
L13: Advanced SQL – SET Operations & Views

Session 13 – Lecture Dauer: 90 Minuten Lernziele: LZ 2 (Relationale DB & SQL praktisch anwenden)
Block: 3 – SQL Vertiefung

Willkommen zur dreizehnten Session! In den letzten Sessions haben Sie gelernt, wie man Daten mit Joins
kombiniert, Aggregationen durchführt und mit Subqueries arbeitet. Heute erweitern wir Ihr SQL-Toolkit um
zwei mächtige Konzepte: SET Operations und Views.

SET Operations erlauben es uns, Ergebnismengen mathematisch zu kombinieren – wie Vereinigung,
Schnittmenge und Differenz aus der Mengenlehre. Views hingegen geben uns die Möglichkeit, komplexe
Queries als wiederverwendbare virtuelle Tabellen zu speichern.

Wir arbeiten heute mit unserem bekannten E-Commerce-Schema aus Session 10 und erweitern es um eine
neue Tabelle: Mitarbeiter. Denn stellen Sie sich vor: Einige Ihrer Mitarbeiter bestellen auch privat im Shop –
und genau hier kommen SET Operations ins Spiel!

Datenbank-Setup: Online-Shop erweitert
Bevor wir loslegen, initialisieren wir unsere Datenbank. Wir nutzen das bekannte E-Commerce-Schema und
fügen eine neue Tabelle hinzu: Mitarbeiter.

-- Locations: Normalisierte Orte mit PLZ
CREATE TABLE locations (
 location_id INTEGER PRIMARY KEY,
 city TEXT NOT NULL,
 postal_code TEXT NOT NULL,
 country TEXT DEFAULT 'Germany'
);

-- Categories: Normalisierte Produktkategorien
CREATE TABLE categories (
 category_id INTEGER PRIMARY KEY,
 category_name TEXT NOT NULL UNIQUE,
 description TEXT
);

-- Customers: Erweitert mit strukturierten Adressdaten
CREATE TABLE customers (
 customer_id INTEGER PRIMARY KEY,
 first_name TEXT NOT NULL,
 last_name TEXT NOT NULL,
 email TEXT UNIQUE,
 street TEXT,
 street_number TEXT,
 location_id INTEGER REFERENCES locations(location_id)
);

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25



);

-- Orders: Kundenbestellungen
CREATE TABLE orders (
 order_id INTEGER PRIMARY KEY,
 customer_id INTEGER REFERENCES customers(customer_id),
 order_date DATE,
 total_amount DECIMAL(10,2),
 status TEXT
);

-- Products: Produktkatalog
CREATE TABLE products (
 product_id INTEGER PRIMARY KEY,
 product_name TEXT NOT NULL,
 price DECIMAL(10,2)
);

-- Product_Categories: N:M Beziehung zwischen Produkten und Kategori
CREATE TABLE product_categories (
 product_id INTEGER REFERENCES products(product_id),
 category_id INTEGER REFERENCES categories(category_id),
 PRIMARY KEY (product_id, category_id)
);

-- Order_Items: Bestellpositionen
CREATE TABLE order_items (
 order_item_id INTEGER PRIMARY KEY,
 order_id INTEGER REFERENCES orders(order_id),
 product_id INTEGER REFERENCES products(product_id),
 quantity INTEGER,
 line_total DECIMAL(10,2)
);

-- NEU: Employees – Mitarbeitertabelle
CREATE TABLE employees (
 employee_id INTEGER PRIMARY KEY,
 first_name TEXT NOT NULL,
 last_name TEXT NOT NULL,
 email TEXT UNIQUE,
 department TEXT,
 hire_date DATE
);

-- Sample Data: Locations
INSERT INTO locations(location_id, city, postal_code, country) VALUE
 (1, 'Berlin', '10115', 'Germany'),
 (2, 'Hamburg', '20095', 'Germany'),
 (3, 'Munich', '80331', 'Germany'),
 (4, 'Cologne', '50667', 'Germany');

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75

-- Sample Data: Categories
INSERT INTO categories(category_id, category_name, description) VALU
 (1, 'Electronics', 'Electronic devices and accessories'),
 (2, 'Furniture', 'Office and home furniture'),
 (3, 'Stationery', 'Paper products and writing supplies'),
 (4, 'Office Equipment', 'Printers, scanners, and office machines')

-- Sample Data: Customers (erweitert)
INSERT INTO customers(customer_id, first_name, last_name, email, str
 street_number, location_id) VALUES
 (1, 'Alice', 'Smith', 'alice.smith@example.com', 'Main Street', '4
),
 (2, 'Bob', 'Johnson', 'bob.johnson@example.com', 'Oak Avenue', '15
 (3, 'Carol', 'Williams', 'carol.williams@example.com', 'Elm Road',
 1),
 (4, 'David', 'Lee', 'david.lee@example.com', 'Maple Lane', '23', 3
 (5, 'Emma', 'Brown', 'emma.brown@example.com', 'Pine Street', '7',

-- Sample Data: Employees (einige überlappen mit Customers!)
INSERT INTO employees(employee_id, first_name, last_name, email,
 department, hire_date) VALUES
 (1, 'Alice', 'Smith', 'alice.smith@shop-corp.com', 'Sales', '2020-
),
 (2, 'David', 'Lee', 'david.lee@shop-corp.com', 'IT', '2019-07-01')
 (3, 'Frank', 'Wilson', 'frank.wilson@shop-corp.com', 'HR', '2021-1
),
 (4, 'Grace', 'Taylor', 'grace.taylor@shop-corp.com', 'Marketing',
 -02-14'),
 (5, 'Hannah', 'Martinez', 'hannah.martinez@shop-corp.com', 'Financ
 '2020-09-10');

-- Sample Data: Orders
INSERT INTO orders(order_id, customer_id, order_date, total_amount,
) VALUES
 (101, 1, '2024-01-15', 299.99, 'delivered'),
 (102, 1, '2024-02-20', 139.97, 'delivered'),
 (103, 2, '2024-01-22', 999.99, 'delivered'),
 (104, 3, '2024-03-01', 749.94, 'processing'),
 (105, 4, '2024-02-10', 199.99, 'delivered');

-- Sample Data: Products
INSERT INTO products(product_id, product_name, price) VALUES
 (1, 'Laptop', 999.99),
 (2, 'Mouse', 29.99),
 (3, 'Keyboard', 79.99),
 (4, 'Monitor', 299.99),
 (5, 'Desk Chair', 199.99),
 (6, 'Notebook', 9.99),
 (7, 'USB Cable', 14.99),
 (8, 'Desk Lamp', 39.99),
 (9, 'Paper (500 sheets)', 12.99);

76
77
78
79
80
81
82
83
84

85

86
87

88
89
90
91
92

93

94
95

96

97

98
99
100

101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117

(, p () ,);

-- Sample Data: Product Categories (N:M Beziehungen)
INSERT INTO product_categories(product_id, category_id) VALUES
 (1, 1), -- Laptop → Electronics
 (2, 1), -- Mouse → Electronics
 (3, 1), -- Keyboard → Electronics
 (4, 1), -- Monitor → Electronics
 (4, 4), -- Monitor → Office Equipment
 (5, 2), -- Desk Chair → Furniture
 (5, 4), -- Desk Chair → Office Equipment
 (6, 3), -- Notebook → Stationery
 (7, 1), -- USB Cable → Electronics
 (8, 2), -- Desk Lamp → Furniture
 (8, 4), -- Desk Lamp → Office Equipment
 (9, 3); -- Paper → Stationery

-- Sample Data: Order Items
INSERT INTO order_items(order_item_id, order_id, product_id, quantit
 line_total) VALUES
 (1, 101, 4, 1, 299.99),
 (2, 102, 2, 2, 59.98),
 (3, 102, 3, 1, 79.99),
 (4, 103, 1, 1, 999.99),
 (5, 104, 6, 5, 49.95),
 (6, 104, 5, 1, 199.99),
 (7, 105, 5, 1, 199.99);

118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135

136
137
138
139
140
141
142

-- Locations: Normalisierte Orte mit PLZ

CREATE TABLE locations (

 location_id INTEGER PRIMARY KEY,

 city TEXT NOT NULL,

 postal_code TEXT NOT NULL,

 country TEXT DEFAULT 'Germany'

)

ok

-- Categories: Normalisierte Produktkategorien

CREATE TABLE categories (

 category_id INTEGER PRIMARY KEY,

 category_name TEXT NOT NULL UNIQUE,

 description TEXT

)

ok

-- Customers: Erweitert mit strukturierten Adressdaten

CREATE TABLE customers (

 customer_id INTEGER PRIMARY KEY,

 first_name TEXT NOT NULL,

 last_name TEXT NOT NULL,

 email TEXT UNIQUE,

 street TEXT,

 street_number TEXT,

 location_id INTEGER REFERENCES locations(location_id)

)

ok

-- Orders: Kundenbestellungen

CREATE TABLE orders (

 order_id INTEGER PRIMARY KEY,

 customer_id INTEGER REFERENCES customers(customer_id),

 order_date DATE,

 total_amount DECIMAL(10,2),

 status TEXT

)

ok

-- Products: Produktkatalog

CREATE TABLE products (

 product_id INTEGER PRIMARY KEY,

 product_name TEXT NOT NULL,

 price DECIMAL(10,2)

)

ok

-- Product_Categories: N:M Beziehung zwischen Produkten und Kategorien

CREATE TABLE product_categories (

 product_id INTEGER REFERENCES products(product_id),

 category_id INTEGER REFERENCES categories(category_id),

 PRIMARY KEY (product_id, category_id)

)

ok

-- Order_Items: Bestellpositionen

CREATE TABLE order_items (

 order_item_id INTEGER PRIMARY KEY,

 order_id INTEGER REFERENCES orders(order_id),

 product_id INTEGER REFERENCES products(product_id),

 quantity INTEGER,

 line_total DECIMAL(10,2)

)

ok

-- NEU: Employees – Mitarbeitertabelle

CREATE TABLE employees (

 employee_id INTEGER PRIMARY KEY,

 first_name TEXT NOT NULL,

 last_name TEXT NOT NULL,

 email TEXT UNIQUE,

 department TEXT,

 hire_date DATE

)

ok

-- Sample Data: Locations

INSERT INTO locations(location_id, city, postal_code, country) VALUES

 (1, 'Berlin', '10115', 'Germany'),

 (2, 'Hamburg', '20095', 'Germany'),

 (3, 'Munich', '80331', 'Germany'),

 (4, 'Cologne', '50667', 'Germany')

ok

-- Sample Data: Categories

INSERT INTO categories(category_id, category_name, description) VALUES

 (1, 'Electronics', 'Electronic devices and accessories'),

 (2, 'Furniture', 'Office and home furniture'),

 (3, 'Stationery', 'Paper products and writing supplies'),

 (4, 'Office Equipment', 'Printers, scanners, and office machines')

ok

-- Sample Data: Customers (erweitert)

INSERT INTO customers(customer_id, first_name, last_name, email, street,

street_number, location_id) VALUES

 (1, 'Alice', 'Smith', 'alice.smith@example.com', 'Main Street', '42', 1),

 (2, 'Bob', 'Johnson', 'bob.johnson@example.com', 'Oak Avenue', '15', 2),

 (3, 'Carol', 'Williams', 'carol.williams@example.com', 'Elm Road', '8', 1),

 (4, 'David', 'Lee', 'david.lee@example.com', 'Maple Lane', '23', 3),

 (5, 'Emma', 'Brown', 'emma.brown@example.com', 'Pine Street', '7', 4)

ok

-- Sample Data: Employees (einige überlappen mit Customers!)

INSERT INTO employees(employee_id, first_name, last_name, email, department,

hire_date) VALUES

 (1, 'Alice', 'Smith', 'alice.smith@shop-corp.com', 'Sales', '2020-03-15'),

 (2, 'David', 'Lee', 'david.lee@shop-corp.com', 'IT', '2019-07-01'),

 (3, 'Frank', 'Wilson', 'frank.wilson@shop-corp.com', 'HR', '2021-11-20'),

 (4, 'Grace', 'Taylor', 'grace.taylor@shop-corp.com', 'Marketing', '2022-02-14'),

 (5, 'Hannah', 'Martinez', 'hannah.martinez@shop-corp.com', 'Finance', '2020-09-10')

ok

-- Sample Data: Orders

INSERT INTO orders(order_id, customer_id, order_date, total_amount, status) VALUES

 (101, 1, '2024-01-15', 299.99, 'delivered'),

 (102, 1, '2024-02-20', 139.97, 'delivered'),

 (103, 2, '2024-01-22', 999.99, 'delivered'),

 (104, 3, '2024-03-01', 749.94, 'processing'),

 (105, 4, '2024-02-10', 199.99, 'delivered')

ok

-- Sample Data: Products

INSERT INTO products(product_id, product_name, price) VALUES

 (1, 'Laptop', 999.99),

 (2, 'Mouse', 29.99),

 (3, 'Keyboard', 79.99),

 (4, 'Monitor', 299.99),

 (5, 'Desk Chair', 199.99),

 (6, 'Notebook', 9.99),

 (7, 'USB Cable', 14.99),

 (8, 'Desk Lamp', 39.99),

 (9, 'Paper (500 sheets)', 12.99)

ok

-- Sample Data: Product Categories (N:M Beziehungen)

INSERT INTO product_categories(product_id, category_id) VALUES

 (1, 1), -- Laptop → Electronics

 (2, 1), -- Mouse → Electronics

 (3, 1), -- Keyboard → Electronics

 (4, 1), -- Monitor → Electronics

 (4, 4), -- Monitor → Office Equipment

 (5, 2), -- Desk Chair → Furniture

 (5, 4), -- Desk Chair → Office Equipment

 (6, 3), -- Notebook → Stationery

 (7, 1), -- USB Cable → Electronics

 (8, 2), -- Desk Lamp → Furniture

 (8, 4), -- Desk Lamp → Office Equipment

 (9, 3)

ok

-- Paper → Stationery

-- Sample Data: Order Items

INSERT INTO order_items(order_item_id, order_id, product_id, quantity, line_total)

VALUES

 (1, 101, 4, 1, 299.99),

 (2, 102, 2, 2, 59.98),

 (3, 102, 3, 1, 79.99),

 (4, 103, 1, 1, 999.99),

 (5, 104, 6, 5, 49.95),

 (6, 104, 5, 1, 199.99),

 (7, 105, 5, 1, 199.99)

ok

Schema-Übersicht:

dbdiagram.io

Beachten Sie die neue Employees-Tabelle! Alice Smith und David Lee sind sowohl Kunden als auch
Mitarbeiter – das werden wir gleich nutzen, um SET Operations zu demonstrieren.

Motivation & Kontext
Stellen Sie sich folgende Business-Szenarien vor:

Szenario 1: Newsletter-Kampagne

Ihr Marketing-Team möchte einen Newsletter versenden – an ALLE Personen in Ihrer Datenbank: Kunden
UND Mitarbeiter. Wie kombinieren Sie diese beiden Listen effizient?

Szenario 2: Mitarbeiter-Rabatt-Programm

Sie möchten herausfinden, welche Mitarbeiter AUCH als Kunden bei Ihnen einkaufen, um ihnen spezielle
Mitarbeiter-Rabatte anzubieten. Wie identifizieren Sie Überschneidungen?

Szenario 3: Komplexe Analysen wiederverwenden

https://dbdiagram.io/
https://dbdiagram.io/embed?c=VGFibGUgbG9jYXRpb25zIHsKICBsb2NhdGlvbl9pZCBpbnQgW3BrXQogIGNpdHkgdmFyY2hhciBbbm90IG51bGxdCiAgcG9zdGFsX2NvZGUgdmFyY2hhciBbbm90IG51bGxdCiAgY291bnRyeSB2YXJjaGFyIFtkZWZhdWx0OiAnR2VybWFueSddCn0KClRhYmxlIGNhdGVnb3JpZXMgewogIGNhdGVnb3J5X2lkIGludCBbcGtdCiAgY2F0ZWdvcnlfbmFtZSB2YXJjaGFyIFtub3QgbnVsbCwgdW5pcXVlXQogIGRlc2NyaXB0aW9uIHZhcmNoYXIKfQoKVGFibGUgY3VzdG9tZXJzIHsKICBjdXN0b21lcl9pZCBpbnQgW3BrXQogIGZpcnN0X25hbWUgdmFyY2hhciBbbm90IG51bGxdCiAgbGFzdF9uYW1lIHZhcmNoYXIgW25vdCBudWxsXQogIGVtYWlsIHZhcmNoYXIgW3VuaXF1ZV0KICBzdHJlZXQgdmFyY2hhcgogIHN0cmVldF9udW1iZXIgdmFyY2hhcgogIGxvY2F0aW9uX2lkIGludCBbcmVmOiA%2BIGxvY2F0aW9ucy5sb2NhdGlvbl9pZF0KfQoKVGFibGUgZW1wbG95ZWVzIHsKICBlbXBsb3llZV9pZCBpbnQgW3BrXQogIGZpcnN0X25hbWUgdmFyY2hhciBbbm90IG51bGxdCiAgbGFzdF9uYW1lIHZhcmNoYXIgW25vdCBudWxsXQogIGVtYWlsIHZhcmNoYXIgW3VuaXF1ZV0KICBkZXBhcnRtZW50IHZhcmNoYXIKICBoaXJlX2RhdGUgZGF0ZQogIE5vdGU6ICJFaW5pZ2UgTWl0YXJiZWl0ZXIgc2luZCBhdWNoIEt1bmRlbiEiCn0KClRhYmxlIG9yZGVycyB7CiAgb3JkZXJfaWQgaW50IFtwa10KICBjdXN0b21lcl9pZCBpbnQgW3JlZjogPiBjdXN0b21lcnMuY3VzdG9tZXJfaWRdCiAgb3JkZXJfZGF0ZSBkYXRlCiAgdG90YWxfYW1vdW50IGRlY2ltYWwoMTAsMikKICBzdGF0dXMgdmFyY2hhcgp9CgpUYWJsZSBwcm9kdWN0cyB7CiAgcHJvZHVjdF9pZCBpbnQgW3BrXQogIHByb2R1Y3RfbmFtZSB2YXJjaGFyIFtub3QgbnVsbF0KICBwcmljZSBkZWNpbWFsKDEwLDIpCn0KClRhYmxlIHByb2R1Y3RfY2F0ZWdvcmllcyB7CiAgcHJvZHVjdF9pZCBpbnQgW3JlZjogPiBwcm9kdWN0cy5wcm9kdWN0X2lkXQogIGNhdGVnb3J5X2lkIGludCBbcmVmOiA%2BIGNhdGVnb3JpZXMuY2F0ZWdvcnlfaWRdCiAgaW5kZXhlcyB7CiAgICAocHJvZHVjdF9pZCwgY2F0ZWdvcnlfaWQpIFtwa10KICB9Cn0KClRhYmxlIG9yZGVyX2l0ZW1zIHsKICBvcmRlcl9pdGVtX2lkIGludCBbcGtdCiAgb3JkZXJfaWQgaW50IFtyZWY6ID4gb3JkZXJzLm9yZGVyX2lkXQogIHByb2R1Y3RfaWQgaW50IFtyZWY6ID4gcHJvZHVjdHMucHJvZHVjdF9pZF0KICBxdWFudGl0eSBpbnQKICBsaW5lX3RvdGFsIGRlY2ltYWwoMTAsMikKfQ%3D%3D

Ihre Analyse-Queries für „VIP-Kunden“ und „Aktive Kunden“ werden immer länger und müssen in mehreren
Reports verwendet werden. Wie vermeiden Sie Code-Duplikation?

Die Antworten liegen in zwei mächtigen SQL-Features: SET Operations für Mengen-Kombinationen und Views
für Query-Wiederverwendung. Beginnen wir mit SET Operations!

Teil 1: SET Operations – Mengenlehre für SQL
SET Operations basieren direkt auf mathematischen Mengenoperationen. Wenn Sie Venn-Diagramme aus
der Schule kennen, werden Sie diese intuitiv verstehen.

Überblick: Die drei SET Operations
SQL bietet drei Haupt-SET-Operations: UNION, INTERSECT und EXCEPT. Jede löst ein spezifisches Problem.

:snoitarepOTESrüfemmargaiD-nneV

)znereffiD(TPECXE)egnemttinhcS(TCESRETNI)gnuginiereV(NOINU

BABB∩AABA

│││││

AsuaetnemelEruNetnemelEemasniemegruNBredoAsuaetnemelEellA

)Bnithcin(BdnuAnov

UNION Vereinigung beider Mengen Newsletter an Kunden UND Mitarbeiter

INTERSECT Nur gemeinsame Elemente Mitarbeiter, die auch Kunden sind

EXCEPT Nur Elemente aus A, nicht in B Kunden, die KEINE Mitarbeiter sind

Schauen wir uns jede Operation im Detail an, beginnend mit UNION.

UNION – Vereinigung von Mengen
UNION kombiniert die Ergebnisse zweier SELECT-Statements zu einer einzigen Ergebnismenge. Duplikate
werden automatisch entfernt – es sei denn, Sie verwenden UNION ALL.

Syntax:

Operation Bedeutung Use Case

Wichtige Regeln:

Lassen Sie uns das praktisch demonstrieren. Wir kombinieren Kunden und Mitarbeiter für eine Newsletter-
Liste.

Beispiel 1: Newsletter-Liste erstellen

SELECT spalten FROM tabelle1
UNION [ALL]
SELECT spalten FROM tabelle2;

Beide SELECT-Statements müssen die gleiche Anzahl von Spalten haben

Spaltentypen müssen kompatibel sein (oder konvertierbar)

UNION entfernt Duplikate → langsamer

UNION ALL behält Duplikate → schneller

-- UNION: Alle Personen (Kunden + Mitarbeiter) ohne Duplikate
-- Problem: E-Mail-Adressen sind unterschiedlich (@example.com vs @sh
 -corp.com)
-- Lösung: Nur Name vergleichen, nicht E-Mail!
SELECT
 first_name,
 last_name
FROM customers

UNION

SELECT
 first_name,
 last_name
FROM employees

ORDER BY last_name, first_name;

1
2

3
4
5
6
7
8
9
10
11
12
13
14
15
16





-- UNION: Alle Personen (Kunden + Mitarbeiter) ohne Duplikate

-- Problem: E-Mail-Adressen sind unterschiedlich (@example.com vs @shop-

corp.com)

-- Lösung: Nur Name vergleichen, nicht E-Mail!

SELECT

 first_name,

 last_name

FROM customers

UNION

SELECT

 first_name,

 last_name

FROM employees

ORDER BY last_name, first_name

8 rows

Was sehen Sie?

Jetzt sehen Sie 8 Personen statt 10! Alice Smith und David Lee erscheinen nur einmal. Warum? UNION
vergleicht ALLE Spalten – hier nur firstname und lastname. Da beide Personen in beiden Tabellen
vorkommen (gleicher Name), werden die Duplikate entfernt!

Wichtig: Wenn wir email mit einbeziehen würden, wären Alice und David KEINE Duplikate, weil ihre E-Mail-
Adressen unterschiedlich sind (alice.smith@example.com vs alice.smith@shop-corp.com)!

UNION ALL – Alle Einträge behalten:

Emma Brown

Bob Johnson

David Lee

Hannah Martinez

Alice Smith

Grace Taylor

Carol Williams

Frank Wilson

-- UNION ALL: Behält ALLE Einträge (keine Deduplizierung)
SELECT
 first_name,
 last_name,
 'Customer' AS type

1
2
3
4
5

1

2

3

4

5

6

7

8

first_name last_name



-- UNION ALL: Behält ALLE Einträge (keine Deduplizierung)

SELECT

 first_name,

 last_name,

 'Customer' AS type

FROM customers

UNION ALL

SELECT

 first_name,

 last_name,

 'Employee' AS type

FROM employees

ORDER BY last_name, first_name

10 rows

yp
FROM customers

UNION ALL

SELECT
 first_name,
 last_name,
 'Employee' AS type
FROM employees

ORDER BY last_name, first_name;

Emma Brown Customer

Bob Johnson Customer

David Lee Employee

David Lee Customer

Hannah Martinez Employee

Alice Smith Employee

Alice Smith Customer

Grace Taylor Employee

Carol Williams Customer

Frank Wilson Employee

6
7
8
9
10
11
12
13
14
15
16

1

2

3

4

5

6

7

8

9

10

first_name last_name type

Jetzt sehen Sie 10 Zeilen! Alice und David erscheinen zweimal – einmal als Customer, einmal als Employee.
UNION ALL ist schneller, weil keine Deduplizierung nötig ist.

Warum E-Mail-Adressen problematisch sind:

-- UNION mit E-Mail: Keine Deduplizierung wegen unterschiedlicher E-M
SELECT
 first_name,
 last_name,
 email
FROM customers

UNION

SELECT
 first_name,
 last_name,
 email
FROM employees

ORDER BY last_name, first_name;

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16



-- UNION mit E-Mail: Keine Deduplizierung wegen unterschiedlicher E-Mails!

SELECT

 first_name,

 last_name,

 email

FROM customers

UNION

SELECT

 first_name,

 last_name,

 email

FROM employees

ORDER BY last_name, first_name

10 rows

Überraschung: Wieder 10 Zeilen! Warum? UNION vergleicht ALLE Spalten. Obwohl Alice Smith in beiden
Tabellen vorkommt, sind die E-Mails unterschiedlich (alice.smith@example.com vs alice.smith@shop-
corp.com) – also keine Deduplizierung! Wenn Sie nur eindeutige Personen wollen, vergleichen Sie nur die
Spalten, die wirklich identisch sein müssen (z.B. nur Name).

Performance-Tipp:

Nutzen Sie UNION ALL, wenn Sie wissen, dass keine Duplikate existieren oder Duplikate gewünscht
sind. Das spart die kostspielige Deduplizierung!

Emma Brown emma.brown@example.com

Bob Johnson bob.johnson@example.com

David Lee david.lee@example.com

David Lee david.lee@shop-corp.com

Hannah Martinez hannah.martinez@shop-corp.com

Alice Smith alice.smith@shop-corp.com

Alice Smith alice.smith@example.com

Grace Taylor grace.taylor@shop-corp.com

Carol Williams carol.williams@example.com

Frank Wilson frank.wilson@shop-corp.com

1

2

3

4

5

6

7

8

9

10

first_name last_name email

INTERSECT – Schnittmenge finden
INTERSECT gibt nur die Zeilen zurück, die in BEIDEN Ergebnismengen vorkommen. Perfekt, um
Gemeinsamkeiten zu identifizieren.

Syntax:

Unser Business-Szenario: Finden Sie alle Mitarbeiter, die auch als Kunden im Shop einkaufen, um ihnen
Mitarbeiter-Rabatte anzubieten.

Beispiel 2: Mitarbeiter-Kunden identifizieren

SELECT spalten FROM tabelle1
INTERSECT
SELECT spalten FROM tabelle2;

-- Mitarbeiter, die auch Kunden sind (basierend auf Namen)
SELECT
 first_name,
 last_name
FROM customers

INTERSECT

SELECT
 first_name,
 last_name
FROM employees

ORDER BY last_name;

1
2
3
4
5
6
7
8
9
10
11
12
13
14





-- Mitarbeiter, die auch Kunden sind (basierend auf Namen)

SELECT

 first_name,

 last_name

FROM customers

INTERSECT

SELECT

 first_name,

 last_name

FROM employees

ORDER BY last_name

2 rows

Ergebnis:

Nur Alice Smith und David Lee erscheinen! Das sind exakt die Personen, die in beiden Tabellen vorkommen
(gleicher Name). Perfekt für unser Mitarbeiter-Rabatt-Programm. Beachten Sie: Wir vergleichen nur Namen,
nicht E-Mails, da diese unterschiedlich sein können!

Alternative mit JOIN:

Man könnte das auch mit einem JOIN lösen, aber INTERSECT ist oft lesbarer für diesen spezifischen Use-
Case.

David Lee

Alice Smith

-- Gleichwertig mit INNER JOIN
SELECT DISTINCT
 c.first_name,
 c.last_name,
 c.email
FROM customers c
INNER JOIN employees e
 ON c.first_name = e.first_name
 AND c.last_name = e.last_name
ORDER BY c.last_name;

1
2
3
4
5
6
7
8
9
10

1

2

first_name last_name



-- Gleichwertig mit INNER JOIN

SELECT DISTINCT

 c.first_name,

 c.last_name,

 c.email

FROM customers c

INNER JOIN employees e

 ON c.first_name = e.first_name

 AND c.last_name = e.last_name

ORDER BY c.last_name

2 rows

Beide Queries liefern das gleiche Ergebnis, aber INTERSECT macht die Intention klarer: „Zeige mir die
Überschneidung!“

EXCEPT – Differenz finden
EXCEPT gibt die Zeilen aus der ersten Ergebnismenge zurück, die NICHT in der zweiten vorkommen. Ideal,
um „fehlende“ oder „exklusive“ Datensätze zu identifizieren.

Syntax:

Business-Szenario: Finden Sie alle Kunden, die KEINE Mitarbeiter sind, für eine reine Kunden-Marketing-
Kampagne.

Beispiel 3: Reine Kunden identifizieren

David Lee david.lee@example.com

Alice Smith alice.smith@example.com

SELECT spalten FROM tabelle1
EXCEPT
SELECT spalten FROM tabelle2;

-- Kunden, die KEINE Mitarbeiter sind
SELECT
 first_name,
 last_name
FROM customers

EXCEPT

SELECT
 first_name,
 last_name
FROM employees

1
2
3
4
5
6
7
8
9
10
11
12

1

2

first_name last_name email





-- Kunden, die KEINE Mitarbeiter sind

SELECT

 first_name,

 last_name

FROM customers

EXCEPT

SELECT

 first_name,

 last_name

FROM employees

ORDER BY last_name

3 rows

Ergebnis:

Nur Bob, Carol und Emma erscheinen – die drei Kunden, die NICHT in der Mitarbeiter-Tabelle sind (basierend
auf Namen). Alice und David werden herausgefiltert, weil sie auch als Mitarbeiter existieren Alternative mit
LEFT JOIN:

EXCEPT kann auch mit einem Anti-Join (LEFT JOIN + NULL Check) gelöst werden.

p y

ORDER BY last_name;

Emma Brown

Bob Johnson

Carol Williams

-- Gleichwertig mit LEFT JOIN + NULL
SELECT
 c.first_name,
 c.last_name,
 c.email
FROM customers c
LEFT JOIN employees e
 ON c.first_name = e.first_name
 AND c.last_name = e.last_name
WHERE e.employee_id IS NULL
ORDER BY c.last_name;

13
14

1
2
3
4
5
6
7
8
9
10
11

1

2

3

first_name last_name



-- Gleichwertig mit LEFT JOIN + NULL

SELECT

 c.first_name,

 c.last_name,

 c.email

FROM customers c

LEFT JOIN employees e

 ON c.first_name = e.first_name

 AND c.last_name = e.last_name

WHERE e.employee_id IS NULL

ORDER BY c.last_name

3 rows

Wieder: Beide Ansätze funktionieren, aber EXCEPT ist semantisch klarer für „Zeige mir A ohne B“.

Wichtig: Reihenfolge zählt!

EXCEPT ist nicht kommutativ! A EXCEPT B ist NICHT das gleiche wie B EXCEPT A.

Emma Brown emma.brown@example.com

Bob Johnson bob.johnson@example.com

Carol Williams carol.williams@example.com

-- Umgekehrt: Mitarbeiter, die KEINE Kunden sind
SELECT first_name, last_name, email FROM employees
EXCEPT
SELECT first_name, last_name, email FROM customers
ORDER BY last_name;

1
2
3
4
5

1

2

3

first_name last_name email



-- Umgekehrt: Mitarbeiter, die KEINE Kunden sind

SELECT first_name, last_name, email FROM employees

EXCEPT

SELECT first_name, last_name, email FROM customers

ORDER BY last_name

5 rows

Jetzt sehen Sie Frank, Grace und Hannah – die drei Mitarbeiter, die nicht in der Kunden-Tabelle sind!

Komplexes Beispiel: Produkte ohne Verkäufe
Ein sehr praktisches Beispiel: Finden Sie alle Produkte, die noch NIE verkauft wurden. Das sind Ihre
„Ladenhüter“, die Sie vielleicht aus dem Sortiment nehmen oder bewerben sollten.

David Lee david.lee@shop-corp.com

Hannah Martinez hannah.martinez@shop-corp.com

Alice Smith alice.smith@shop-corp.com

Grace Taylor grace.taylor@shop-corp.com

Frank Wilson frank.wilson@shop-corp.com

-- Produkte, die noch nie verkauft wurden
SELECT
 product_id,
 product_name,
 price
FROM products

EXCEPT

SELECT
 p.product_id,
 p.product_name,
 p.price
FROM products p
INNER JOIN order_items oi ON p.product_id = oi.product_id

ORDER BY product_name;

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

1

2

3

4

5

first_name last_name email



-- Produkte, die noch nie verkauft wurden

SELECT

 product_id,

 product_name,

 price

FROM products

EXCEPT

SELECT

 p.product_id,

 p.product_name,

 p.price

FROM products p

INNER JOIN order_items oi ON p.product_id = oi.product_id

ORDER BY product_name

3 rows

Ergebnis:

USB Cable, Desk Lamp und Paper wurden nie verkauft! Das ist wertvolle Business-Intelligence. Schauen wir
uns die Alternative mit LEFT JOIN an.

8 Desk Lamp 39.99

9 Paper (500 sheets) 12.99

7 USB Cable 14.99

-- Alternative: LEFT JOIN + NULL Check
SELECT
 p.product_id,
 p.product_name,
 p.price
FROM products p
LEFT JOIN order_items oi ON p.product_id = oi.product_id
WHERE oi.order_item_id IS NULL
ORDER BY p.product_name;

1
2
3
4
5
6
7
8
9

1

2

3

product_id product_name price



-- Alternative: LEFT JOIN + NULL Check

SELECT

 p.product_id,

 p.product_name,

 p.price

FROM products p

LEFT JOIN order_items oi ON p.product_id = oi.product_id

WHERE oi.order_item_id IS NULL

ORDER BY p.product_name

3 rows

Identisches Ergebnis! Welche Variante ist besser? Das hängt von der Datenbank und den Indizes ab. Bei
modernen Datenbanken sind beide meist gleich schnell.

Performance & Best Practices
SET Operations haben ihre eigenen Performance-Charakteristika. Hier sind die wichtigsten Punkte.

Performance-Matrix:

UNION Ja Ja
Nutze UNION ALL wenn
möglich

UNION ALL Nein Nein Schnellste Option

INTERSECT Ja Ja Hash-Algorithmus effizient

EXCEPT Ja Ja Anti-Join Alternative prüfen

Best Practices:

8 Desk Lamp 39.99

9 Paper (500 sheets) 12.99

7 USB Cable 14.99

Operation
Sortierung
nötig?

Deduplizierung? Performance-Tipp

1

2

3

product_id product_name price

Performance-Optimierung:

✅ UNION ALL statt UNION, wenn Duplikate OK sind

✅ Spalten-Typen kompatibel halten – implizite Konvertierungen vermeiden

✅ Indexe auf Join-Spalten setzen (bei der Alternative mit JOINs)

✅ EXPLAIN ANALYZE nutzen, um Performance zu vergleichen

⚠️ Große Mengen vorsichtig – SET Ops können Sorts auslösen

⚠️ WHERE-Filter VOR SET Ops anwenden, um Datenmenge zu reduzieren

-- ❌ Ineffizient: Große Mengen erst kombinieren, dann filtern
SELECT *
FROM (
 SELECT first_name, last_name, email FROM customers
 UNION
 SELECT first_name, last_name, email FROM employees
)
WHERE last_name LIKE 'S%'; -- Filter NACH UNION

-- ✅ Besser: Erst filtern, dann kombinieren
SELECT first_name, last_name, email
FROM customers
WHERE last_name LIKE 'S%'
UNION
SELECT first_name, last_name, email
FROM employees
WHERE last_name LIKE 'S%';

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17



-- ❌ Ineffizient: Große Mengen erst kombinieren, dann filtern

SELECT *

FROM (

 SELECT first_name, last_name, email FROM customers

 UNION

 SELECT first_name, last_name, email FROM employees

)

WHERE last_name LIKE 'S%'

2 rows

-- Filter NACH UNION

-- ✅ Besser: Erst filtern, dann kombinieren

SELECT first_name, last_name, email

FROM customers

WHERE last_name LIKE 'S%'

UNION

SELECT first_name, last_name, email

FROM employees

WHERE last_name LIKE 'S%'

2 rows

Durch frühes Filtern reduzieren wir die Datenmengen vor der UNION – das spart Ressourcen!

Teil 2: Views – Abstraktion & Wiederverwendung
Nachdem wir SET Operations gemeistert haben, kommen wir zu Views. Views lösen ein anderes Problem:
Code-Wiederverwendung und Abstraktion komplexer Queries.

Was sind Views?
Eine View ist eine gespeicherte SELECT-Query, die wie eine Tabelle abgefragt werden kann – aber keine
eigenen Daten speichert. Man nennt sie auch „virtuelle Tabelle“.

Konzept:

Alice Smith alice.smith@example.com

Alice Smith alice.smith@shop-corp.com

Alice Smith alice.smith@example.com

Alice Smith alice.smith@shop-corp.com

CREATE VIEW view_name AS
SELECT lt

1

2

1

2

first_name last_name email

first_name last_name email



Wichtige Eigenschaften:

Einfache Views erstellen
Beginnen wir mit einem einfachen Beispiel: Eine View für alle VIP-Kunden (die mehr als 500€ ausgegeben
haben).

SELECT spalten
FROM tabellen
WHERE bedingungen;

-- Dann wie eine Tabelle nutzen:
SELECT * FROM view_name;

❌ Keine Datenspeicherung – Views speichern nur die Query-Definition

✅ Immer aktuell – Daten werden bei jeder Abfrage neu gelesen

✅ Code-Wiederverwendung – Komplexe Queries einmal definieren

✅ Zugriffskontrolle – Beschränkung auf bestimmte Spalten/Zeilen

⚠️ Performance – Views sind so schnell (oder langsam) wie die zugrundeliegende Query

-- View für VIP-Kunden erstellen
CREATE VIEW vip_customers AS
SELECT
 c.customer_id,
 c.first_name,
 c.last_name,
 c.email,
 SUM(o.total_amount) AS total_spent
FROM customers c
INNER JOIN orders o ON c.customer_id = o.customer_id
GROUP BY c.customer_id, c.first_name, c.last_name, c.email
HAVING SUM(o.total_amount) > 500;

-- View abfragen
SELECT * FROM vip_customers ORDER BY total_spent DESC;

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15



-- View für VIP-Kunden erstellen

CREATE VIEW vip_customers AS

SELECT

 c.customer_id,

 c.first_name,

 c.last_name,

 c.email,

 SUM(o.total_amount) AS total_spent

FROM customers c

INNER JOIN orders o ON c.customer_id = o.customer_id

GROUP BY c.customer_id, c.first_name, c.last_name, c.email

HAVING SUM(o.total_amount) > 500

ok

-- View abfragen

SELECT * FROM vip_customers ORDER BY total_spent DESC

2 rows

Was sehen Sie?

Alice (439.96€) und Bob (999.99€) sind unsere VIP-Kunden! Die komplexe Query mit JOIN, GROUP BY und
HAVING ist jetzt in einer View gekapselt. Sie können sie beliebig oft wiederverwenden, ohne den Code zu
duplizieren.

Views weiter filtern:

Das Schöne: Sie können Views wie normale Tabellen behandeln – filtern, sortieren, joinen!

2 Bob Johnson bob.johnson@example.com 999.99

3 Carol Williams carol.williams@example.com 749.94

-- View weiter filtern
SELECT
 first_name,
 last_name,
 total_spent
FROM vip_customers
WHERE total_spent > 400
ORDER BY last_name;

1
2
3
4
5
6
7
8

1

2

customer_id first_name last_name email total_spent



-- View weiter filtern

SELECT

 first_name,

 last_name,

 total_spent

FROM vip_customers

WHERE total_spent > 400

ORDER BY last_name

2 rows

Die Datenbank kombiniert intern Ihre Filter mit der View-Definition – das nennt man „View Merging“.
Moderne Datenbanken sind hier sehr effizient!

Views für häufige Analysen
Views sind ideal, um wiederkehrende Analyse-Queries zu speichern. Schauen wir uns weitere praktische
Beispiele an.

View für Produktkategorien:

Bob Johnson 999.99

Carol Williams 749.94

-- View: Produkte mit ihren Kategorien (N:M Beziehung aufgelöst)
CREATE VIEW products_with_categories AS
SELECT
 p.product_id,
 p.product_name,
 p.price,
 c.category_name,
 c.description AS category_description
FROM products p
INNER JOIN product_categories pc ON p.product_id = pc.product_id
INNER JOIN categories c ON pc.category_id = c.category_id;

-- View nutzen
SELECT * FROM products_with_categories
ORDER BY category_name, product_name;

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

1

2

first_name last_name total_spent



-- View: Produkte mit ihren Kategorien (N:M Beziehung aufgelöst)

CREATE VIEW products_with_categories AS

SELECT

 p.product_id,

 p.product_name,

 p.price,

 c.category_name,

 c.description AS category_description

FROM products p

INNER JOIN product_categories pc ON p.product_id = pc.product_id

INNER JOIN categories c ON pc.category_id = c.category_id

ok

-- View nutzen

SELECT * FROM products_with_categories

ORDER BY category_name, product_name

3 Keyboard 79.99 Electronics Electronic devices and

accessories

1 Laptop 999.99 Electronics Electronic devices and

accessories

4 Monitor 299.99 Electronics Electronic devices and

accessories

2 Mouse 29.99 Electronics Electronic devices and

accessories

7 USB Cable 14.99 Electronics Electronic devices and

accessories

5 Desk Chair 199.99 Furniture Office and home

furniture

8 Desk Lamp 39.99 Furniture Office and home

furniture

5 Desk Chair 199.99 Office

Equipment

Printers, scanners, and

office machines

8 Desk Lamp 39.99 Office

Equipment

Printers, scanners, and

office machines

4 Monitor 299.99 Office

Equipment

Printers, scanners, and

office machines

6 Notebook 9.99 Stationery Paper products and

writing supplies

9 Paper (500

sheets)

12.99 Stationery Paper products and

writing supplies

1

2

3

4

5

6

7

8

9

10

11

12

product_id product_name price category_name category_description

12 rows

View für aktive Kunden:

-- View: Kunden mit Bestellungen in 2024

CREATE VIEW active_customers_2024 AS

SELECT DISTINCT

 c.customer_id,

 c.first_name,

 c.last_name,

 c.email,

 l.city

FROM customers c

INNER JOIN orders o ON c.customer_id = o.customer_id

INNER JOIN locations l ON c.location_id = l.location_id

WHERE EXTRACT(YEAR FROM o.order_date) = 2024

ok

-- View nutzen

SELECT * FROM active_customers_2024 ORDER BY city, last_name

4 rows

-- View: Kunden mit Bestellungen in 2024
CREATE VIEW active_customers_2024 AS
SELECT DISTINCT
 c.customer_id,
 c.first_name,
 c.last_name,
 c.email,
 l.city
FROM customers c
INNER JOIN orders o ON c.customer_id = o.customer_id
INNER JOIN locations l ON c.location_id = l.location_id
WHERE EXTRACT(YEAR FROM o.order_date) = 2024;

-- View nutzen
SELECT * FROM active_customers_2024 ORDER BY city, last_name;

1 Alice Smith alice.smith@example.com Berlin

3 Carol Williams carol.williams@example.com Berlin

2 Bob Johnson bob.johnson@example.com Hamburg

4 David Lee david.lee@example.com Munich

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

1

2

3

4

customer_id first_name last_name email city



Diese View kapselt die Logik für „aktive Kunden“ – alle Reports können sie wiederverwenden!

Views & SET Operations kombinieren
Jetzt wird es mächtig! Wir können SET Operations in Views einbetten und Views mit SET Operations
kombinieren.

View mit UNION – Alle Kontakte:

-- View: Alle Personen (Kunden + Mitarbeiter)
CREATE VIEW all_contacts AS
 SELECT
 customer_id AS person_id,
 first_name,
 last_name,
 email,
 'Customer' AS type
 FROM customers

 UNION ALL

 SELECT
 employee_id AS person_id,
 first_name,
 last_name,
 email,
 'Employee' AS type
 FROM employees;

-- View abfragen
SELECT * FROM all_contacts ORDER BY last_name, first_name;

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22



-- View: Alle Personen (Kunden + Mitarbeiter)

CREATE VIEW all_contacts AS

 SELECT

 customer_id AS person_id,

 first_name,

 last_name,

 email,

 'Customer' AS type

 FROM customers

 UNION ALL

 SELECT

 employee_id AS person_id,

 first_name,

 last_name,

 email,

 'Employee' AS type

 FROM employees

ok

-- View abfragen

SELECT * FROM all_contacts ORDER BY last_name, first_name

10 rows

Vorteil:

Die UNION-Logik ist jetzt wiederverwendbar! Jeder Report, der alle Kontakte braucht, kann einfach FROM
all_contacts selektieren.

5 Emma Brown emma.brown@example.com Customer

2 Bob Johnson bob.johnson@example.com Customer

2 David Lee david.lee@shop-corp.com Employee

4 David Lee david.lee@example.com Customer

5 Hannah Martinez hannah.martinez@shop-

corp.com

Employee

1 Alice Smith alice.smith@shop-corp.com Employee

1 Alice Smith alice.smith@example.com Customer

4 Grace Taylor grace.taylor@shop-corp.com Employee

3 Carol Williams carol.williams@example.com Customer

3 Frank Wilson frank.wilson@shop-corp.com Employee

1

2

3

4

5

6

7

8

9

10

person_id first_name last_name email type

Views kombinieren:

-- Zwei separate Views für verschiedene Analysen
CREATE VIEW customers_berlin AS
SELECT c.*, l.city
FROM customers c
INNER JOIN locations l ON c.location_id = l.location_id
WHERE l.city = 'Berlin';

CREATE VIEW employees_sales AS
SELECT *
FROM employees
WHERE department = 'Sales';

-- Views mit UNION kombinieren
SELECT first_name, last_name, 'Customer' AS type FROM customers_berli
UNION ALL
SELECT first_name, last_name, 'Employee' AS type FROM employees_sales
ORDER BY last_name;

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17



-- Zwei separate Views für verschiedene Analysen

CREATE VIEW customers_berlin AS

SELECT c.*, l.city

FROM customers c

INNER JOIN locations l ON c.location_id = l.location_id

WHERE l.city = 'Berlin'

ok

CREATE VIEW employees_sales AS

SELECT *

FROM employees

WHERE department = 'Sales'

ok

-- Views mit UNION kombinieren

SELECT first_name, last_name, 'Customer' AS type FROM customers_berlin

UNION ALL

SELECT first_name, last_name, 'Employee' AS type FROM employees_sales

ORDER BY last_name

3 rows

Alice erscheint zweimal: Als Berliner Kundin und als Sales-Mitarbeiterin. Jede View kann unabhängig
gewartet werden!

Views für Zugriffskontrolle
Ein wichtiger Use-Case für Views ist die Zugriffskontrolle. Sie können sensible Daten verbergen oder nur
bestimmte Zeilen/Spalten freigeben.

Szenario: Public vs. Internal Data

Alice Smith Customer

Alice Smith Employee

Carol Williams Customer

-- View für öffentliche Produktdaten (ohne Preise)
CREATE VIEW public_products AS
SELECT
 product_id,
 product_name
FROM products;

-- View für interne Analysten (mit Preisen)

1
2
3
4
5
6
7
8

1

2

3

first_name last_name type



CREATE VIEW internal_products AS
SELECT
 product_id,
 product_name,
 price
FROM products;

-- Externe API würde nur public_products sehen:
SELECT * FROM public_products;

9
10
11
12
13
14
15
16
17

-- View für öffentliche Produktdaten (ohne Preise)

CREATE VIEW public_products AS

SELECT

 product_id,

 product_name

FROM products

ok

-- View für interne Analysten (mit Preisen)

CREATE VIEW internal_products AS

SELECT

 product_id,

 product_name,

 price

FROM products

ok

-- Externe API würde nur public_products sehen:

SELECT * FROM public_products

9 rows

Zugriffskontrolle in Praxis:

In echten Systemen würden Sie Datenbank-Permissions setzen: Externe User bekommen nur Zugriff auf
publicproducts, interne auf internalproducts. Die Basistabelle products bleibt geschützt!

View für gefilterte Daten:

1 Laptop

2 Mouse

3 Keyboard

4 Monitor

5 Desk Chair

6 Notebook

7 USB Cable

8 Desk Lamp

9 Paper (500 sheets)

-- View: Nur abgeschlossene Bestellungen
CREATE VIEW delivered_orders AS
SELECT

1
2
3

1

2

3

4

5

6

7

8

9

product_id product_name



-- View: Nur abgeschlossene Bestellungen

CREATE VIEW delivered_orders AS

SELECT

 order_id,

 customer_id,

 order_date,

 total_amount

FROM orders

WHERE status = 'delivered'

ok

-- Reports nutzen nur gelieferte Bestellungen

SELECT * FROM delivered_orders

4 rows

Der Report-User sieht nur fertige Bestellungen – egal ob versehentlich oder absichtlich, unfertige
Bestellungen sind nicht zugänglich.

Views verwalten
Wie erstellt, ändert und löscht man Views? Hier die wichtigsten Operationen.

View erstellen oder ersetzen:

SELECT
 order_id,
 customer_id,
 order_date,
 total_amount
FROM orders
WHERE status = 'delivered';

-- Reports nutzen nur gelieferte Bestellungen
SELECT * FROM delivered_orders;

101 1 2024-01-15 299.99

102 1 2024-02-20 139.97

103 2 2024-01-22 999.99

105 4 2024-02-10 199.99

-- Neue View erstellen
CREATE VIEW my_view AS SELECT ...;

-- View ersetzen (falls existiert)
In PGlite: DROP + CREATE

3
4
5
6
7
8
9
10
11
12

1

2

3

4

order_id customer_id order_date total_amount



View löschen:

Best Practices für View-Management:

Materialized Views – Performance durch Caching
Standard-Views sind virtuelle Tabellen ohne eigene Datenspeicherung. Bei jeder Abfrage wird die
zugrundeliegende Query neu ausgeführt. Materialized Views hingegen speichern das Ergebnis physisch – wie
ein Snapshot.

Materialized View erstellen:

-- In PGlite: DROP + CREATE
DROP VIEW IF EXISTS my_view;
CREATE VIEW my_view AS SELECT ...;

-- View löschen
DROP VIEW IF EXISTS my_view;

-- Mehrere Views löschen
DROP VIEW IF EXISTS view1, view2, view3;

✅ Benennungskonvention nutzen (z.B. vw_ Präfix oder _view Suffix)

✅ Views dokumentieren (Kommentare im SQL, README)

✅ Views versionieren (wie Code in Git)

✅ Views testen mit realistischen Datenmengen

⚠️ View-Hierarchien begrenzen (max. 2-3 Ebenen)

⚠️ Verwaiste Views vermeiden (regelmäßig aufräumen)

CREATE VIEW vw_vip_customers AS
SELECT
 c.customer_id,
 c.first_name,
 c.last_name,
 SUM(o.total_amount) AS total_spent
FROM customers c
INNER JOIN orders o ON c.customer_id = o.customer_id
GROUP BY c.customer_id, c.first_name, c.last_name
HAVING SUM(o.total_amount) > 500;

-- Materialized View für VIP-Kunden (Ausgaben > 500€)
CREATE MATERIALIZED VIEW mv_vip_customers AS
SELECT * FROM vw_vip_customers;

-- Abfragen wie eine normale Tabelle
SELECT * FROM mv_vip_customers ORDER BY total_spent DESC;

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17





CREATE VIEW vw_vip_customers AS

SELECT

 c.customer_id,

 c.first_name,

 c.last_name,

 SUM(o.total_amount) AS total_spent

FROM customers c

INNER JOIN orders o ON c.customer_id = o.customer_id

GROUP BY c.customer_id, c.first_name, c.last_name

HAVING SUM(o.total_amount) > 500

ok

-- Materialized View für VIP-Kunden (Ausgaben > 500€)

CREATE MATERIALIZED VIEW mv_vip_customers AS

SELECT * FROM vw_vip_customers

ok

-- Abfragen wie eine normale Tabelle

SELECT * FROM mv_vip_customers ORDER BY total_spent DESC

2 rows

Alice und Bob sind unsere VIP-Kunden mit 439.96€ und 999.99€! Die Daten sind jetzt physisch gespeichert –
nicht nur als Query-Definition.

Das Problem: Veraltete Daten nach Updates

Fügen wir eine neue Bestellung für Alice hinzu – was passiert mit der Materialized View?

2 Bob Johnson 999.99

3 Carol Williams 749.94

-- Neue Bestellung für Alice (wird zum VIP)
INSERT INTO orders(order_id, customer_id, order_date, total_amount, st
VALUES (106, 1, '2024-03-20', 199.99, 'delivered');

-- Prüfe direkt in orders: Alice hat jetzt mehr ausgegeben
SELECT * FROM vw_vip_customers;

-- ABER: Materialized View zeigt noch alte Werte!
SELECT * FROM mv_vip_customers;

1
2
3
4
5
6
7
8
9

1

2

customer_id first_name last_name total_spent



-- Neue Bestellung für Alice (wird zum VIP)

INSERT INTO orders(order_id, customer_id, order_date, total_amount, status)

VALUES (106, 1, '2024-03-20', 199.99, 'delivered')

ok

-- Prüfe direkt in orders: Alice hat jetzt mehr ausgegeben

SELECT * FROM vw_vip_customers

3 rows

-- ABER: Materialized View zeigt noch alte Werte!

SELECT * FROM mv_vip_customers

2 rows

Sehen Sie das Problem? Die echte Abfrage zeigt 639.95€ für Alice, aber die Materialized View zeigt noch
439.96€! Materialized Views werden NICHT automatisch aktualisiert.

Lösung: REFRESH MATERIALIZED VIEW

1 Alice Smith 639.95

2 Bob Johnson 999.99

3 Carol Williams 749.94

2 Bob Johnson 999.99

3 Carol Williams 749.94

-- Materialized View manuell aktualisieren
REFRESH MATERIALIZED VIEW mv_vip_customers;

-- Jetzt sind die Daten aktuell!
SELECT * FROM mv_vip_customers ORDER BY total_spent DESC;

1
2
3
4
5

1

2

3

1

2

customer_id first_name last_name total_spent

customer_id first_name last_name total_spent



-- Materialized View manuell aktualisieren

REFRESH MATERIALIZED VIEW mv_vip_customers

ok

-- Jetzt sind die Daten aktuell!

SELECT * FROM mv_vip_customers ORDER BY total_spent DESC

3 rows

Nach dem REFRESH zeigt die Materialized View die aktuellen Werte! Alice hat jetzt 639.95€ insgesamt.

Performance-Überlegungen
Views sind praktisch, aber haben Performance-Implikationen. Hier die wichtigsten Punkte.

Performance-Fakten:

Wann Views langsam werden:

Komplexe Aggregationen Langsame Abfragen Materialized View erwägen

Viele Joins (5+) Lange Laufzeit Query-Optimierung, Indexe

Views auf Views (tief) Verschachtelte Executions Flachere Hierarchie

Große Datenmengen Timeouts WHERE-Filter, Partitionierung

Performance prüfen:

2 Bob Johnson 999.99

3 Carol Williams 749.94

1 Alice Smith 639.95

Views speichern keine Daten → kein zusätzlicher Speicher

Views nutzen Indexe der Basistabellen → keine eigenen Indexe

Views werden bei jeder Abfrage neu ausgeführt → keine Caching

Moderne DBs nutzen View Merging → Filter werden optimiert

-- Query Plan für View analysieren

Problem Symptom Lösung

1

1

2

3

customer_id first_name last_name total_spent



-- Query Plan für View analysieren

EXPLAIN QUERY PLAN

SELECT * FROM vip_customers WHERE total_spent > 400

syntax error at or near "QUERY"

Der Query Plan zeigt Ihnen, wie die Datenbank die View-Query + Ihre Filter kombiniert. Achten Sie auf Index-
Nutzung und Scan-Methoden!

Teil 3: Praktische Patterns & Best Practices
Jetzt, wo Sie beide Konzepte kennen, schauen wir uns praktische Patterns an, die SET Operations und Views
kombinieren.

Pattern 1: Layered Views
Strukturieren Sie Views in logischen Schichten – von Basis-Views bis zu Business-Logic-Views.

EXPLAIN QUERY PLAN
SELECT * FROM vip_customers WHERE total_spent > 400;

-- Layer 1: Basis-Views (direkte Tabellenzugriffe)
CREATE VIEW base_customers AS
SELECT customer_id, first_name, last_name, email, location_id
FROM customers;

CREATE VIEW base_employees AS
SELECT employee_id, first_name, last_name, email, department
FROM employees;

-- Layer 2: Business-Logic Views
CREATE VIEW all_persons AS
 SELECT
 customer_id AS person_id,
 first_name,
 last_name,
 email,
 'Customer' AS type,
 NULL AS department
 FROM base_customers
 UNION ALL
 SELECT
 employee_id AS person_id,
 first_name,
 last_name,
 email,
 'Employee' AS type,
 department
 FROM base_employees;

2
3

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28



-- Layer 3: Report-Views (User-facing)
CREATE VIEW berlin_persons AS
SELECT p.*
FROM all_persons p
WHERE type = 'Customer'
 AND person_id IN (
 SELECT customer_id FROM customers c
 INNER JOIN locations l ON c.location_id = l.location_id
 WHERE l.city = 'Berlin'
);

-- Reports nutzen Layer 3
SELECT * FROM berlin_persons;

29
30
31
32
33
34
35
36
37
38
39
40
41
42

-- Layer 1: Basis-Views (direkte Tabellenzugriffe)

CREATE VIEW base_customers AS

SELECT customer_id, first_name, last_name, email, location_id

FROM customers

ok

CREATE VIEW base_employees AS

SELECT employee_id, first_name, last_name, email, department

FROM employees

ok

-- Layer 2: Business-Logic Views

CREATE VIEW all_persons AS

 SELECT

 customer_id AS person_id,

 first_name,

 last_name,

 email,

 'Customer' AS type,

 NULL AS department

 FROM base_customers

 UNION ALL

 SELECT

 employee_id AS person_id,

 first_name,

 last_name,

 email,

 'Employee' AS type,

 department

 FROM base_employees

ok

-- Layer 3: Report-Views (User-facing)

CREATE VIEW berlin_persons AS

SELECT p.*

FROM all_persons p

WHERE type = 'Customer'

 AND person_id IN (

 SELECT customer_id FROM customers c

 INNER JOIN locations l ON c.location_id = l.location_id

 WHERE l.city = 'Berlin'

)

ok

-- Reports nutzen Layer 3

SELECT * FROM berlin_persons

2 rows

Diese Architektur ist wartbar: Änderungen in Layer 1 propagieren automatisch nach oben, jede Schicht hat
eine klare Verantwortung!

Pattern 2: Views für Data Quality
Nutzen Sie Views, um Datenqualitäts-Regeln zentral zu definieren.

1 Alice Smith alice.smith@example.com Customer null

3 Carol Williams carol.williams@example.com Customer null

-- View: Nur valide Bestellungen
CREATE VIEW valid_orders AS
SELECT
 o.*,
 c.first_name,
 c.last_name
FROM orders o
INNER JOIN customers c ON o.customer_id = c.customer_id
WHERE o.total_amount > 0
 AND o.order_date IS NOT NULL
 AND o.status IN ('processing', 'delivered', 'shipped');

-- Alle Reports nutzen nur valide Daten
SELECT * FROM valid_orders;

1
2
3
4
5
6
7
8
9
10
11
12
13
14

1

2

person_id first_name last_name email type departme



-- View: Nur valide Bestellungen

CREATE VIEW valid_orders AS

SELECT

 o.*,

 c.first_name,

 c.last_name

FROM orders o

INNER JOIN customers c ON o.customer_id = c.customer_id

WHERE o.total_amount > 0

 AND o.order_date IS NOT NULL

 AND o.status IN ('processing', 'delivered', 'shipped')

ok

-- Alle Reports nutzen nur valide Daten

SELECT * FROM valid_orders

6 rows

Data-Quality-Regeln sind jetzt zentral! Ändern Sie die Definition in der View, und alle abhängigen Queries
nutzen automatisch die neuen Regeln.

Pattern 3: Views als API-Schicht
Views können als stabile API für externe Systeme dienen – auch wenn sich das interne Schema ändert.

101 1 2024-01-15 299.99 delivered Alice Smith

102 1 2024-02-20 139.97 delivered Alice Smith

103 2 2024-01-22 999.99 delivered Bob Johnson

104 3 2024-03-01 749.94 processing Carol Williams

105 4 2024-02-10 199.99 delivered David Lee

106 1 2024-03-20 199.99 delivered Alice Smith

-- API-View: Stabile Schnittstelle für externe Systeme
CREATE VIEW api_products AS
SELECT
 product_id AS id,
 product_name AS name,
 price,
 CASE
 WHEN price < 50 THEN 'Budget'
 WHEN price < 200 THEN 'Mid-Range'
 ELSE 'Premium'
 END AS price_category
FROM products;

1
2
3
4
5
6
7
8
9
10
11
12

1

2

3

4

5

6

order_id customer_id order_date total_amount status first_name last_nam



-- API-View: Stabile Schnittstelle für externe Systeme

CREATE VIEW api_products AS

SELECT

 product_id AS id,

 product_name AS name,

 price,

 CASE

 WHEN price < 50 THEN 'Budget'

 WHEN price < 200 THEN 'Mid-Range'

 ELSE 'Premium'

 END AS price_category

FROM products

ok

-- Externe API liest nur aus dieser View

SELECT * FROM api_products

9 rows

Wenn Sie später die products-Tabelle umbenennen oder umstrukturieren, müssen Sie nur die View anpassen
– externe Systeme merken nichts!

Vergleichstabelle: Wann was?
Fassen wir zusammen: Wann nutzen Sie SET Operations, wann Views?

FROM products;

-- Externe API liest nur aus dieser View
SELECT * FROM api_products;

1 Laptop 999.99 Premium

2 Mouse 29.99 Budget

3 Keyboard 79.99 Mid-Range

4 Monitor 299.99 Premium

5 Desk Chair 199.99 Mid-Range

6 Notebook 9.99 Budget

7 USB Cable 14.99 Budget

8 Desk Lamp 39.99 Budget

9 Paper (500 sheets) 12.99 Budget

12
13
14
15

1

2

3

4

5

6

7

8

9

id name price price_category

Zwei Listen kombinieren UNION / UNION ALL Mengenvereinigung

Überschneidungen finden INTERSECT Schnittmenge

Exklusive Elemente finden
EXCEPT oder LEFT JOIN +
NULL

Differenz

Query wiederverwenden VIEW Code-Reuse

Komplexe Query kapseln VIEW Abstraktion

Zugriffskontrolle VIEW
Spalten/Zeilen
beschränken

SET Ops wiederverwenden VIEW mit SET Ops Beste aus beiden Welten

Performance bei teuren
Queries

Materialized View (andere
DBs)

Caching

Best Practices Cheat Sheet
Abschließend die wichtigsten Best Practices auf einen Blick.

DO's:

DON'Ts:

✅ Nutze UNION ALL statt UNION, wenn Duplikate OK sind

✅ Nutze Views für wiederverwendbare Queries

✅ Nutze klare Benennungskonventionen (vw_ , _view)

✅ Dokumentiere Views (Zweck, Author, Datum)

✅ Nutze Views für Zugriffskontrolle

✅ Kombiniere SET Ops und Views für Flexibilität

✅ Teste Performance mit realistischen Datenmengen

✅ Nutze WHERE-Filter VOR SET Ops (Performance)

Anforderung Empfehlung Begründung

Wrap-up & Zusammenfassung
Fassen wir zusammen, was Sie heute gelernt haben.

SET Operations:

Views:

Kombinationen:

Pro-Tipp für Ihre Projekte: Beginnen Sie früh mit Views für häufige Analysen. Das spart später enorm
Zeit und reduziert Bugs durch Code-Duplikation!

Referenzen & Weiterführendes:

❌ Keine tiefen View-Hierarchien (max. 2-3 Ebenen)

❌ Kein SELECT * in View-Definitionen (Wartbarkeit)

❌ Keine vergessenen Views (View Sprawl)

❌ Kein UNION, wenn UNION ALL reicht

❌ Keine INTERSECT/EXCEPT, wenn JOIN lesbarer ist

❌ Keine ungetesteten Views in Produktion

UNION kombiniert Listen (mit oder ohne Duplikate)

INTERSECT findet Gemeinsamkeiten

EXCEPT findet Unterschiede

Performance: UNION ALL > UNION, Filter vorher anwenden

Virtuelle Tabellen ohne Datenspeicherung

Code-Wiederverwendung und Abstraktion

Zugriffskontrolle und API-Schicht

Performance = Basistabellen-Performance

Views können SET Operations enthalten

Views können mit SET Operations kombiniert werden

Layered Architecture möglich

SQL Standards: ISO/IEC 9075 (SET Operations seit SQL-92)

PostgreSQL Views Dokumentation

SQL Performance Explained (Markus Winand)

Database Design Patterns (Fowler et al.)

