Session 8 - SQL Data Definition (DDL) & Manipulation (DML)

Session-Typ: Lecture Dauer: 90 Minuten Lernziele: LZ 2 (SQL-Praxis)

Intro: Von Abfragen zu Strukturen

Bisher haben Sie gelernt, Daten abzufragen - SELECT, WHERE, GROUP BY, alles in Session 7. Aber wie
kommen die Tabellen iberhaupt in die Datenbank? Wie definieren Sie Spalten, Datentypen, Constraints?
Und wie fligen Sie Daten ein, andern sie, [6schen sie? Das ist der nachste Schritt: Von der Abfrageebene zur
Strukturebene.

Heute lernen Sie:
* DDL (Data Definition Language): CREATE, ALTER, DROP - Ihre Werkzeuge flir Schema-Design
e DML (Data Manipulation Language): INSERT, UPDATE, DELETE - Daten schreiben, nicht nur lesen
* Constraints: PRIMARY KEY, FOREIGN KEY, UNIQUE, CHECK - Datenintegritat sichern
* Best Practices: Sichere Schema-Evolution, haufige Fehler vermeiden

Warum ist das wichtig? Weil Ihre Datenbank nur so gut ist wie Ihr Schema. Falsche Datentypen flihren zu
Performance-Problemen. Fehlende Constraints fiihren zu Inkonsistenzen. Unsichere Updates konnen Ihre
gesamte Datenbank zerstoren. Diese Session gibt Ihnen die Kontrolle.

Datenbank vorbereiten

Wir starten mit einer einfachen Sandbox-Datenbank. Keine Sorge - alles lauft im Browser, nichts wird
dauerhaft gespeichert. Sie konnen experimentieren, Fehler machen, lernen.

-- Sandbox initialisieren

CREATE TABLE IF NOT EXISTS demo_test (id INTEGER, name TEXT);
INSERT INTO demo_test VALUES (1, 'Test');

SELECT 'Datenbank bereit!' AS status;

A WDNBR

-- Sandbox initialisieren
CREATE TABLE IF NOT EXISTS demo_test (id INTEGER, name TEXT)

ok

INSERT INTO demo_test VALUES (1, ‘Test')

ok

SELECT 'Datenbank bereit!' AS status

status

Datenbank bereit!

1 -- Interaktives Terminal (nutzen Sie es flr eigene Experimente)
2 SELECT * FROM demo_test;

-- Interaktives Terminal (nutzen Sie es fiir eigene Experimente)
SELECT * FROM demo_test

id

1

Was ist DDL & DML?

SQL ist keine monolithische Sprache. Es gibt Kategorien: DDL fiir Schema-Definition, DML fur
Datenmanipulation, DCL fur Zugriffsrechte, TCL fiir Transaktionen. Heute fokussieren wir DDL und DML - das
Fundament fiir alles Weitere.

SQL-Kategorien im Uberblick

Kategorie Abkiirzung Zweck Befehle Session

Data Schema CREATE |,
Definition DDL erstellen/ ALTER|, Heute
Language andern DROP
SELECT |,
Data
. . Daten INSERT |,
Manipulation DML) Heute
lesen/schreiben UPDATE |,
Language
DELETE
Data Control GRANT |,
DCL Zugriffsrechte :I Spater
Language REVOKE
Transaction BEGIN |,
Control TCL Transaktionen COMMIT |, Session 11+

Language ROLLBACK

Heute: DDL (Struktur) + DML (Daten)

DDL ist wie der Bauplan lhres Hauses: Sie definieren Raume (Tabellen), Tiiren (Foreign Keys), Regeln
(Constraints). DML ist das Leben im Haus: Sie stellen M6bel auf (INSERT), verschieben sie (UPDATE), werfen
sie raus (DELETE).

DDL - Tabellen erstellen (CREATE TABLE)

CREATE TABLE ist Ihr wichtigster DDL-Befehl. Sie definieren den Tabellennamen, die Spalten, die
Datentypen, die Constraints. Schauen wir uns die Grundsyntax an.

Grundsyntax

Minimal-Beispiel:

1~ CREATE TABLE products (
2 id INTEGER,

3 name TEXT,

4 price DECIMAL(10, 2)
5)3

CREATE TABLE products (
id INTEGER,
name TEXT,
price DECIMAL(10, 2)

)

ok

Was passiert hier?

o Tabelle wird erstellt
e 3 Spalten: (Ganzzahl), (Text), (Dezimalzahl mit 2 Nachkommastellen)

* Keine Constraints - jeder Wert ist erlaubt, auch NULL
Aber das ist zu simpel. In der Praxis wollen Sie mehr Kontrolle: Ein Primarschliissel, NOT NULL fiir
Pflichtfelder, DEFAULT-Werte. Schauen wir uns eine realistischere Version an.

Realistisches Beispiel mit Constraints

- CREATE TABLE products (
product_id INTEGER PRIMARY KEY,
name TEXT NOT NULL,
description TEXT,
price DECIMAL(10, 2) NOT NULL CHECK (price >= 0),
stock INTEGER DEFAULT 0,
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP

o ~No ok~ WN R

A
- e

CREATE TABLE products (

product_id INTEGER PRIMARY KEY,

name TEXT NOT NULL,

description TEXT,

price DECIMAL(10, 2) NOT NULL CHECK (price >= 0),

stock INTEGER DEFAULT 0,

created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
)

relation "products" already exists

Was ist neu?

| PRIMARY KEY || product_id |ist eindeutig + NOT NULL

|NOT NULLL|name|und|price|9ndPﬂkhﬁeMer

| CHECK || price |muss >=(sein (keine negativen Preise!)

| DEFAULT || stock |ist standardmaRig0,| created_at |wird automatisch gesetzt

Testen:
1 -- Funktioniert:
2 INSERT INTO products (product_id, name, price)
3 VALUES (1, 'Laptop', 999.99);
4
5 -- Funktioniert NICHT (price negativ):
6 INSERT INTO products (product_id, name, price)
7 VALUES (2, 'Mouse', -10.00);

-- Funktioniert:
INSERT INTO products (product_id, name, price)
VALUES (1, 'Laptop’, 999.99)

column "product_id" of relation "products" does not exist

Sie kénnen Primarschliissel auch inline definieren oder als separaten Constraint. Beides funktioniert, aber
die separate Form ist flexibler - vor allem bei Composite Keys.

Primarschliissel: Inline vs. Constraint

Inline (einfach):

CREATE TABLE orders (
order_id INTEGER PRIMARY KEY,
customer_name TEXT

)3

Als Constraint (flexibel):

CREATE TABLE orders (
order_id INTEGER,
customer_name TEXT,
CONSTRAINT pk_orders PRIMARY KEY (order_-id)

)3

Composite Key (mehrere Spalten):

1~ CREATE TABLE order_items (
2 order_id INTEGER,
3 product_id INTEGER,

4 quantity LNIEGER,

5 PRIMARY KEY (order_id, product_-id)

6);

CREATE TABLE order_items (
order_id INTEGER,
product_id INTEGER,
quantity INTEGER,
PRIMARY KEY (order_id, product_id)

)

ok

Wann Composite Keys?

e Wenn Eindeutigkeit nur durch Kombination gegeben ist

* Beispiel: Ein Produkt kann in mehreren Bestellungen vorkommen, aber pro Bestellung nur einmal

Datentypen-Uberblick

Datentypen sind wichtig flir Speichereffizienz, Performance und Validierung. Ein INTEGER braucht weniger

Platz als TEXT. Eine DECIMAL-Zahl ist praziser als FLOAT. Datum-Typen ermdoglichen Zeitberechnungen.

Schauen wir uns die wichtigsten an.

Numerische Typen

Typ Bereich Speicher Wann nutzen?
INTEGER :
/ -p31bis237.9 4 Bytes IDs, Zahler, ganze Zahlen
INT
bis 2 GroRe IDs, Zeitstempel
BIGINT -263bis263.1 8 Bytes .
(Unix)
| DECIMAL(p,s Prazise . Geld, Preise (keine
] Variabel
zl Dezimalzahl Rundungsfehler!)
FLOAT |/) . Wissenschaftliche
Approximativ 4/8 Bytes
DOUBLE Berechnungen
Beispiel: Warum DECIMAL fiir Geld?
‘ 1 -- FLOAT hat Rundungsfehler:
ie) cCcr crT n 1 1 n le) AC £ A~ ~i1ina e Cuwm~alhiaa ~ @ n DINNANANANNNNNNNNNNNA

OQLLLLCIl Ue.ed T UL A0 I LUAL_DUlll, -7 LCrgreuliis. U.O0oUUUUUUUUUUOUOOUOUUS

-— DECIMAL -1st prazise:
SELECT CAST(0.1 AS DECIMAL(10,2)) + CAST(0.2 AS DECIMAL(10,2)) AS
decimal_sum;

a b» WN

-- FLOAT hat Rundungsfehler:
SELECT 0.1 + 0.2 AS float_sum

float_sum

0.3

-- Ergebnis: 0.30000000000000004

-- DECIMAL ist prazise:
SELECT CAST(0.1 AS DECIMAL(10,2)) + CAST(0.2 AS DECIMAL(10,2)) AS decimal_sum

decimal_sum

0.30

Text-Typen haben verschiedene Langen. VARCHAR begrenzt die Lange, TEXT ist unbegrenzt. In PGlite.und
PostgreSQL gibt es keinen Performance-Unterschied mehr, aber in adlteren Systemen (MySQL) schon.

Text-Typen
Typ Max. Lange Wann nutzen?
CHAR(n) Fix n Zeichen Festlangen-Codes (z.B. Landercodes ,DE, ,US’)
| VARCHAR (n) | Variabel bis n Namen, E-Mails mit Langenbegrenzung
TEXT Unbegrenzt Beschreibungen, Kommentare, JSON
Beispiel:
1- CREATE TABLE users (
2 country_code CHAR(2), —— Immer 2 Zeichen: 'DE', 'US'
3 email VARCHAR(255), -- Max. 255 Zeichen
4 bio TEXT -- Unbegrenzt
5)3

CREATE TABLE users (
country_code CHAR(2), -- Immer 2 Zeichen: 'DE’, 'US'
email VARCHAR(255), -- Max. 255 Zeichen
bio TEXT -- Unbegrenzt

)

ok

Datum- und Zeit-Typen sind essenziell fiir zeitbasierte Analysen. DATE speichert nur das Datum, TIMESTAMP
speichert Datum + Uhrzeit, INTERVAL reprasentiert Zeitdauern.

Datum & Zeit
Typ Format Beispiel Wann nutzen?
Geburtstage,
DATE YYYY-MM-DD 2025-11-04
Events
TIME HH:MM:SS 14:30:00 Offnungszeiten
TIMESTAM YYYY-MM-DD 2025-11-04
Logs, created_at
P| HH:MM:SS 14:30:00
INTERVAL Duration '3 days', ,2 hours’ Zeitrechnungen

Beispiel: Zeitberechnungen

1- CREATE TABLE events (

2 event_id INTEGER PRIMARY KEY,
3 event_name TEXT,

4 event_date DATE,

5 start_time TIMESTAMP
6

7

8

9

)3

INSERT INTO events VALUES
(1, 'Konferenz', '2025-12-15', '2025-12-15 09:00:00"');

10

11 -- 3 Tage vor dem Event:
12 SELECT

13 event_name,

14 event_date,
15 event_date - INTERVAL '3 days' AS reminder_date
16 FROM events;

CREATE TABLE events (
event_id INTEGER PRIMARY KEY,
event_name TEXT,
event_date DATE,
start_time TIMESTAMP
)

ok

INSERT INTO events VALUES
(1, 'Konferenz', '2025-12-15', '2025-12-15 09:00:00')

ok

-- 3 Tage vor dem Event:
SELECT

event_name,

event_date,

event_date - INTERVAL '3 days' AS reminder_date
FROM events

event_name event_date reminder_date

Konferenz 2025-12-15 2025-12-12

Boolean und Spezialtypen runden das Bild ab. BOOLEAN fiir Ja/Nein-Flags, JSON fiir strukturierte Daten,
ARRAY fir Listen.

Boolean & Spezialtypen

-

yp Werte Beispiel Wann nutzen?

TRUE, FALSE, NULL is_active Flags, Status
JSON-Objekt | {"key": "value'"} | Flexible Daten
Liste (1, 2, 3] Tags, Listen
Universally Unique ID |55®e8400—e29b. .. | Verteilte IDs

Beispiel: JSON-Spalte

1~ CREATE TABLE products_ext (
2 product_id INTEGER PRIMARY KEY,

-~ mmtaam TI\/T

S rname 1cAl,

4 metadata JSON -- Flexible Zusatzdaten

5);

6

7 INSERT INTO products_ext VALUES

8 (1, 'Laptop', '{"brand": "Dell", "warranty_years": 3}');

9

10~ -- JSON abfragen (PGlite.:

11 SELECT

12 name,

13 metadata->>'brand' AS brand,

14 metadata->>'warranty_years' AS warranty

15 FROM products_ext;

CREATE TABLE products_ext (
product_id INTEGER PRIMARY KEY,
name TEXT,
metadata JSON -- Flexible Zusatzdaten
)

ok

INSERT INTO products_ext VALUES
(1, 'Laptop’, '{"brand": "Dell", "warranty_years": 3}')

ok

-- JSON abfragen (PGlite.:
SELECT
name,
metadata->>'brand' AS brand,
metadata->>'warranty_years' AS warranty
FROM products_ext

name warranty

Laptop 3

DDL - Tabellen andern (ALTER TABLE)

Schemas andern sich. Sie fugen Spalten hinzu, andern Datentypen, [6schen veraltete Felder. ALTER TABLE ist
Ihr Werkzeug fiir Schema-Evolution. Aber Vorsicht: Manche Operationen sind riskant bei grofen Tabellen.

Spalten hinzufiigen (ADD COLUMN)

Syntax:

ALTER TABLE table_name
ADD COLUMN column_name datatype [constraints];

Beispiel:

—-- Neue Spalte hinzufigen:
ALTER TABLE products
ADD COLUMN category TEXT DEFAULT 'Uncategorized';

-- Prufen:
SELECT * FROM products;

o U WN B

-- Neue Spalte hinzufiigen:
ALTER TABLE products
ADD COLUMN category TEXT DEFAULT 'Uncategorized'

ok

-- Priifen:
SELECT * FROM products

id name category

¢ Best Practice: Neue Spalten mit DEFAULT oder NULL hinzufligen, um Lock-Probleme zu vermeiden.

Spalten @andern ist komplexer. Sie konnen Datentypen andern, Defaults setzen, Constraints hinzufiuigen. Aber
nicht alle Datenbanken unterstiitzen alle Operationen gleich.

Spalten andern (ALTER COLUMN)

Datentyp andern:

-— In PostgreSQL/PGlite.
ALTER TABLE products
ALTER COLUMN price TYPE DECIMAL(12, 2);

-- In MySQL:
ALTER TABLE products
MODIFY COLUMN price DECIMAL (12, 2);

Default setzen/andern:

ALTER TABLE products
ALTER COLUMN stock SET DEFAULT 10;

I\ Achtung bei Datentyp-Anderungen:

. | TEXT | - | INTEGER |: Funktioniert nur, wenn alle Werte Zahlen sind

o | INTEGER | - | BIGINT |: Meist sicher

* BeigroRen Tabellen: Kann lange dauern!
Spalten l6schen ist riskant. Sobald weg, sind die Daten weg. Uberlegen Sie zweimal, bevor Sie DROP
COLUMN nutzen. Manchmal ist es besser, eine Spalte zu ,verstecken® (in Views) statt zu [6schen.

Spalten loschen (DROP COLUMN)

Syntax:

ALTER TABLE products
DROP COLUMN description;

I\ Vorsicht:
¢ Daten werden permanent geloscht
* Kann nicht rlickgangig gemacht werden (auRer via Backup)
* Bei FOREIGN KEY Constraints: Kann fehlschlagen
Alternative: Soft Delete

Statt Spalte zu l6schen:

-- Spalte umbenennen (verstecken):
ALTER TABLE products
RENAME COLUMN description TO _deprecated_description;

-- Oder 1in Views weglassen:
CREATE VIEW products_view AS
SELECT product_id, name, price FROM products;

Tabellen kdnnen umbenannt werden. Das ist nitzlich, wenn Sie Schema-Migrationen machen oder alte
Versionen als Backup behalten wollen.

Tabelle umbenennen (RENAME TO)

Syntax:

ALTER TABLE old_name RENAME TO new_name;

Beispiel:

-— Backup erstellen:
CREATE TABLE products_backup AS SELECT * FROM products;

A WNBE

—— Origoginal 1imhenennen:

ALTER TABLE products RENAME TO products_vl;

5

6

7 -- Neue Version wird zu "products":

8 CREATE TABLE products AS SELECT * FROM products_vl;

-- Backup erstellen:
CREATE TABLE products_backup AS SELECT * FROM products

ok

-- Original umbenennen:
ALTER TABLE products RENAME TO products_v1

ok

-- Neue Version wird zu "products":
CREATE TABLE products AS SELECT * FROM products_v1

ok

DDL - Tabellen 10schen (DROP TABLE)

DROP TABLE ist der gefahrlichste DDL-Befehl. Einmal ausgefiihrt, ist die Tabelle weg - inklusive aller Daten.
Nutzen Sie IF EXISTS, um Fehler zu vermeiden, und CASCADE/RESTRICT, um Abhangigkeiten zu kontrollieren.

Grundsyntax

Einfaches DROP:

DROP TABLE products;

Mit Sicherheitsnetz:

DROP TABLE IF EXISTS products;

I\ Gefahr:
* Tabelle wird sofort geloscht
* Alle Daten gehen verloren
* Kann nicht riickgangig gemacht werden (auRer Backup/Transaktion)

CASCADE und RESTRICT steuern, was mit abhangigen Objekten passiert. CASCADE [6scht alles mit (Views,
Foreign Keys), RESTRICT verhindert das Loschen, wenn Abhangigkeiten existieren.

CASCADE vs. RESTRICT

RESTRICT (Standard):

-— Fehlschlagt, wenn andere Tabellen via FOREIGN KEY abhangen:
DROP TABLE products RESTRICT;

CASCADE (Vorsicht!):

-- Loscht Tabelle UND alle abhangigen Objekte (Views, FKs):
DROP TABLE products CASCADE;

Beispiel:

1- CREATE TABLE categories (

2 category_id INTEGER PRIMARY KEY,

3 name TEXT

4)5

5

6~ CREATE TABLE products_fk (

7 product_id INTEGER PRIMARY KEY,

8 name TEXT,

S category_id INTEGER,
10 FOREIGN KEY (category_id) REFERENCES categories(category_-id)
11);
12
13 -- Fehlschlagt (products_fk hangt davon ab):
14 DROP TABLE categories RESTRICT;
15
16 -- Funktioniert (l6scht auch FOREIGN KEY Constraint):

17 DROP TABLE categories CASCADE;

CREATE TABLE categories (
category_id INTEGER PRIMARY KEY,
name TEXT

)

ok

CREATE TABLE products_fk (

product_id INTEGER PRIMARY KEY,

name TEXT,

category_id INTEGER,

FOREIGN KEY (category_id) REFERENCES categories(category_id)
)

ok

-- Fehlschlagt (products_fk hangt davon ab):
DROP TABLE categories RESTRICT

cannot drop table categories because other objects depend on it

Best Practice: Immer RESTRICT nutzen, aul3er Sie wissen genau, was Sie tun.

=

Constraints - Datenintegritat sichern

Constraints sind Regeln, die lhre Daten schutzen. PRIMARY KEY verhindert Duplikate, FOREIGN KEY sichert
Beziehungen, CHECK validiert Werte. Ohne Constraints ist Ihre Datenbank ein Wilder Westen - jeder Wert ist
erlaubt.

Warum Constraints?

Ohne Constraints:

CREATE TABLE orders_bad (
order_id INTEGER,
customer_id INTEGER,
total DECIMAL(10,2)

)3

-— Alles erlaubt:

INSERT INTO orders_bad VALUES (1, NULL, -100); -- X Kein Kunde, negativej

INSERT INTO orders_bad VALUES (1, 999, 50); -- X Duplikat-ID, nicht
—existierender Kunde

Mit Constraints:

CREATE TABLE customers (
customer_id INTEGER PRIMARY KEY,
name TEXT NOT NULL

)3

CREATE TABLE orders_good (
order_id INTEGER PRIMARY KEY,
customer_id INTEGER NOT NULL,
total DECIMAL(10,2) CHECK (total >= 0),
FOREIGN KEY (customer_id) REFERENCES customers(customer_-id)

)3

-— Schutz aktiviert:

INSERT INTO orders_good VALUES (1, NULL, 50); -— X customer_id NOT NULI
INSERT INTO orders_good VALUES (1, 999, 50); -- X customer_id existief
INSERT INTO orders_good VALUES (1, 1, -100); -- ¥ total CHECK fehlsch]
PRIMARY KEY

PRIMARY KEY ist der wichtigste Constraint. Er garantiert Eindeutigkeit und NOT NULL. Jede Tabelle sollte
einen Primarschlussel haben - erist die Identitat jeder Zeile.

Single-Column vs. Composite Keys

Single-Column (haufigster Fall):

CREATE TABLE users (
user_id INTEGER PRIMARY KEY,
username TEXT UNIQUE,
email TEXT

)5

Composite Key (mehrere Spalten):

1~ CREATE TABLE enrollments (

2 student_id INTEGER,

3 course_id INTEGER,

4 enrollment_date DATE,

5 PRIMARY KEY (student_id, course_id) -- Ein Student kann jeden Kurs
einmal belegen

o

)3

CREATE TABLE enroliments (
student_id INTEGER,
course_id INTEGER,
enroliment_date DATE,
PRIMARY KEY (student_id, course_id) -- Ein Student kann jeden Kurs nur einmal

belegen

)

ok

Wann Composite Keys?
* Viele-zu-Viele-Beziehungen (Student ~ Kurs)

e Zeitreihendaten (sensor_id, timestamp)
Natirliche vs. kiinstliche Keys: Natirlich = aus Daten (E-Mail, ISBN), kiinstlich = generiert (Auto-Increment
ID). Kiinstliche Keys sind meist besser, weil sie unveranderlich sind.

Natiirliche vs. kiinstliche Keys

Natiirlicher Key (aus Daten):

CREATE TABLE books (
isbn TEXT PRIMARY KEY, -- ISBN st natirlich eindeutig
title TEXT,
author TEXT

)3

Kiinstlicher Key (generiert):

CREATE TABLE books_auto (
book_id INTEGER PRIMARY KEY, -- Auto-generiert
isbn TEXT UNIQUE,
title TEXT,
author TEXT

)3

Wann was?

Kriterium Natiirlich Kiinstlich

Unveranderlich X (z.B. E-Mail andert sich)
Performance I\ (Text-Keys langsamer) (Integer schnell)
Lesbarkeit (ISBN sagt etwas aus) X (ID 4711 ist abstrakt)

¢ Empfehlung: Kiinstlicher Primarschlissel + nattrlicher UNIQUE Constraint

CREATE TABLE users_best (
user_id INTEGER PRIMARY KEY,
email TEXT UNIQUE NOT NULL,
username TEXT

)3

FOREIGN KEY

FOREIGN KEY verbindet Tabellen. Er garantiert, dass Beziehungen giiltig sind: Jede Bestellung muss einem
existierenden Kunden gehdren. Das ist referenzielle Integritat.

Referenzielle Integritat

Beispiel: Kunden und Bestellungen

1~ CREATE TABLE customers_fk (

2 customer_id INTEGER PRIMARY KEY,
3 name TEXT NOT NULL

4);

5

6~ CREATE TABLE orders_fk (

7 order_id INTEGER PRIMARY KEY,

8 customer_id INTEGER NOT NULL,

9 order_date DATE,
10 FOREIGN KEY (customer_id) REFERENCES customers_fk(customer_-id)
11),
12

13 INSERT INTO customers_fk VALUES (1, 'Alice'), (2, 'Bob');
14

15 -- Funktioniert (customer_id 1 existiert):

16 INSERT INTO orders_fk VALUES (101, 1, '2025-11-04');

17

18 -- Fehlschlagt (customer_id 999 existiert nicht):

19 INSERT INTO orders_fk VALUES (102, 999, '2025-11-04');

CREATE TABLE customers_fk (
customer_id INTEGER PRIMARY KEY,
name TEXT NOT NULL

)

ok

CREATE TABLE orders_fk (

order_id INTEGER PRIMARY KEY,

customer_id INTEGER NOT NULL,

order_date DATE,

FOREIGN KEY (customer_id) REFERENCES customers_fk(customer_id)
)

ok

INSERT INTO customers_fk VALUES (1, 'Alice'), (2, ‘Bob’)

ok

-- Funktioniert (customer_id 1 existiert):
INSERT INTO orders_fk VALUES (101, 1, '2025-11-04')

(0] 4

-- Fehlschlagt (customer_id 999 existiert nicht):
INSERT INTO orders_fk VALUES (102, 999, '2025-11-04"')

insert or update on table "orders_fk" violates foreign key constraint
"orders_fk customer_id_fkey"

Was passiert bei VerstoRen?

* | INSERT [Fehlschlag, wenn referenzierter Key nicht existiert
* | UPDATE [Fehlschlag, wenn neuer Wert nicht existiert
e | DELETE [Abhangigvon ON DELETE (siehe unten)

ON DELETE und ON UPDATE steuern, was passiert, wenn der referenzierte Datensatz geloscht oder geandert
wird. CASCADE loscht/andert mit, SET NULL setzt NULL, RESTRICT verhindert die Aktion.

ON DELETE / ON UPDATE

Option Bei DELETE Bei UPDATE
Abhangige Zeilen werden auch Abhangige Zeilen werden
CASCADE . .
geloscht aktualisiert
SET NULL FK wird auf NULL gesetzt FK wird auf NULL gesetzt
RESTRICT Léschen/Andern wird verhindert Léschen/Andern wird verhindert
[No . -
Wie RESTRICT (Standard) Wie RESTRICT (Standard)
ACTION

Beispiel: ON DELETE CASCADE

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

-~ CREATE TABLE authors (

= CREATE TABLE books_cascade (

author_id INTEGER PRIMARY KEY,
name TEXT

)3

book_id INTEGER PRIMARY KEY,
title TEXT,

author_id INTEGER,

FOREIGN KEY (author_id) REFERENCES authors(author_id) ON DELETE CAS

)3

INSERT INTO authors VALUES (1, 'Tolkien');
INSERT INTO books_cascade VALUES (1, 'Hobbit', 1), (2, 'LOTR', 1);

—-—- Autor ldoschen - Bicher werden auch geldscht:
DELETE FROM authors WHERE author_id = 1;

SELECT * FROM books_cascade; -- Leer!

CREATE TABLE authors (
author_id INTEGER PRIMARY KEY,
name TEXT

)

ok

CREATE TABLE books_cascade (
book_id INTEGER PRIMARY KEY,
title TEXT,
author_id INTEGER,
FOREIGN KEY (author_id) REFERENCES authors(author_id) ON DELETE CASCADE

)

ok

INSERT INTO authors VALUES (1, 'Tolkien')

ok

INSERT INTO books_cascade VALUES (1, 'Hobbit', 1), (2, 'LOTR', 1)

ok

-- Autor léschen - Blicher werden auch geloscht:
DELETE FROM authors WHERE author_id = 1

ok

SELECT * FROM books_cascade

book_id author _id

Beispiel: ON DELETE SET NULL

CREATE TABLE books_setnull (
book_id INTEGER PRIMARY KEY,
title TEXT,
author_id INTEGER,
FOREIGN KEY (author_id) REFERENCES authors(author_id) ON DELETE SET NULL

)3

-- Autor 1l6schen - author_id wird NULL:
DELETE FROM authors WHERE author_id = 1;
-— Blicher bleiben, aber ohne Autor

¥ Wann was nutzen?
® CASCADE: Abhdngige Daten sind ohne Parent sinnlos (z.B. Bestellpositionen ohne Bestellung)
® SET NULL: Beziehung optional (z.B. Autor gel6scht, Buch bleibt)

* RESTRICT: Keine Loschung, solange Abhangigkeiten bestehen (Standard, sicher)
Self-Referencing Foreign Keys sind niitzlich fiir hierarchische Daten: Jeder Mitarbeiter hat einen Manager, der
selbst ein Mitarbeiter ist. Jede Kategorie kann eine tibergeordnete Kategorie haben.

Self-Referencing (Hierarchien)

Beispiel: Mitarbeiter-Hierarchie

1~ CREATE TABLE employees (

2 employee_id INTEGER PRIMARY KEY,

3 name TEXT,

4 manager_id INTEGER,

5 FOREIGN KEY (manager_id) REFERENCES employees(employee_1id)
6

7

8

9

)3
INSERT INTO employees VALUES
(1, 'CEO', NULL), -- Kein Manager (Top)

10 (2, 'cTO', 1), -- Manager: CEO
11 (3, 'Dev Lead', 2), -- Manager: CTO
12 (4, 'Developer', 3); -- Manager: Dev Lead
13
14 -- Wer 1ist der Manager von Developer?
15 SELECT
16 e.name AS employee,
17 m.name AS manager

18 FROM employees e
19 LEFT JOIN employees m ON e.manager_id = m.employee_id
20 WHERE e.name = 'Developer';

CREATE TABLE employees (

employee_id INTEGER PRIMARY KEY,

name TEXT,

manager_id INTEGER,

FOREIGN KEY (manager_id) REFERENCES employees(employee _id)
)

ok

INSERT INTO employees VALUES
(1, 'CEO', NULL), -- Kein Manager (Top)
(2, 'CTO', 1), -- Manager: CEO
(3, 'Dev Lead', 2), -- Manager: CTO
(4, 'Developer’, 3)

ok

-- Manager: Dev Lead

-- Wer ist der Manager von Developer?
SELECT
e.name AS employee,
m.name AS manager
FROM employees e
LEFT JOIN employees m ON e.manager_id = m.employee_id
WHERE e.name = 'Developer!

employee manager

Developer Dev Lead

Use Cases:
* Organisationshierarchien
* Kategorie-Baume (Produkte — Elektronik — Laptops)

* Threads/Kommentare (parentcommentid)

UNIQUE, NOT NULL, CHECK, DEFAULT

Diese Constraints sind einfacher, aber nicht weniger wichtig. UNIQUE verhindert Duplikate, NOT NULL
erzwingt Werte, CHECK validiert Bedingungen, DEFAULT setzt Standardwerte.

UNIQUE - Eindeutigkeit ohne Primary Key

Syntax:

CREATE TABLE users_unique (
user_id INTEGER PRIMARY KEY,
email TEXT UNIQUE NOT NULL,
username TEXT UNIQUE

)3

Unterschied zu PRIMARY KEY:
* PRIMARY KEY: Eindeutig + NOT NULL + nur 1 pro Tabelle
* UNIQUE: Eindeutig, aber NULL erlaubt (mehrfach!), mehrere pro Tabelle

NULL-Verhalten:

1 INSERT INTO users_unique VALUES (1, 'alice@example.com', 'alice');

2 INSERT INTO users_unique VALUES (2, 'bobexample.com', NULL); -- 0K

3 INSERT INTO users_unique VALUES (3, 'charlie@example.com', NULL); —-- O
(NULL != NULL)

INSERT INTO users_unique VALUES (1, 'alice@example.com’, 'alice')

relation "users_unique" does not exist

Composite UNIQUE:

CREATE TABLE reservations (
reservation_id INTEGER PRIMARY KEY,
room_number INTEGER,
date DATE,
UNIQUE (room_number, date) -- Raum kann pro Tag nur 1x gebucht werden

)3

NOT NULL ist der einfachste Constraint, aber extrem wichtig. Er verhindert NULL-Werte in Spalten, die immer

einen Wert haben mussen.

NOT NULL - Pflichtfelder

Syntax:

CREATE TABLE products_nn (
product_id INTEGER PRIMARY KEY,
name TEXT NOT NULL,
price DECIMAL(10,2) NOT NULL,
description TEXT -- NULL erlaubt

)3

Warum wichtig?
e NULL ist nicht 0, nicht leerer String - es ist ,unbekannt”
® Berechnungen mit NULL geben NULL zurtick

e WHERE-Bedingungen konnen scheitern

Beispiel:
1 -- Fehlschlagt (name ist NOT NULL):
2 INSERT INTO products_nn (product_id, price) VALUES (1, 99.99);
3
4 -- Funktioniert:
5 INSERT INTO products_nn (product_id, name, price) VALUES (1, 'Laptop',

.99);

-- Fehlschlagt (name ist NOT NULL):
INSERT INTO products_nn (product_id, price) VALUES (1, 99.99)

relation "products _nn" does not exist

CHECK ermoglicht benutzerdefinierte Validierung. Sie konnen Bereiche priifen, Muster validieren,
Bedingungen zwischen Spalten definieren.

CHECK - Benutzerdefinierte Validierung

Syntax:

CHECK (condition)

Beispiele:

1~ CREATE TABLE products_check (

2 product_id INTEGER PRIMARY KEY,

3 name TEXT NOT NULL,

4 price DECIMAL(10,2) CHECK (price >= 0),

5 discount_percent INTEGER CHECK (discount_percent BETWEEN ©@ AND 100),
6 stock INTEGER CHECK (stock >= 0),

7 release_date DATE CHECK (release_date >= CURRENT_DATE)

8

)3

CREATE TABLE products_check (
product_id INTEGER PRIMARY KEY,
name TEXT NOT NULL,
price DECIMAL(10,2) CHECK (price >= 0),
discount_percent INTEGER CHECK (discount_percent BETWEEN 0 AND 100),
stock INTEGER CHECK (stock >= 0),

release_date DATE CHECK (release_date >= CURRENT_DATE)

Multi-Column Checks:

CREATE TABLE discounts (
discount_id INTEGER PRIMARY KEY,
start_date DATE,
end_date DATE,
CHECK (end_date > start_date) -- Ende muss nach Start sein

)3

Enum-Simulation:

1~ CREATE TABLE orders_status (

2 order_id INTEGER PRIMARY KEY,

3 status TEXT CHECK (status IN ('pending', 'shipped', 'delivered',
'cancelled'))

)3

-- Fehlschlagt (ungiultiger Status):
INSERT INTO orders_status VALUES (1, 'in_transit');

CREATE TABLE orders_status (

order_id INTEGER PRIMARY KEY,

status TEXT CHECK (status IN (‘pending’, 'shipped’, 'delivered’, 'cancelled'))
)

ok

-- Fehlschlagt (ungiiltiger Status):
INSERT INTO orders_status VALUES (1, 'in_transit')

new row for relation "orders_status" violates check constraint "orders_status_status_check"

DEFAULT setzt Standardwerte, wenn beim INSERT kein Wert angegeben wird. Praktisch fur Zeitstempel,
Flags, Status.

DEFAULT - Standardwerte

Syntax:

o ~No ok~ WNBRE

= CREATE TABLE products_default (

product_id INTEGER PRIMARY KEY,

name TEXT NOT NULL,

price DECIMAL(10,2) NOT NULL,

stock INTEGER DEFAULT 0,

is_active BOOLEAN DEFAULT TRUE,

created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP

A
e

CREATE TABLE products_default (
product_id INTEGER PRIMARY KEY,
name TEXT NOT NULL,
price DECIMAL(10,2) NOT NULL,
stock INTEGER DEFAULT 0O,

is_active BOOLEAN DEFAULT TRUE,
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP

Nutzung:
1 -- Ohne stock, is_active, created_at:
2 INSERT INTO products_default (product_id, name, price)
3 VALUES (1, 'Laptop', 999.99);
4
5 SELECT * FROM products_default;
6 -- - stock = 0, is_active = TRUE, created_at = jetzt

-- Ohne stock, is_active, created_at:
INSERT INTO products_default (product_id, name, price)
VALUES (1, 'Laptop’, 999.99)

ok

SELECT * FROM products_default

product_id name price stock is_active @ created_at

1 Laptop 99999 O true 2026-01-16T08:44:47.165Z

-- » stock = 0, is_active = TRUE, created_at = jetzt

ok

Funktionen als Default:

CREATE TABLE logs (
log_id INTEGER PRIMARY KEY,
message TEXT,
timestamp TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
random_id TEXT DEFAULT (gen_random_uuid()::TEXT)
)3

DML - INSERT

Jetzt verlassen wir DDL und gehen zu DML: Daten manipulieren. INSERT fligt neue Zeilen ein. Sie kdnnen
einzelne Zeilen einfligen, mehrere gleichzeitig, oder Daten aus anderen Tabellen kopieren.

Einzelne Zeile einfiigen

Syntax:

INSERT INTO table_name (columnl, column2, ...)
VALUES (valuel, value2, ...);

Beispiel:

1~ CREATE TABLE customers_insert (

2 customer_id INTEGER PRIMARY KEY,

3 name TEXT NOT NULL,

4 email TEXT,

5 registered_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP

6);

-

8 INSERT INTO customers_insert (customer_id, name, email)
9 VALUES (1, 'Alice', 'alice@example.com');

10

11 SELECT x* FROM customers_dinsert;

CREATE TABLE customers_insert (

customer_id INTEGER PRIMARY KEY,

name TEXT NOT NULL,

email TEXT,

registered_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
)

(0] 4

INSERT INTO customers_insert (customer_id, name, email)
VALUES (1, 'Alice’, 'alice@example.com')

ok

SELECT * FROM customers_insert

customer_id name email registered_at

1 Alice alice@example.com 2026-01-16T08:44:43.325Z7

Alle Spalten (Reihenfolge wie in CREATE TABLE):

INSERT INTO customers_insert
VALUES (2, 'Bob', 'bob@example.com', CURRENT_TIMESTAMP);

Bulk Insert ist effizienter als viele einzelne INSERTSs. Statt 100 Befehle schreiben Sie einen mit 100
Wertepaaren.

Mehrere Zeilen gleichzeitig (Bulk Insert)

Syntax:

INSERT INTO table_name (columns)
VALUES

(valuesl),

(values2),

(values3s),

*

Beispiel:

1 INSERT INTO customers_insert (customer_id, name, email) VALUES
2 (3, 'Charlie', 'charlie@example.com'),

3 (4, 'Diana', 'diana@example.com'),

4 (5, 'Eve', 'eve@example.com');
5
6

SELECT * FROM customers_insert;

INSERT INTO customers_insert (customer_id, name, email) VALUES
(3, 'Charlie’, '‘charlie@example.com’),
(4, 'Diana’, 'diana@example.com’),
(5, 'Eve’, 'eve@example.com')

ok

SELECT * FROM customers_insert

customer_id hame email registered_at

1 Alice alice@example.com 2026-01-16T08:44:43.325Z
3 Charlie charlie@example.com 2026-01-16T08:44:44.319Z
Diana diana@example.com 2026-01-16T08:44:44.319Z

Eve eve@example.com 2026-01-16T08:44:44.319Z

Performance-Vorteil:
e 1 INSERT mit 1000 Zeilen: ~10ms

® 1000 einzelne INSERTs: ~1000ms
INSERT ... SELECT kopiert Daten aus einer anderen Tabelle. Praktisch flir Backups, Datenmigrationen,
berechnete Tabellen.

INSERT ... SELECT

Syntax:

INSERT INTO target_table (columns)
SELECT columns FROM source_table WHERE condition;

Beispiel: Backup erstellen

1~ CREATE TABLE customers_backup (

2 customer_id INTEGER,
e nama TFXT

- e e
4 email TEXT,

5 backup_date DATE DEFAULT CURRENT_DATE

6);

-

8 INSERT INTO customers_backup (customer_id, name, email)
9 SELECT customer_id, name, email FROM customers_-insert;
10

11 SELECT * FROM customers_backup;

CREATE TABLE customers_backup (
customer_id INTEGER,
name TEXT,
email TEXT,
backup_date DATE DEFAULT CURRENT_DATE

)
ok

INSERT INTO customers_backup (customer_id, name, email)
SELECT customer_id, name, email FROM customers_insert

ok

SELECT * FROM customers_backup

customer_id name email backup_date

3 Charlie charlie@example.com 2026-01-16
4 Diana diana@example.com 2026-01-16
5 Eve eve@example.com 2026-01-16

1 Alice alice_updated@example.com 2026-01-16

Beispiel: Gefilterte Kopie

-— Nur Kunden mit E-Mail:

INSERT INTO customers_backup (customer_id, name, email)
SELECT customer_id, name, email

FROM customers_-dinsert

WHERE email IS NOT NULL;

Upsert (INSERT ... ON CONFLICT) ist ein fortgeschrittenes Pattern: ,Flige ein, oder update, wenn schon
vorhanden." Praktisch fiir Daten-Synchronisation.

INSERT ... ON CONFLICT (Upsert)

Problem: Was, wenn die ID schon existiert?

-- Fehlschlagt (customer_id 1 existiert schon):
INSERT INTO customers_insert (customer_id, name, email)
VALUES (1, 'Alice Updated', 'alice_new@example.com');

Losung: ON CONFLICT DO UPDATE

1 INSERT INTO customers_insert (customer_id, name, email)
2 VALUES (1, 'Alice Updated', 'alice_new@example.com')

3 ON CONFLICT (customer_id) DO UPDATE

4 SET

5 name = EXCLUDED.name,

6 email = EXCLUDED.email;

-

8

SELECT * FROM customers_insert WHERE customer_id = 1;

INSERT INTO customers_insert (customer_id, name, email)
VALUES (1, 'Alice Updated’, 'alice_new@example.com')
ON CONFLICT (customer_id) DO UPDATE
SET
name = EXCLUDED.name,
email = EXCLUDED.email

ok

SELECT * FROM customers_insert WHERE customer _id = 1

customer_id name email registered_at

1 Alice alice_new@example.com 2026-01-
Updated 16T08:44:43.325Z

ON CONFLICT DO NOTHING:

-— Ignoriere Duplikate:

INSERT INTO customers_insert (customer_id, name, email)
VALUES (1, 'Alice', 'alice@example.com')

ON CONFLICT (customer_id) DO NOTHING;

¢ Use Cases:

¢ Daten-Sync aus externen Systemen

* |dempotente Pipelines (mehrfaches Ausfiihren = gleiches Ergebnis)

DML - UPDATE

UPDATE andert bestehende Daten. Der gefahrlichste Befehl ist UPDATE ohne WHERE - dann werden ALLE
Zeilen geandert. Immer mit WHERE filtern!

UPDATE mit WHERE

Syntax:

UPDATE table_name
SET columnl = valuel, column2 = value2,
WHERE condition;

Beispiel:
1 -- Einzelne Zeile andern:
2 UPDATE customers_tdinsert
3 SET email = 'alice_updated@example.com'
4 WHERE customer_id = 1;
5
6 SELECT * FROM customers_insert WHERE customer_id = 1;

-- Einzelne Zeile andern:

UPDATE customers_insert

SET email = 'alice_updated@example.com’
WHERE customer_id = 1

ok

SELECT * FROM customers_insert WHERE customer _id = 1

customer_id name email registered_at

1 Alice alice_updated@example.com 2026-01-16T08:44:43.3257

I\ GEFAHR: UPDATE ohne WHERE

-— ALLE Zeilen werden geandert!
UPDATE customers_insert
SET name = 'Unknown';

-— Jetzt heilRen ALLE Kunden "Unknown'"!

¢ Best Practice: Immer WHERE nutzen, auler Sie wollen wirklich alle Zeilen andern.

Sie kdnnen mehrere Spalten gleichzeitig andern und berechnete Updates machen.

Mehrere Spalten & berechnete Updates

Mehrere Spalten:

UPDATE customers_insert

SET
name = 'Alice Smith',
email = 'alice.smitheexample.com'

WHERE customer_id = 1;

Berechnete Updates:

lv
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

CREATE TABLE products_update (
product_id INTEGER PRIMARY KEY,
name TEXT,
price DECIMAL(10,2),
stock INTEGER

)5

INSERT INTO products_update VALUES
(1, 'Laptop', 1000.00, 50),
(2, 'Mouse', 25.00, 200);

—-- Preiserhohung um 10%:
UPDATE products_update
SET price = price * 1.10;

-— Stock reduzieren:
UPDATE products_update
SET stock = stock - 5
WHERE product_id = 1;

SELECT * FROM products_update;

CREATE TABLE products_update (
product_id INTEGER PRIMARY KEY,
name TEXT,
price DECIMAL(10,2),
stock INTEGER

)

ok

INSERT INTO products_update VALUES
(1, 'Laptop’, 1000.00, 50),
(2, '‘Mouse', 25.00, 200)

ok

-- Preiserhohung um 10%:
UPDATE products_update
SET price = price * 1.10

ok

-- Stock reduzieren:
UPDATE products_update
SET stock = stock - 5
WHERE product_id = 1

ok

SELECT * FROM products_update

product_id price
2 27.50

1 1100.00

UPDATE mit Subqueries oder Joins ist fortgeschritten, aber sehr machtig. Sie konnen Werte aus anderen

Tabellen holen und einfiigen.

UPDATE mit Subquery (Fortgeschritten)

Beispiel: Preis basierend auf Kategorie anpassen

1~ CREATE TABLE categories_update (

2 category_id INTEGER PRIMARY KEY,
name TEXT,

discount_percent DECIMAL(5,2)

3
4

\

O 00 N O U

10
11
12
13
14

15
16
17
18
19
20
21
22
23
24
25
26
27

)5

= CREATE TABLE products_cat (
product_id INTEGER PRIMARY KEY,
name TEXT,
price DECIMAL(10,2),
category_id INTEGER

)5

INSERT INTO categories_update VALUES (1, 'Electronics', 10.00),
, 5.00);

INSERT INTO products_cat VALUES
(1, 'Laptop', 1000.00, 1),
(2, 'Novel', 20.00, 2);

-- Preis mit Kategorie-Discount reduzieren:
UPDATE products_cat
= SET price = price * (1 - (
SELECT discount_percent / 100
FROM categories_update
WHERE categories_update.category_id = products_cat.category_id

))s

SELECT * FROM products_cat;

(2, !

CREATE TABLE categories_update (
category_id INTEGER PRIMARY KEY,
name TEXT,
discount_percent DECIMAL(5,2)

)

ok

CREATE TABLE products_cat (
product_id INTEGER PRIMARY KEY,
name TEXT,
price DECIMAL(10,2),
category_id INTEGER

)

ok

INSERT INTO categories_update VALUES (1, 'Electronics’, 10.00), (2, 'Books', 5.00)

ok

INSERT INTO products_cat VALUES
(1, 'Laptop’, 1000.00, 1),
(2, 'Novel’, 20.00, 2)

ok

-- Preis mit Kategorie-Discount reduzieren:
UPDATE products_cat
SET price = price * (1 - (
SELECT discount_percent / 100
FROM categories_update
WHERE categories_update.category_id = products_cat.category_id

))
ok

SELECT * FROM products_cat

product_id category _id

1 1

2 2

DML - DELETE

DELETE entfernt Zeilen. Wie bei UPDATE gilt: Immer mit WHERE, aulRer Sie wollen wirklich alles l[6schen.

DELETE ist reversibel (via Transaktion), TRUNCATE nicht.

DELETE mit WHERE

Syntax:

DELETE FROM table_name
WHERE condition;

Beispiel:
1 -- Einzelne Zeile 1l6schen:
2 DELETE FROM customers_dinsert
3 WHERE customer_id = 5;
4
5 -- Mehrere Zeilen:
6 DELETE FROM customers_-dinsert
7 WHERE email IS NULL;
8
9 SELECT * FROM customers_insert;

-- Einzelne Zeile lIé6schen:
DELETE FROM customers_insert
WHERE customer_id = 5

ok

-- Mehrere Zeilen:
DELETE FROM customers_insert
WHERE email IS NULL

ok

SELECT * FROM customers_insert

customer_id name email

3 Charlie charlie@example.com
4 Diana diana@example.com

1 Alice alice_updated@example.com

registered_at
2026-01-16T08:44:44.319Z
2026-01-16T08:44:44.319Z

2026-01-16T08:44:43.325Z

I\ GEFAHR: DELETE ohne WHERE

-— ALLE Zeilen werden geloscht!
DELETE FROM customers_-insert;

-— Tabelle st jetzt leer!

TRUNCATE vs. DELETE: TRUNCATE ist schneller, aber weniger flexibel. DELETE kann mit WHERE filtern und ist

in Transaktionen reversibel.

TRUNCATE vs. DELETE

Feature DELETE
WHERE-Klausel Ja
Performance I\ Langsamer (Zeile fiir Zeile)
Rollback In Transaktion moglich
Triggers Werden ausgeldst
Auto-Increment Reset x Nein

Beispiel:

TRUNCATE

X Nein (alle Zeilen)

Schneller (gesamte Tabelle)
I\ Meist nicht (DB-abhingig)

XX Meist nicht

Ja (zuriick auf 1)

-— DELETE: Kann WHERE nutzen
DELETE FROM products_update WHERE price < 50;

-— TRUNCATE: Lo6scht alles
TRUNCATE TABLE products_update;

¥ Wann was?
* DELETE: Selektives Loschen, Transaktionen wichtig

* TRUNCATE: Komplettes Leeren, Performance wichtig

Soft Delete ist ein Pattern, bei dem Sie Daten nicht wirklich l6schen, sondern nur als ,geldscht” markieren.

Praktisch fur Audit-Trails und Wiederherstellung.

Soft Delete Pattern

Problem: Geldschte Daten sind weg - kein Audit-Trail, keine Wiederherstellung.

Losung: Status-Flag

1~ CREATE TABLE users_soft (
2 user id INTEGER PRIMARY KEY.

O 00 ~NOo U~ W

10
11
12
13
14
15
16
17
18
19
20
21
22

username TEXT,

email TEXT,

is_deleted BOOLEAN DEFAULT FALSE,
deleted_at TIMESTAMP

)3

INSERT INTO users_soft (user_id, username, email) VALUES
(1, 'alice', 'alice@example.com'),
(2, 'bob', 'bob@example.com');

-—- Statt DELETE:

UPDATE users_soft

SET 1is_deleted = TRUE, deleted_at = CURRENT_TIMESTAMP
WHERE user_id = 1;

-— View fiUr aktive User:
CREATE VIEW active_users AS
SELECT * FROM users_soft WHERE +is_deleted = FALSE;

SELECT * FROM active_users;

CREATE TABLE users_soft (
user_id INTEGER PRIMARY KEY,
username TEXT,
email TEXT,
is_deleted BOOLEAN DEFAULT FALSE,
deleted_at TIMESTAMP

INSERT INTO users_soft (user_id, username, email) VALUES
(1, 'alice’, 'alice@example.com’),
(2, 'bob’, 'bob@example.com')

ok

-- Statt DELETE:

UPDATE users_soft

SET is_deleted = TRUE, deleted_at = CURRENT_TIMESTAMP
WHERE user_id = 1

ok

-- View fur aktive User:
CREATE VIEW active_users AS
SELECT * FROM users_soft WHERE is_deleted = FALSE

ok

SELECT * FROM active_users

user _id username email is_deleted deleted_at

2 bob bob@example.com false null

Vorteile:
o [V4 Wiederherstellung méglich (SET is_deleted = FALSE)

o [¥4 Audit-Trail (wann wurde geldscht?)

o [V Analytics liber geldschte Daten

Nachteile:

o X Tabelle wird groRer

e X Queries komplexer (immer WHERE is_deleted = FALSE)

Schema-Evolution & Best Practices

Schemas andern sich im Lauf der Zeit. Neue Features erfordern neue Spalten, Refactorings andern
Strukturen. Wie machen Sie das sicher, ohne Downtime, ohne Datenverlust?

Migrations-Konzept
Problem: Schema-Anderungen missen nachvollziehbar und wiederholbar sein.

Losung: Migrations (Up/Down)

-- Migration 001: Initial Schema
-- UP:
CREATE TABLE users (
user_id INTEGER PRIMARY KEY,
username TEXT NOT NULL

)3

-— DOWN:
DROP TABLE users;

-— Migration 002: Add Email
-- UP:
ALTER TABLE users ADD COLUMN email TEXT;

-— DOWN':
ALTER TABLE users DROP COLUMN email;

Tools:
* Flyway (Java): SQL-basiert, einfach
* Liquibase (Java): XML/YAML, komplex aber machtig
* Alembic (Python): Code-basiert, fiir SQLAlchemy
* Migrate (Go): Einfach, Library
Workflow:
1. Entwicklung: Neue Migration schreiben
2. Review: Migration priifen (Syntax, Logik)
3. Test: Auf Testdatenbank anwenden

4. Produktion: Rollout mit Monitoring

Sichere Schema-Anderungen vermeiden Downtime. ADD COLUMN ist meist sicher, DROP COLUMN riskant.
Grolde Tabellen erfordern besondere Vorsicht.

Sichere Schema-Anderungen

Sicher (keine Downtime):

-- Spalte mit DEFAULT hinzuflgen:
ALTER TABLE products ADD COLUMN category TEXT DEFAULT 'Uncategorized';

-- Index erstellen (CONCURRENT in PostgreSQL):
CREATE INDEX CONCURRENTLY -didx_products_category ON products(category);

I\ Riskant (Lock/Downtime):

-- Datentyp a@ndern (gesamte Tabelle wird gesperrt):
ALTER TABLE products ALTER COLUMN price TYPE DECIMAL(12,2);

-— Spalte loschen (Lock):
ALTER TABLE products DROP COLUMN description;

« Best Practices:
1. ADD COLUMN mit DEFAULT: Schnell, keine Lock-Probleme

2. NOT NULL schrittweise: - Schritt 1: Spalte als NULL hinzufligen - Schritt 2: Werte fiillen (UPDATE) -
Schritt 3: NOT NULL Constraint hinzufligen

3. GroRe Tabellen: Off-Peak-Zeiten nutzen
4. Indexes: CONCURRENT erstellen (PostgreSQL)

Ruckwartskompatibilitat ist wichtig, wenn mehrere App-Versionen parallel laufen. Neue Spalten sollten
optional sein, alte Spalten nicht sofort geloscht werden.

Riickwartskompatibilitat
Problem: App v1 lauft noch, aber DB-Schema ist fiir App v2.
Strategie: Expand-Contract

1. Expand: Neue Spalte hinzufiligen (optional)

2. Migrate: App v2 deployed, nutzt neue Spalte

3. Contract: Nach Rollout alte Spalte l6schen

Beispiel:

-- Phase 1: EXPAND (neue Spalte hinzuflgen)
ALTER TABLE users ADD COLUMN email_new TEXT;

-— Phase 2: MIGRATE

-— App Vv2 schreibt in email_new
-— App vl schreibt weiter in email

-- Phase 3: CONTRACT (nach vollstandigem Rollout)
ALTER TABLE users DROP COLUMN email;
ALTER TABLE users RENAME COLUMN email_new TO email;

¥ Best Practice: Niemals breaking changes ohne Ubergangsphase!

Ausblick: Transaktionen

Ein letzter Punkt, den wir heute nur kurz anreifen: Transaktionen. Sie haben INSERT, UPDATE, DELETE
gelernt - aber was, wenn Sie mehrere Operationen atomar ausfiihren wollen? ,,Entweder alles oder nichts"?
Das sind Transaktionen.

Warum Transaktionen?

Problem:

-- Geldtransfer:

UPDATE accounts SET balance = balance - 100 WHERE account_id = 1; -- 4 O}
-- X Fehler! Server-Crash!

UPDATE accounts SET balance = balance + 100 WHERE account_id = 2; -- Wird

ausgefihrt
-- 5 100 Euro verschwunden!

Losung: Transaktion

BEGIN;
UPDATE accounts SET balance
UPDATE accounts SET balance
COMMIT; -- Beide oder keine

balance - 100 WHERE account_id = 1;
balance + 100 WHERE account_id = 2;

Wenn Fehler:

BEGIN;
UPDATE accounts SET balance
-- Fehler hier!

ROLLBACK; -- Alles ruckgangig

balance - 100 WHERE account_id = 1;

Transaktionen lernen Sie ausfiihrlich in Session 11+, nach Joins. Warum spater? Weil Transaktionen erst bei
Multi-Table-Operations richtig relevant werden. Fiir heute reicht: Sie existieren, sie garantieren ACID
(Atomicity, Consistency, Isolation, Durability), und wir kommen darauf zurtick.

Zusammenfassung

Was haben Sie gelernt? DDL fiir Schema-Design: CREATE TABLE mit Datentypen und Constraints, ALTER
TABLE fiir Anderungen, DROP TABLE zum Léschen. DML fiir Datenmanipulation: INSERT zum Einfligen,
UPDATE zum Andern, DELETE zum Léschen. Constraints fiir Integritit: PRIMARY KEY, FOREIGN KEY, UNIQUE,
NOT NULL, CHECK, DEFAULT. Und Best Practices fiir sichere Schema-Evolution.

Konzept Befehl Zweck

DDL | CREATE TABLE | Tabelle erstellen
|ALTER TABLE | Tabelle andern
| DROP TABLE | Tabelle [6schen

Constraints | PRIMARY KEY | Eindeutigkeit + NOT NULL
| FOREIGN KEY | Referenzielle Integritit
Eindeutigkeit (NULL erlaubt)
Pflichtfeld
Benutzerdefinierte Validierung
Standardwert

DML Daten einfligen
Daten andern
Daten l0schen

Die wichtigsten Takeaways: Nutzen Sie Constraints - sie schiitzen Ihre Daten. Immer WHERE bei
UPDATE/DELETE - auRer Sie wollen wirklich alles andern. Kiinstliche Primary Keys sind meist besser als
natirliche. FOREIGN KEY mit ON DELETE/UPDATE steuert Kaskaden. Und: Schema-Evolution ist ein Prozess,
keine einmalige Aktion.

Best Practices: Checkliste

Zum Abschluss eine Checkliste, die Sie bei jedem Schema-Design durchgehen sollten.

Schema-Design:

Jede Tabelle hat einen PRIMARY KEY

Kiinstliche Keys (INTEGER) statt natiirliche (TEXT) fiir Performance
FOREIGN KEYs fiir alle Beziehungen definiert

ON DELETE/UPDATE explizit gewahlt (CASCADE/RESTRICT/SET NULL)
NOT NULL fiir alle Pflichtfelder

CHECK Constraints fiir Validierung (z.B. price >=0)

O000000

DEFAULT fur sinnvolle Standardwerte (z.B. created_at)

Datenmanipulation:

INSERT: Spalten explizit benennen, nicht auf Reihenfolge verlassen
UPDATE: Immer mit WHERE (aufSer wirklich alle Zeilen dndern)
DELETE: Immer mit WHERE (auer wirklich alle Zeilen 16schen)

Bulk Operations nutzen (1 INSERT mit 100 Zeilen statt 100 INSERTS)

0000

Schema-Evolution:
Migrations-System nutzen (Flyway, Liquibase, Alembic)

Jede Anderung hat UP + DOWN Migration

000

Ruckwartskompatibilitat beachten (Expand-Contract)

O GroRe Anderungen off-peak ausfiihren

Sicherheit:
O Keine DDL/DML in Produktion ohne Backup
O Transaktionen fiir multi-step Operationen (ab Session 11)

O Testen auf Testdatenbank vor Produktion

Quiz: Testen Sie Ihr Wissen

Frage 1: Was ist der Unterschied zwischen PRIMARY KEY und UNIQUE?

O Kein Unterschied
() PRIMARY KEY ist eindeutig + NOT NULL, UNIQUE erlaubt NULL
O UNIQUE ist schneller als PRIMARY KEY

O PRIMARY KEY kann mehrfach pro Tabelle vorkommen

Frage 2: Was passiert bei ON DELETE CASCADE?
O Loschen wird verhindert
O Abhangige Zeilen werden auch geldscht

O Foreign Key wird auf NULL gesetzt

O Nichts

Frage 3: Was macht TRUNCATE im Vergleich zu DELETE?

O TRUNCATE ist schneller, loscht alle Zeilen, kein WHERE moglich
O TRUNCATE ist langsamer als DELETE

O TRUNCATE l6scht nur eine Zeile

O Kein Unterschied

Frage 4: Warum sollten Sie UPDATE ohne WHERE vermeiden?

O Esist langsamer

O Es funktioniert nicht
O Es andert ALLE Zeilen in der Tabelle

O Es ist unsicher (SQL Injection)

Frage 5: Was ist der Vorteil von kiinstlichen Primary Keys (INTEGER) gegeniiber natiirlichen (z.B. E-Mail)?
O Kinstliche Keys sind lesbarer

O Kunstliche Keys sind unveranderlich und schneller

O Natlrliche Keys sind besser

O Kein Unterschied

Ubungsaufgaben

Zeit fur Praxis! Probieren Sie diese Aufgaben selbst aus.

Aufgabe 1: Tabelle erstellen

Erstellen Sie eine Tabelle mit: | student_1id [(Primary Key, Integer) | first_name |und

last_name |(NOT NULL) - emai1](UNIQUE, NOT NULL) - enrollment_date | (DEFAULT: aktuelles

Datum) -| gpa | (CHECK: zwischen 0.0 und 4.0)

[J

% Kk Kk Kk k k ok ok ok ok ok ok ok ok ok ok ok ok ok

|:|‘ sql CREATE TABLE students (student_id INTEGER PRIMARY KEY, first_name TEXT NOT NULL, last_name
TEXT NOT NULL, email TEXT UNIQUE NOT NULL, enrollmentdate DATE DEFAULT CURRENTDATE, gpa
DECIMAL(3,2) CHECK (gpa BETWEEN 0.0 AND 4.0));D‘ LIA: termina| ***rrrrrmmso

Aufgabe 2: Foreign Key

Erstellen Sie eine| enrollments |Tabelle, die| students |mit| courses |verbindet: - Composite
Primary Key (studentid, courseid) - Foreign Keys zu beiden Tabellen - ON DELETE CASCADE fiir beide

[J

|:|‘ sql INSERT INTO students (studentid, firstname, last_name, email, gpa) VALUES (1, ,Alice’, ,Smith’,
"alice@university.edu’, 3.8), (2, ,Bob*, ,Jones’, 'bob@university.edu', 3.5), (3, ,Charlie‘, ,Brown’,
'charlie@university.edu', 3.9); INSERT INTO courses (course_id, title) VALUES (1, ,Databases’), (2,
,Algorithms*); INSERT INTO enrollments (studentid, courseid, grade) VALUES (1, 1, ,A), (1, 2, ,BY), (2, 1, ,A-);
UPDATE students SET gpa = 3.85 WHERE student_id = 1; SELECT * FROM students; SELECT * FROM
enrollments; |:| LIA: termina| ****rxxssxsssnn

Ausblick: Was kommt als Nachstes?

Sie konnen jetzt Schemas erstellen, Daten einfligen, andern, [6schen. Aber lhre Queries sind noch auf eine
Tabelle beschrankt. Was, wenn Sie Daten aus mehreren Tabellen kombinieren wollen? Das sind Joins - unser
nachstes groRes Thema.

Kommende Sessions:
* Session 9: SQL Filtering & Operators (BETWEEN, IN, LIKE, CASE)
* Session 10: SQL Joins & Combining Data (INNER, LEFT, RIGHT, FULL, CROSS)
e Session 11+: Transaktionen & ACID (nach Joins)
* Session 12: Aggregation & Window Functions
* Session 15: Performance Optimization & Indexing

€7 Gliickwunsch! Sie beherrschen jetzt DDL & DML - das Fundament jeder Datenbank-Arbeit!

