.10;

-- Stock reduzieren:
UPDATE products_update
SET stock = stock - 5
WHERE product_id = 1;

SELECT * FROM products_update;

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21





CREATE TABLE products_update (

 product_id INTEGER PRIMARY KEY,

 name TEXT,

 price DECIMAL(10,2),

 stock INTEGER

)

ok

INSERT INTO products_update VALUES

 (1, 'Laptop', 1000.00, 50),

 (2, 'Mouse', 25.00, 200)

ok

-- Preiserhöhung um 10%:

UPDATE products_update

SET price = price * 1.10

ok

-- Stock reduzieren:

UPDATE products_update

SET stock = stock - 5

WHERE product_id = 1

ok

SELECT * FROM products_update

2 rows

UPDATE mit Subqueries oder Joins ist fortgeschritten, aber sehr mächtig. Sie können Werte aus anderen
Tabellen holen und einfügen.

UPDATE mit Subquery (Fortgeschritten)

Beispiel: Preis basierend auf Kategorie anpassen

2 Mouse 27.50 200

1 Laptop 1100.00 45

CREATE TABLE categories_update (
 category_id INTEGER PRIMARY KEY,
 name TEXT,
 discount_percent DECIMAL(5,2)
);

1
2
3
4
5

1

2

product_id name price stock



);

CREATE TABLE products_cat (
 product_id INTEGER PRIMARY KEY,
 name TEXT,
 price DECIMAL(10,2),
 category_id INTEGER
);

INSERT INTO categories_update VALUES (1, 'Electronics', 10.00), (2, '
 , 5.00);
INSERT INTO products_cat VALUES
 (1, 'Laptop', 1000.00, 1),
 (2, 'Novel', 20.00, 2);

-- Preis mit Kategorie-Discount reduzieren:
UPDATE products_cat
SET price = price * (1 - (
 SELECT discount_percent / 100
 FROM categories_update
 WHERE categories_update.category_id = products_cat.category_id
));

SELECT * FROM products_cat;

5
6
7
8
9
10
11
12
13
14

15
16
17
18
19
20
21
22
23
24
25
26
27

CREATE TABLE categories_update (

 category_id INTEGER PRIMARY KEY,

 name TEXT,

 discount_percent DECIMAL(5,2)

)

ok

CREATE TABLE products_cat (

 product_id INTEGER PRIMARY KEY,

 name TEXT,

 price DECIMAL(10,2),

 category_id INTEGER

)

ok

INSERT INTO categories_update VALUES (1, 'Electronics', 10.00), (2, 'Books', 5.00)

ok

INSERT INTO products_cat VALUES

 (1, 'Laptop', 1000.00, 1),

 (2, 'Novel', 20.00, 2)

ok

-- Preis mit Kategorie-Discount reduzieren:

UPDATE products_cat

SET price = price * (1 - (

 SELECT discount_percent / 100

 FROM categories_update

 WHERE categories_update.category_id = products_cat.category_id

))

ok

SELECT * FROM products_cat

2 rows

1 Laptop 900.00 1

2 Novel 19.00 2

1

2

product_id name price category_id

DML – DELETE
DELETE entfernt Zeilen. Wie bei UPDATE gilt: Immer mit WHERE, außer Sie wollen wirklich alles löschen.
DELETE ist reversibel (via Transaktion), TRUNCATE nicht.

DELETE mit WHERE

Syntax:

Beispiel:

-- Einzelne Zeile löschen:

DELETE FROM customers_insert

WHERE customer_id = 5

ok

-- Mehrere Zeilen:

DELETE FROM customers_insert

WHERE email IS NULL

ok

SELECT * FROM customers_insert

3 rows

DELETE FROM table_name
WHERE condition;

-- Einzelne Zeile löschen:
DELETE FROM customers_insert
WHERE customer_id = 5;

-- Mehrere Zeilen:
DELETE FROM customers_insert
WHERE email IS NULL;

SELECT * FROM customers_insert;

3 Charlie charlie@example.com 2026-01-16T08:44:44.319Z

4 Diana diana@example.com 2026-01-16T08:44:44.319Z

1 Alice alice_updated@example.com 2026-01-16T08:44:43.325Z

1
2
3
4
5
6
7
8
9

1

2

3

customer_id name email registered_at





⚠️ GEFAHR: DELETE ohne WHERE

TRUNCATE vs. DELETE: TRUNCATE ist schneller, aber weniger flexibel. DELETE kann mit WHERE filtern und ist
in Transaktionen reversibel.

TRUNCATE vs. DELETE

WHERE-Klausel ✅ Ja ❌ Nein (alle Zeilen)

Performance ⚠️ Langsamer (Zeile für Zeile) ✅ Schneller (gesamte Tabelle)

Rollback ✅ In Transaktion möglich ⚠️ Meist nicht (DB-abhängig)

Triggers ✅ Werden ausgelöst ❌ Meist nicht

Auto-Increment Reset ❌ Nein ✅ Ja (zurück auf 1)

Beispiel:

💡 Wann was?

Soft Delete ist ein Pattern, bei dem Sie Daten nicht wirklich löschen, sondern nur als „gelöscht“ markieren.
Praktisch für Audit-Trails und Wiederherstellung.

Soft Delete Pattern

Problem: Gelöschte Daten sind weg – kein Audit-Trail, keine Wiederherstellung.

Lösung: Status-Flag

-- ALLE Zeilen werden gelöscht!
DELETE FROM customers_insert;

-- Tabelle ist jetzt leer!

-- DELETE: Kann WHERE nutzen
DELETE FROM products_update WHERE price < 50;

-- TRUNCATE: Löscht alles
TRUNCATE TABLE products_update;

DELETE: Selektives Löschen, Transaktionen wichtig

TRUNCATE: Komplettes Leeren, Performance wichtig

CREATE TABLE users_soft (
 user id INTEGER PRIMARY KEY,

Feature DELETE TRUNCATE

1
2







_ ,
 username TEXT,
 email TEXT,
 is_deleted BOOLEAN DEFAULT FALSE,
 deleted_at TIMESTAMP
);

INSERT INTO users_soft (user_id, username, email) VALUES
 (1, 'alice', 'alice@example.com'),
 (2, 'bob', 'bob@example.com');

-- Statt DELETE:
UPDATE users_soft
SET is_deleted = TRUE, deleted_at = CURRENT_TIMESTAMP
WHERE user_id = 1;

-- View für aktive User:
CREATE VIEW active_users AS
SELECT * FROM users_soft WHERE is_deleted = FALSE;

SELECT * FROM active_users;

3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

CREATE TABLE users_soft (

 user_id INTEGER PRIMARY KEY,

 username TEXT,

 email TEXT,

 is_deleted BOOLEAN DEFAULT FALSE,

 deleted_at TIMESTAMP

)

ok

INSERT INTO users_soft (user_id, username, email) VALUES

 (1, 'alice', 'alice@example.com'),

 (2, 'bob', 'bob@example.com')

ok

-- Statt DELETE:

UPDATE users_soft

SET is_deleted = TRUE, deleted_at = CURRENT_TIMESTAMP

WHERE user_id = 1

ok

-- View für aktive User:

CREATE VIEW active_users AS

SELECT * FROM users_soft WHERE is_deleted = FALSE

ok

SELECT * FROM active_users

1 rows

Vorteile:

Nachteile:

2 bob bob@example.com false null

✅ Wiederherstellung möglich (SET is_deleted = FALSE)

✅ Audit-Trail (wann wurde gelöscht?)

✅ Analytics über gelöschte Daten

1

user_id username email is_deleted deleted_at

Schema-Evolution & Best Practices
Schemas ändern sich im Lauf der Zeit. Neue Features erfordern neue Spalten, Refactorings ändern
Strukturen. Wie machen Sie das sicher, ohne Downtime, ohne Datenverlust?

Migrations-Konzept

Problem: Schema-Änderungen müssen nachvollziehbar und wiederholbar sein.

Lösung: Migrations (Up/Down)

Tools:

Workflow:

❌ Tabelle wird größer

❌ Queries komplexer (immer WHERE is_deleted = FALSE)

-- Migration 001: Initial Schema
-- UP:
CREATE TABLE users (
 user_id INTEGER PRIMARY KEY,
 username TEXT NOT NULL
);

-- DOWN:
DROP TABLE users;

-- Migration 002: Add Email
-- UP:
ALTER TABLE users ADD COLUMN email TEXT;

-- DOWN:
ALTER TABLE users DROP COLUMN email;

Flyway (Java): SQL-basiert, einfach

Liquibase (Java): XML/YAML, komplex aber mächtig

Alembic (Python): Code-basiert, für SQLAlchemy

Migrate (Go): Einfach, Library

1.

2.

3.

4.

Entwicklung: Neue Migration schreiben

Review: Migration prüfen (Syntax, Logik)

Test: Auf Testdatenbank anwenden

Produktion: Rollout mit Monitoring





Sichere Schema-Änderungen vermeiden Downtime. ADD COLUMN ist meist sicher, DROP COLUMN riskant.
Große Tabellen erfordern besondere Vorsicht.

Sichere Schema-Änderungen

✅ Sicher (keine Downtime):

⚠️ Riskant (Lock/Downtime):

💡 Best Practices:

Rückwärtskompatibilität ist wichtig, wenn mehrere App-Versionen parallel laufen. Neue Spalten sollten
optional sein, alte Spalten nicht sofort gelöscht werden.

Rückwärtskompatibilität

Problem: App v1 läuft noch, aber DB-Schema ist für App v2.

Strategie: Expand-Contract

Beispiel:

-- Spalte mit DEFAULT hinzufügen:
ALTER TABLE products ADD COLUMN category TEXT DEFAULT 'Uncategorized';

-- Index erstellen (CONCURRENT in PostgreSQL):
CREATE INDEX CONCURRENTLY idx_products_category ON products(category);

-- Datentyp ändern (gesamte Tabelle wird gesperrt):
ALTER TABLE products ALTER COLUMN price TYPE DECIMAL(12,2);

-- Spalte löschen (Lock):
ALTER TABLE products DROP COLUMN description;

1.

2.

3.

4.

ADD COLUMN mit DEFAULT: Schnell, keine Lock-Probleme

NOT NULL schrittweise: - Schritt 1: Spalte als NULL hinzufügen - Schritt 2: Werte füllen (UPDATE) -
Schritt 3: NOT NULL Constraint hinzufügen

Große Tabellen: Off-Peak-Zeiten nutzen

Indexes: CONCURRENT erstellen (PostgreSQL)

1.

2.

3.

Expand: Neue Spalte hinzufügen (optional)

Migrate: App v2 deployed, nutzt neue Spalte

Contract: Nach Rollout alte Spalte löschen

-- Phase 1: EXPAND (neue Spalte hinzufügen)
ALTER TABLE users ADD COLUMN email_new TEXT;

-- Phase 2: MIGRATE







💡 Best Practice: Niemals breaking changes ohne Übergangsphase!

Ausblick: Transaktionen
Ein letzter Punkt, den wir heute nur kurz anreißen: Transaktionen. Sie haben INSERT, UPDATE, DELETE
gelernt – aber was, wenn Sie mehrere Operationen atomar ausführen wollen? „Entweder alles oder nichts"?
Das sind Transaktionen.

Warum Transaktionen?

Problem:

Lösung: Transaktion

Wenn Fehler:

Transaktionen lernen Sie ausführlich in Session 11+, nach Joins. Warum später? Weil Transaktionen erst bei
Multi-Table-Operations richtig relevant werden. Für heute reicht: Sie existieren, sie garantieren ACID
(Atomicity, Consistency, Isolation, Durability), und wir kommen darauf zurück.

Zusammenfassung

-- App v2 schreibt in email_new
-- App v1 schreibt weiter in email

-- Phase 3: CONTRACT (nach vollständigem Rollout)
ALTER TABLE users DROP COLUMN email;
ALTER TABLE users RENAME COLUMN email_new TO email;

-- Geldtransfer:
UPDATE accounts SET balance = balance - 100 WHERE account_id = 1; -- ✅ OK
-- ❌ Fehler! Server-Crash!
UPDATE accounts SET balance = balance + 100 WHERE account_id = 2; -- Wird
 ausgeführt
-- → 100 Euro verschwunden!

BEGIN;
 UPDATE accounts SET balance = balance - 100 WHERE account_id = 1;
 UPDATE accounts SET balance = balance + 100 WHERE account_id = 2;
COMMIT; -- Beide oder keine

BEGIN;
 UPDATE accounts SET balance = balance - 100 WHERE account_id = 1;
 -- Fehler hier!
ROLLBACK; -- Alles rückgängig







Was haben Sie gelernt? DDL für Schema-Design: CREATE TABLE mit Datentypen und Constraints, ALTER
TABLE für Änderungen, DROP TABLE zum Löschen. DML für Datenmanipulation: INSERT zum Einfügen,
UPDATE zum Ändern, DELETE zum Löschen. Constraints für Integrität: PRIMARY KEY, FOREIGN KEY, UNIQUE,
NOT NULL, CHECK, DEFAULT. Und Best Practices für sichere Schema-Evolution.

DDL CREATE TABLE Tabelle erstellen

ALTER TABLE Tabelle ändern

DROP TABLE Tabelle löschen

Constraints PRIMARY KEY Eindeutigkeit + NOT NULL

FOREIGN KEY Referenzielle Integrität

UNIQUE Eindeutigkeit (NULL erlaubt)

NOT NULL Pflichtfeld

CHECK Benutzerdefinierte Validierung

DEFAULT Standardwert

DML INSERT Daten einfügen

UPDATE Daten ändern

DELETE Daten löschen

Die wichtigsten Takeaways: Nutzen Sie Constraints – sie schützen Ihre Daten. Immer WHERE bei
UPDATE/DELETE – außer Sie wollen wirklich alles ändern. Künstliche Primary Keys sind meist besser als
natürliche. FOREIGN KEY mit ON DELETE/UPDATE steuert Kaskaden. Und: Schema-Evolution ist ein Prozess,
keine einmalige Aktion.

Best Practices: Checkliste
Zum Abschluss eine Checkliste, die Sie bei jedem Schema-Design durchgehen sollten.

Schema-Design:

Konzept Befehl Zweck

Datenmanipulation:

Schema-Evolution:

Sicherheit:

Quiz: Testen Sie Ihr Wissen
Frage 1: Was ist der Unterschied zwischen PRIMARY KEY und UNIQUE?

Jede Tabelle hat einen PRIMARY KEY

Künstliche Keys (INTEGER) statt natürliche (TEXT) für Performance

FOREIGN KEYs für alle Beziehungen definiert

ON DELETE/UPDATE explizit gewählt (CASCADE/RESTRICT/SET NULL)

NOT NULL für alle Pflichtfelder

CHECK Constraints für Validierung (z.B. price >= 0)

DEFAULT für sinnvolle Standardwerte (z.B. created_at)

INSERT: Spalten explizit benennen, nicht auf Reihenfolge verlassen

UPDATE: Immer mit WHERE (außer wirklich alle Zeilen ändern)

DELETE: Immer mit WHERE (außer wirklich alle Zeilen löschen)

Bulk Operations nutzen (1 INSERT mit 100 Zeilen statt 100 INSERTs)

Migrations-System nutzen (Flyway, Liquibase, Alembic)

Jede Änderung hat UP + DOWN Migration

Rückwärtskompatibilität beachten (Expand-Contract)

Große Änderungen off-peak ausführen

Keine DDL/DML in Produktion ohne Backup

Transaktionen für multi-step Operationen (ab Session 11)

Testen auf Testdatenbank vor Produktion

Frage 2: Was passiert bei ON DELETE CASCADE?

Frage 3: Was macht TRUNCATE im Vergleich zu DELETE?

Frage 4: Warum sollten Sie UPDATE ohne WHERE vermeiden?

Frage 5: Was ist der Vorteil von künstlichen Primary Keys (INTEGER) gegenüber natürlichen (z.B. E-Mail)?

Übungsaufgaben
Zeit für Praxis! Probieren Sie diese Aufgaben selbst aus.

Kein Unterschied

PRIMARY KEY ist eindeutig + NOT NULL, UNIQUE erlaubt NULL

UNIQUE ist schneller als PRIMARY KEY

PRIMARY KEY kann mehrfach pro Tabelle vorkommen

Löschen wird verhindert

Abhängige Zeilen werden auch gelöscht

Foreign Key wird auf NULL gesetzt

Nichts

TRUNCATE ist schneller, löscht alle Zeilen, kein WHERE möglich

TRUNCATE ist langsamer als DELETE

TRUNCATE löscht nur eine Zeile

Kein Unterschied

Es ist langsamer

Es funktioniert nicht

Es ändert ALLE Zeilen in der Tabelle

Es ist unsicher (SQL Injection)

Künstliche Keys sind lesbarer

Künstliche Keys sind unveränderlich und schneller

Natürliche Keys sind besser

Kein Unterschied

Aufgabe 1: Tabelle erstellen

Erstellen Sie eine students Tabelle mit: - student_id (Primary Key, Integer) - first_name und
last_name (NOT NULL) - email (UNIQUE, NOT NULL) - enrollment_date (DEFAULT: aktuelles

Datum) - gpa (CHECK: zwischen 0.0 und 4.0)

`sql CREATE TABLE students (student_id INTEGER PRIMARY KEY, first_name TEXT NOT NULL, last_name
TEXT NOT NULL, email TEXT UNIQUE NOT NULL, enrollmentdate DATE DEFAULT CURRENTDATE, gpa
DECIMAL(3,2) CHECK (gpa BETWEEN 0.0 AND 4.0)); ` LIA: terminal *******************

Aufgabe 2: Foreign Key

Erstellen Sie eine enrollments Tabelle, die students mit courses verbindet: - Composite
Primary Key (studentid, courseid) - Foreign Keys zu beiden Tabellen - ON DELETE CASCADE für beide

`sql INSERT INTO students (studentid, firstname, last_name, email, gpa) VALUES (1, ‚Alice‘, ‚Smith‘,
'alice@university.edu', 3.8), (2, ‚Bob‘, ‚Jones‘, 'bob@university.edu', 3.5), (3, ‚Charlie‘, ‚Brown‘,
'charlie@university.edu', 3.9); INSERT INTO courses (course_id, title) VALUES (1, ‚Databases‘), (2,
‚Algorithms‘); INSERT INTO enrollments (studentid, courseid, grade) VALUES (1, 1, ‚A‘), (1, 2, ‚B‘), (2, 1, ‚A-‘);
UPDATE students SET gpa = 3.85 WHERE student_id = 1; SELECT * FROM students; SELECT * FROM
enrollments; ` LIA: terminal *******************

Ausblick: Was kommt als Nächstes?
Sie können jetzt Schemas erstellen, Daten einfügen, ändern, löschen. Aber Ihre Queries sind noch auf eine
Tabelle beschränkt. Was, wenn Sie Daten aus mehreren Tabellen kombinieren wollen? Das sind Joins – unser
nächstes großes Thema.

Kommende Sessions:

🎉 Glückwunsch! Sie beherrschen jetzt DDL & DML – das Fundament jeder Datenbank-Arbeit!

Session 9: SQL Filtering & Operators (BETWEEN, IN, LIKE, CASE)

Session 10: SQL Joins & Combining Data (INNER, LEFT, RIGHT, FULL, CROSS)

Session 11+: Transaktionen & ACID (nach Joins)

Session 12: Aggregation & Window Functions

Session 15: Performance Optimization & Indexing

