L13: Advanced SQL - SET Operations & Views

Session 13 - Lecture Dauer: 90 Minuten Lernziele: LZ 2 (Relationale DB & SQL praktisch anwenden)
Block: 3 - SQL Vertiefung

Willkommen zur dreizehnten Session! In den letzten Sessions haben Sie gelernt, wie man Daten mit Joins
kombiniert, Aggregationen durchfiihrt und mit Subqueries arbeitet. Heute erweitern wir Ihr SQL-Toolkit um
zwei machtige Konzepte: SET Operations und Views.

SET Operations erlauben es uns, Ergebnismengen mathematisch zu kombinieren - wie Vereinigung,
Schnittmenge und Differenz aus der Mengenlehre. Views hingegen geben uns die Moglichkeit, komplexe

Queries als wiederverwendbare virtuelle Tabellen zu speichern.

Wir arbeiten heute mit unserem bekannten E-Commerce-Schema aus Session 10 und erweitern es um eine
neue Tabelle: Mitarbeiter. Denn stellen Sie sich vor: Einige lhrer Mitarbeiter bestellen auch privat im Shop -
und genau hier kommen SET Operations ins Spiel!

Datenbank-Setup: Online-Shop erweitert

Bevor wir loslegen, initialisieren wir unsere Datenbank. Wir nutzen das bekannte E-Commerce-Schema und
fligen eine neue Tabelle hinzu: Mitarbeiter.

1 -- Locations: Normalisierte Orte mit PLZ
2+ CREATE TABLE locations (

3 location_id INTEGER PRIMARY KEY,

4 city TEXT NOT NULL,

5 postal_code TEXT NOT NULL,

6 country TEXT DEFAULT 'Germany'

705

8
9 -- Categories: Normalisierte Produktkategorien

10~ CREATE TABLE categories (

11 category_id INTEGER PRIMARY KEY,

12 category_name TEXT NOT NULL UNIQUE,

13 description TEXT

14)

15

16 -- Customers: Erweitert mit strukturierten Adressdaten
17 - CREATE TABLE customers (

18 customer_id INTEGER PRIMARY KEY,

19 first_name TEXT NOT NULL,

20 last_name TEXT NOT NULL,

21 email TEXT UNIQUE,

22 street TEXT,

23 street_number TEXT,

24 location_id INTEGER REFERENCES locations(location_id)

= = \ .

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
a7
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75

)

—-- Orders: Kundenbestellungen
= CREATE TABLE orders (

)3

order_id INTEGER PRIMARY KEY,

customer_id INTEGER REFERENCES customers(customer_id),
order_date DATE,

total_amount DECIMAL(10,2),

status TEXT

-— Products: Produktkatalog
= CREATE TABLE products (

)5

product_id INTEGER PRIMARY KEY,
product_name TEXT NOT NULL,
price DECIMAL(10,2)

-- Product_Categories: N:M Beziehung zwischen Produkten und Kategori
= CREATE TABLE product_categories (

)3

product_id INTEGER REFERENCES products(product_id),
category_id INTEGER REFERENCES categories(category_id),
PRIMARY KEY (product_id, category_-id)

-— Order_Items: Bestellpositionen
~ CREATE TABLE order_items (

)5

order_item_id INTEGER PRIMARY KEY,

order_id INTEGER REFERENCES orders(order_id),
product_id INTEGER REFERENCES products(product_id),
quantity INTEGER,

line_total DECIMAL(10,2)

-— NEU: Employees - Mitarbeitertabelle
= CREATE TABLE employees (

)3

employee_id INTEGER PRIMARY KEY,
first_name TEXT NOT NULL,
last_name TEXT NOT NULL,

email TEXT UNIQUE,

department TEXT,

hire_date DATE

-— Sample Data: Locations
INSERT INTO locations(location_id, city, postal_code, country)

(1, 'Berlin', '10115', 'Germany'),
(2, '"Hamburg', '20095', 'Germany'),
(3, '"Munich', '80331', 'Germany'),
(4, 'Cologne', '50667', 'Germany');

VALUE

76
77
78
79
80
81
82
83
84

85

86
87

88
89
90
91
92

93

94
95

96

97

98
99
100

101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117

—-- Sample Data: Categories
INSERT INTO categories(category_id, category_name, description) VALU
(1, 'Electronics', 'Electronic devices and accessories'),
(2, 'Furniture', 'Office and home furniture'),
(3, 'Stationery', 'Paper products and writing supplies'),
(4, 'Office Equipment', 'Printers, scanners, and office machines')

-— Sample Data: Customers (erweitert)

INSERT INTO customers(customer_id, first_name, last_name, email, stn

street_number, location_id) VALUES

(1, 'Alice', 'Smith', 'alice.smith@example.com', 'Main Street', '4

)

(2, 'Bob', 'Johnson', 'bob.johnson@example.com', 'Oak Avenue', '15

(3, 'Carol', '"Williams', 'carol.williams@example.com', 'Elm Road',
1),

(4, 'David', 'Lee', 'david.lee@example.com', 'Maple Lane', '23', 3

(5, 'Emma', 'Brown', 'emma.brown@example.com', 'Pine Street', '7',

-- Sample Data: Employees (einige Uberlappen mit Customers!)
INSERT INTO employees(employee_id, first_name, last_name, email,
department, hire_date) VALUES
(1, 'Alice', 'Smith', 'alice.smith@shop-corp.com', 'Sales', '2020+
)
(2, 'David', 'Lee', 'david.lee@shop-corp.com', 'IT', '2019-07-01")
(3, '"Frank', 'Wilson', 'frank.wilson@shop-corp.com', 'HR', '2021-1
)
(4, 'Grace', 'Taylor', 'grace.taylor@shop-corp.com', 'Marketing',
-02-14"),
(5, 'Hannah', 'Martinez', 'hannah.martinez@shop-corp.com', 'Finang
'2020-09-10");

-— Sample Data: Orders
INSERT INTO orders(order_id, customer_id, order_date, total_amount,
) VALUES
(1601, 1, '2024-01-15', 299.99, 'delivered'),
(102, 1, '2024-02-20', 139.97, 'delivered'),
(163, 2, '2024-01-22', 999.99, 'delivered'),
(104, 3, '2024-03-01', 749.94, 'processing'),
(105, 4, '2024-02-10', 199.99, 'delivered');

-— Sample Data: Products
INSERT INTO products(product_id, product_name, price) VALUES
(1, 'Laptop', 999.99),
(2, 'Mouse', 29.99),
(3, 'Keyboard', 79.99),
(4, 'Monitor', 299.99),
(5, 'Desk Chair', 199.99),
(6, 'Notebook', 9.99),
(7, 'USB Cable', 14.99),
(8, 'Desk Lamp', 39.99),
(9, 'Paper (500 sheets)', 12.99);

118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135

136
137
138
113G
140
141
142

-- Sample Data:
INSERT INTO product categories(product_id,

(1,

(2,
(3,
(4,
(4,
(5,
(5,
(6,
(7,
(8,
(8,
(9,

1),
1),
1),
1),
4),
2),
4),
3),
1),
2),
4),
3);

-— Sample

Data:
INSERT INTO order_items(order_item_did,

line_total)

(1,
(2,
(3,
(4,
(5,
(6,
(7,

101,
102,
102,
103,
104,
104,
105,

4,

)

)

-

-

ag o WwN

-

Product Categories (N:M Beziehungen)

Laptop - Electronics

Mouse - Electronics

Keyboard - Electronics
Monitor - Electronics
Monitor - Office Equipment
Desk Chair - Furniture

Desk Chair - Office Equipment
Notebook - Stationery

USB Cable - Electronics

Desk Lamp - Furniture

Desk Lamp - Office Equipment
Paper - Stationery

Order Items

VALUES
1, 299.99),
2, 59.98),
, 79.99),
, 999.99),
49.95),
, 199.99),
, 199.99);

[SIS, B
-

category_id) VALUES

order_id, product_id, quantit

-- Locations: Normalisierte Orte mit PLZ
CREATE TABLE locations (
location_id INTEGER PRIMARY KEY,
city TEXT NOT NULL,
postal_code TEXT NOT NULL,
country TEXT DEFAULT 'Germany'
)

ok

-- Categories: Normalisierte Produktkategorien
CREATE TABLE categories (
category_id INTEGER PRIMARY KEY,
category name TEXT NOT NULL UNIQUE,
description TEXT
)

ok

-- Customers: Erweitert mit strukturierten Adressdaten
CREATE TABLE customers (

customer_id INTEGER PRIMARY KEY,

first_name TEXT NOT NULL,

last_name TEXT NOT NULL,

email TEXT UNIQUE,

street TEXT,

street_number TEXT,

location_id INTEGER REFERENCES locations(location_id)

-- Orders: Kundenbestellungen
CREATE TABLE orders (
order_id INTEGER PRIMARY KEY,
customer_id INTEGER REFERENCES customers(customer_id),
order_date DATE,
total_amount DECIMAL(10,2),
status TEXT

-- Products: Produktkatalog

CREATE TABLE products (
product_id INTEGER PRIMARY KEY,
product_ name TEXT NOT NULL,
price DECIMAL(10,2)

)

ok

-- Product_Categories: N:M Beziehung zwischen Produkten und Kategorien
CREATE TABLE product_categories (

product_id INTEGER REFERENCES products(product_id),

category_id INTEGER REFERENCES categories(category_id),

PRIMARY KEY (product_id, category_id)

)

ok

-- Order_Items: Bestellpositionen

CREATE TABLE order_items (
order_item_id INTEGER PRIMARY KEY,
order_id INTEGER REFERENCES orders(order_id),
product_id INTEGER REFERENCES products(product_id),
quantity INTEGER,
line_total DECIMAL(10,2)

-- NEU: Employees - Mitarbeitertabelle
CREATE TABLE employees (
employee_id INTEGER PRIMARY KEY,
first_name TEXT NOT NULL,
last_name TEXT NOT NULL,
email TEXT UNIQUE,
department TEXT,
hire_date DATE

-- Sample Data: Locations
INSERT INTO locations(location_id, city, postal_code, country) VALUES
(1, 'Berlin’, '10115', 'Germany'),
(2, '"Hamburg', '20095', 'Germany'),
(3, 'Munich’, '80331', 'Germany'),
(4, 'Cologne’, '50667', 'Germany')

ok

-- Sample Data: Categories
INSERT INTO categories(category_id, category_name, description) VALUES
(1, 'Electronics’, 'Electronic devices and accessories'),
(2, 'Furniture’, 'Office and home furniture'),
(3, 'Stationery’, 'Paper products and writing supplies'),
(4, 'Office Equipment’, 'Printers, scanners, and office machines')

ok

-- Sample Data: Customers (erweitert)
INSERT INTO customers(customer_id, first_ name, last nhame, email, street,
street_number, location_id) VALUES
(1, 'Alice’, 'Smith’, 'alice.smith@example.com’, 'Main Street’, '42', 1),
(2, 'Bob’, 'Johnson’, 'bob.johnson@example.com’, 'Oak Avenue', '15', 2),
(3, 'Carol', 'Williams', 'carol.williams@example.com’, 'EIm Road’, '8', 1),
(4, 'David’, 'Lee’, 'david.lee@example.com’, 'Maple Lane', '23', 3),
(5, 'Emma’, 'Brown’', 'emma.brown@example.com’, 'Pine Street', '7', 4)

-- Sample Data: Employees (einige iiberlappen mit Customers!)
INSERT INTO employees(employee_id, first_name, last_name, email, department,
hire_date) VALUES

(1, 'Alice’, 'Smith’, 'alice.smith@shop-corp.com’, 'Sales’, '2020-03-15'),

(2, 'David’, 'Lee’, 'david.lee@shop-corp.com’, 'IT', '2019-07-01'),

(3, 'Frank', 'Wilson', 'frank.wilson@shop-corp.com’, 'HR', '2021-11-20'),

(4, 'Grace’, 'Taylor’, 'grace.taylor@shop-corp.com’, ‘Marketing’', '2022-02-14"),

(5, '"Hannah', 'Martinez', 'hannah.martinez@shop-corp.com’, 'Finance’, '2020-09-10")

-- Sample Data: Orders
INSERT INTO orders(order_id, customer_id, order_date, total amount, status) VALUES
(101, 1, '2024-01-15', 299.99, 'delivered'),
(102, 1, '2024-02-20', 139.97, 'delivered’),
(103, 2, '2024-01-22', 999.99, 'delivered’),
(104, 3, '2024-03-01', 749.94, 'processing'),
(105, 4, '2024-02-10', 199.99, 'delivered')

-- Sample Data: Products
INSERT INTO products(product_id, product_name, price) VALUES

(1, 'Laptop’, 999.99),

(2, 'Mouse', 29.99),

(3, 'Keyboard', 79.99),

(4, 'Monitor’, 299.99),

(5, 'Desk Chair', 199.99),

(6, 'Notebook', 9.99),

(7, 'USB Cable’', 14.99),

(8, 'Desk Lamp’, 39.99),

(9, 'Paper (500 sheets)’, 12.99)

-- Sample Data: Product Categories (N:M Beziehungen)
INSERT INTO product_categories(product_id, category_id) VALUES

(1, 1), -- Laptop — Electronics

(2, 1), -- Mouse - Electronics

(3, 1), -- Keyboard - Electronics

(4, 1), -- Monitor - Electronics

(4, 4), -- Monitor - Office Equipment

(5, 2), -- Desk Chair - Furniture

(5, 4), -- Desk Chair - Office Equipment

(6, 3), -- Notebook - Stationery

(7, 1), -- USB Cable — Electronics

(8, 2), -- Desk Lamp - Furniture

(8, 4), -- Desk Lamp - Office Equipment

(9, 3)

-- Paper - Stationery

-- Sample Data: Order Items
INSERT INTO order_items(order_item_id, order_id, product_id, quantity, line_total)
VALUES

(1, 101, 4, 1, 299.99),

(2, 102, 2, 2, 59.98),

(3,102, 3,1, 79.99),

(4, 103, 1, 1, 999.99),

(5, 104, 6, 5, 49.95),

(6, 104, 5, 1, 199.99),

(7, 105, 5, 1, 199.99)

Schema-Ubersicht:

amplagea i 0 it
firm_name varchar KN
law_nams varchar KR
=mai G
deparimam
hira_dws
.
Incation id o it
city varcher KN
poaial_cods varchr KN
couniry O
==
categary id 1 g
eaisgary_ nams varchar HH
description varchar
EE
pradhxt kK& ist
produci name sarchar w

Beachten Sie die neue Employees-Tabelle! Alice Smith und David Lee sind sowohl Kunden als auch

cuntomer id ¢
Arm_nams

law:_nams

varcher Wi

varchnr HH

dbdiagram.io

ardar id oo Lat
umnresr_id §

arder_dais Eaks
soial_smosm eacimal (18, 2

GD dbdiagram

Mitarbeiter - das werden wir gleich nutzen, um SET Operations zu demonstrieren.

Motivation & Kontext

Stellen Sie sich folgende Business-Szenarien vor:

Szenario 1: Newsletter-Kampagne

arder_lism_i
ardar i1 P
produet_id
quaniiy

Iina_ioal

Ihr Marketing-Team mdchte einen Newsletter versenden - an ALLE Personen in lhrer Datenbank: Kunden

UND Mitarbeiter. Wie kombinieren Sie diese beiden Listen effizient?

Szenario 2: Mitarbeiter-Rabatt-Programm

Sie mochten herausfinden, welche Mitarbeiter AUCH als Kunden bei Ihnen einkaufen, um ihnen spezielle
Mitarbeiter-Rabatte anzubieten. Wie identifizieren Sie Uberschneidungen?

Szenario 3: Komplexe Analysen wiederverwenden

https://dbdiagram.io/
https://dbdiagram.io/embed?c=VGFibGUgbG9jYXRpb25zIHsKICBsb2NhdGlvbl9pZCBpbnQgW3BrXQogIGNpdHkgdmFyY2hhciBbbm90IG51bGxdCiAgcG9zdGFsX2NvZGUgdmFyY2hhciBbbm90IG51bGxdCiAgY291bnRyeSB2YXJjaGFyIFtkZWZhdWx0OiAnR2VybWFueSddCn0KClRhYmxlIGNhdGVnb3JpZXMgewogIGNhdGVnb3J5X2lkIGludCBbcGtdCiAgY2F0ZWdvcnlfbmFtZSB2YXJjaGFyIFtub3QgbnVsbCwgdW5pcXVlXQogIGRlc2NyaXB0aW9uIHZhcmNoYXIKfQoKVGFibGUgY3VzdG9tZXJzIHsKICBjdXN0b21lcl9pZCBpbnQgW3BrXQogIGZpcnN0X25hbWUgdmFyY2hhciBbbm90IG51bGxdCiAgbGFzdF9uYW1lIHZhcmNoYXIgW25vdCBudWxsXQogIGVtYWlsIHZhcmNoYXIgW3VuaXF1ZV0KICBzdHJlZXQgdmFyY2hhcgogIHN0cmVldF9udW1iZXIgdmFyY2hhcgogIGxvY2F0aW9uX2lkIGludCBbcmVmOiA%2BIGxvY2F0aW9ucy5sb2NhdGlvbl9pZF0KfQoKVGFibGUgZW1wbG95ZWVzIHsKICBlbXBsb3llZV9pZCBpbnQgW3BrXQogIGZpcnN0X25hbWUgdmFyY2hhciBbbm90IG51bGxdCiAgbGFzdF9uYW1lIHZhcmNoYXIgW25vdCBudWxsXQogIGVtYWlsIHZhcmNoYXIgW3VuaXF1ZV0KICBkZXBhcnRtZW50IHZhcmNoYXIKICBoaXJlX2RhdGUgZGF0ZQogIE5vdGU6ICJFaW5pZ2UgTWl0YXJiZWl0ZXIgc2luZCBhdWNoIEt1bmRlbiEiCn0KClRhYmxlIG9yZGVycyB7CiAgb3JkZXJfaWQgaW50IFtwa10KICBjdXN0b21lcl9pZCBpbnQgW3JlZjogPiBjdXN0b21lcnMuY3VzdG9tZXJfaWRdCiAgb3JkZXJfZGF0ZSBkYXRlCiAgdG90YWxfYW1vdW50IGRlY2ltYWwoMTAsMikKICBzdGF0dXMgdmFyY2hhcgp9CgpUYWJsZSBwcm9kdWN0cyB7CiAgcHJvZHVjdF9pZCBpbnQgW3BrXQogIHByb2R1Y3RfbmFtZSB2YXJjaGFyIFtub3QgbnVsbF0KICBwcmljZSBkZWNpbWFsKDEwLDIpCn0KClRhYmxlIHByb2R1Y3RfY2F0ZWdvcmllcyB7CiAgcHJvZHVjdF9pZCBpbnQgW3JlZjogPiBwcm9kdWN0cy5wcm9kdWN0X2lkXQogIGNhdGVnb3J5X2lkIGludCBbcmVmOiA%2BIGNhdGVnb3JpZXMuY2F0ZWdvcnlfaWRdCiAgaW5kZXhlcyB7CiAgICAocHJvZHVjdF9pZCwgY2F0ZWdvcnlfaWQpIFtwa10KICB9Cn0KClRhYmxlIG9yZGVyX2l0ZW1zIHsKICBvcmRlcl9pdGVtX2lkIGludCBbcGtdCiAgb3JkZXJfaWQgaW50IFtyZWY6ID4gb3JkZXJzLm9yZGVyX2lkXQogIHByb2R1Y3RfaWQgaW50IFtyZWY6ID4gcHJvZHVjdHMucHJvZHVjdF9pZF0KICBxdWFudGl0eSBpbnQKICBsaW5lX3RvdGFsIGRlY2ltYWwoMTAsMikKfQ%3D%3D

Ihre Analyse-Queries fiir ,VIP-Kunden“ und ,,Aktive Kunden“ werden immer l[anger und miissen in mehreren
Reports verwendet werden. Wie vermeiden Sie Code-Duplikation?

Die Antworten liegen in zwei machtigen SQL-Features: SET Operations fiir Mengen-Kombinationen und Views
flr Query-Wiederverwendung. Beginnen wir mit SET Operations!

Teil 1: SET Operations — Mengenlehre fiir SQL

SET Operations basieren direkt auf mathematischen Mengenoperationen. Wenn Sie Venn-Diagramme aus
der Schule kennen, werden Sie diese intuitiv verstehen.

Uberblick: Die drei SET Operations

SQL bietet drei Haupt-SET-Operations: UNION, INTERSECT und EXCEPT. Jede l0st ein spezifisches Problem.

Venn-Diagramme fir SET Operations:

UNION (Vereinigung) INTERSECT (Schnittmenge) EXCEPT (Differenz)

A B A AnB B A B

Alle Elemente aus A oder B Nur gemeinsame Elemente Nur Elemente aus A

von A und B (nicht in B)
Operation Bedeutung Use Case
UNION Vereinigung beider Mengen Newsletter an Kunden UND Mitarbeiter
INTERSECT Nur gemeinsame Elemente Mitarbeiter, die auch Kunden sind
EXCEPT Nur Elemente aus A, nichtin B Kunden, die KEINE Mitarbeiter sind

Schauen wir uns jede Operation im Detail an, beginnend mit UNION.

UNION - Vereinigung von Mengen

UNION kombiniert die Ergebnisse zweier SELECT-Statements zu einer einzigen Ergebnismenge. Duplikate
werden automatisch entfernt - es sei denn, Sie verwenden UNION ALL.

Syntax:

SELECT spalten FROM tabellel
UNION [ALL]
SELECT spalten FROM tabelle2;

Wichtige Regeln:

* Beide SELECT-Statements missen die gleiche Anzahl von Spalten haben

* Spaltentypen miissen kompatibel sein (oder konvertierbar)

* UNION entfernt Duplikate — langsamer

® UNION ALL behalt Duplikate — schneller

Lassen Sie uns das praktisch demonstrieren. Wir kombinieren Kunden und Mitarbeiter flir eine Newsletter-

Liste

Beispiel 1: Newsletter-Liste erstellen

N

O 0o ~No U1 AW

10
11
12
13
14
15
16

-— UNION: Alle Personen (Kunden + Mitarbeiter) ohne Duplikate

-— Problem: E-Mail-Adressen sind unterschiedlich (@example.com vs @sh
-corp.com)

-— Losung: Nur Name vergleichen, nicht E-Mail!

SELECT
first_name,
last_name

FROM customers

UNION

SELECT
first_name,
last_name

FROM employees

ORDER BY last_name, first_name;

-- UNION: Alle Personen (Kunden + Mitarbeiter) ohne Duplikate
-- Problem: E-Mail-Adressen sind unterschiedlich (@example.com vs @shop-
corp.com)
-- Losung: Nur Name vergleichen, nicht E-Mail!
SELECT
first_name,
E T
FROM customers

UNION

SELECT
first_name,
E T
FROM employees

ORDER BY last_name, first_name

first_name last_name

Emma Brown

Bob Johnson
David Lee
Hannah Martinez
Alice Smith
Grace Taylor
Carol Williams

Frank Wilson

Was sehen Sie?

Jetzt sehen Sie 8 Personen statt 10! Alice Smith und David Lee erscheinen nur einmal. Warum? UNION
vergleicht ALLE Spalten - hier nur firstname und lastname. Da beide Personen in beiden Tabellen
vorkommen (gleicher Name), werden die Duplikate entfernt!

Wichtig: Wenn wir email mit einbeziehen wiirden, waren Alice und David KEINE Duplikate, weil ihre E-Mail-
Adressen unterschiedlich sind (alice.smith@example.com vs alice.smith@shop-corp.com)!

UNION ALL - Alle Eintrage behalten:

—— UNION ALL: Behalt ALLE Eintrage (keine Deduplizierung)
SELECT

first_name,

last_name,

'Customer' AS type

FROM customers
UNION ALL

SELECT
first_name,
last_name,
"Employee' AS type
FROM employees

ORDER BY last_name, first_name;

-- UNION ALL: Behalt ALLE Eintrage (keine Deduplizierung)
SELECT

first_name,

last_name,

'‘Customer' AS type
FROM customers

UNION ALL

SELECT
first_name,
last_name,
'Employee’ AS type
FROM employees

ORDER BY last_name, first_name

first_name last_name type
Emma Brown Customer
Bob Johnson Customer
David Lee Employee
David Lee Customer
Hannah Martinez Employee
Alice Smith Employee
Alice Smith Customer
Grace Taylor Employee
Carol Williams Customer
Frank Wilson Employee

10 rows

Jetzt sehen Sie 10 Zeilen! Alice und David erscheinen zweimal - einmal als Customer, einmal als Employee.
UNION ALL ist schneller, weil keine Deduplizierung notig ist.

Warum E-Mail-Adressen problematisch sind:

1 -—- UNION mit E-Mail: Keine Deduplizierung wegen unterschiedlicher[E-M
2 SELECT

3 first_name,

4 last_name,

5 email

6 FROM customers

-

8 UNION

9

10 SELECT

11 first_name,

12 last_name,

13 email

14 FROM employees

15

16 ORDER BY last_name, first_name;

-- UNION mit E-Mail: Keine Deduplizierung wegen unterschiedlicher E-Mails!
SELECT

first_name,

last_name,

email
FROM customers

UNION

SELECT
first_name,
last_name,
email

FROM employees

ORDER BY last_name, first_ name

first_name last_name email
Emma Brown emma.brown@example.com
Bob Johnson bob.johnson@example.com
David Lee david.lee@example.com
David Lee david.lee@shop-corp.com
Hannah Martinez hannah.martinez@shop-corp.com
Alice Smith alice.smith@shop-corp.com
Alice Smith alice.smith@example.com
Grace Taylor grace.taylor@shop-corp.com
Carol Williams carol.williams@example.com

Frank Wilson frank.wilson@shop-corp.com

Uberraschung: Wieder 10 Zeilen! Warum? UNION vergleicht ALLE Spalten. Obwohl Alice Smith in beiden
Tabellen vorkommt, sind die E-Mails unterschiedlich (alice.smith@example.com vs alice.smith@shop-

corp.com) - also keine Deduplizierung! Wenn Sie nur eindeutige Personen wollen, vergleichen Sie nur die
Spalten, die wirklich identisch sein miissen (z.B. nur Name).

Performance-Tipp:

Nutzen Sie UNION ALL, wenn Sie wissen, dass keine Duplikate existieren oder Duplikate gewlinscht
sind. Das spart die kostspielige Deduplizierung!

INTERSECT - Schnittmenge finden

INTERSECT gibt nur die Zeilen zurtick, die in BEIDEN Ergebnismengen vorkommen. Perfekt, um
Gemeinsamkeiten zu identifizieren.

Syntax:

SELECT spalten FROM tabellel
INTERSECT
SELECT spalten FROM tabelle2;

Unser Business-Szenario: Finden Sie alle Mitarbeiter, die auch als Kunden im Shop einkaufen, um ihnen
Mitarbeiter-Rabatte anzubieten.

Beispiel 2: Mitarbeiter-Kunden identifizieren

1 -- Mitarbeiter, die auch Kunden sind (basierend auf Namen)
2 SELECT

3 first_name,

4 last_name

5 FROM customers

6

7 INTERSECT

8

9 SELECT

10 first_name,

11 last_name

12 FROM employees

13

14 ORDER BY last_name;

-- Mitarbeiter, die auch Kunden sind (basierend auf Namen)
SELECT

first_name,

last_name
FROM customers

INTERSECT

SELECT
first_name,
last_name

FROM employees

ORDER BY last_name

first_name last_name

David Lee

Alice Smith

Ergebnis:

Nur Alice Smith und David Lee erscheinen! Das sind exakt die Personen, die in beiden Tabellen vorkommen
(gleicher Name). Perfekt fiir unser Mitarbeiter-Rabatt-Programm. Beachten Sie: Wir vergleichen nur Namen,
nicht E-Mails, da diese unterschiedlich sein konnen!

Alternative mit JOIN:

Man kénnte das auch mit einem JOIN [6sen, aber INTERSECT ist oft lesbarer fiir diesen spezifischen Use-
Case.

-- Gleichwertig mit INNER JOIN
SELECT DISTINCT
c.first_name,
c.last_name,
c.email
FROM customers c
INNER JOIN employees e
ON c.first_name = e.first_name
AND c.last_name = e.last_name
ORDER BY c.last_name;

O 00 ~NOoO U~ WN R

=
(o]

-- Gleichwertig mit INNER JOIN
SELECT DISTINCT
c.first_name,
c.last_name,
c.email
FROM customers c
INNER JOIN employees e
ON c.first_name = e.first_name
AND c.last_name = e.last_name

ORDER BY c.last_name

first_name last_name email
David Lee david.lee@example.com

Alice Smith alice.smith@example.com

Beide Queries liefern das gleiche Ergebnis, aber INTERSECT macht die Intention klarer: ,Zeige mir die
Uberschneidung!“

EXCEPT - Differenz finden

EXCEPT gibt die Zeilen aus der ersten Ergebnismenge zurlick, die NICHT in der zweiten vorkommen. Ideal,
um ,fehlende“ oder ,exklusive“ Datensatze zu identifizieren.

Syntax:

SELECT spalten FROM tabellel
EXCEPT
SELECT spalten FROM tabelle2;

Business-Szenario: Finden Sie alle Kunden, die KEINE Mitarbeiter sind, fiir eine reine Kunden-Marketing-
Kampagne.

Beispiel 3: Reine Kunden identifizieren

-— Kunden, die KEINE Mitarbeiter sind
SELECT

first_name,

last_name
FROM customers

EXCEPT

O oo ~NOoO U~ WN R

SELECT
first_name,
last_name

FROM employees

[y
R ®

=
N

13
14 ORDER BY last_name;

-- Kunden, die KEINE Mitarbeiter sind
SELECT

first_name,

last_name
FROM customers

EXCEPT

SELECT
first_name,
last_name

FROM employees

ORDER BY last_name

first_name last_name

Emma Brown
Bob Johnson

Carol Williams

Ergebnis:

Nur Bob, Carol und Emma erscheinen - die drei Kunden, die NICHT in der Mitarbeiter-Tabelle sind (basierend
auf Namen). Alice und David werden herausgefiltert, weil sie auch als Mitarbeiter existieren Alternative mit
LEFT JOIN:

EXCEPT kann auch mit einem Anti-Join (LEFT JOIN + NULL Check) gelost werden.

1 -- Gleichwertig mit LEFT JOIN + NULL
2 SELECT

3 c.first_name,

4 c.last_name,

5 c.email

6 FROM customers c

7 LEFT JOIN employees e

8 ON c.first_name = e.first_name
9 AND c.last_name = e.last_name
10 WHERE e.employee_id IS NULL
11 ORDER BY c.last_name;

-- Gleichwertig mit LEFT JOIN + NULL
SELECT
c.first_name,
c.last_name,
c.email
FROM customers c
LEFT JOIN employees e
ON c.first_name = e.first_name
AND c.last_name = e.last_name
WHERE e.employee_id IS NULL

ORDER BY c.last_name

first_name last_name email
Emma Brown emma.brown@example.com
Bob Johnson bob.johnson@example.com

Carol Williams carol.williams@example.com

Wieder: Beide Ansatze funktionieren, aber EXCEPT ist semantisch klarer fiir ,Zeige mir A ohne B*.
Wichtig: Reihenfolge zahlt!

EXCEPT ist nicht kommutativ! A EXCEPT B ist NICHT das gleiche wie B EXCEPT A.

-- Umgekehrt: Mitarbeiter, die KEINE Kunden sind
SELECT first_name, last_name, email FROM employees
EXCEPT

SELECT first_name, last_name, email FROM customers
ORDER BY Tlast_name;

a b wWwNBR

-- Umgekehrt: Mitarbeiter, die KEINE Kunden sind
SELECT first_name, last_name, email FROM employees
EXCEPT

SELECT first_name, last_name, email FROM customers
ORDER BY last_name

first_name last_name email
David Lee david.lee@shop-corp.com
Hannah Martinez hannah.martinez@shop-corp.com

Alice Smith alice.smith@shop-corp.com

Grace Taylor grace.taylor@shop-corp.com

Frank Wilson frank.wilson@shop-corp.com

Jetzt sehen Sie Frank, Grace und Hannah - die drei Mitarbeiter, die nicht in der Kunden-Tabelle sind!

Komplexes Beispiel: Produkte ohne Verkaufe

Ein sehr praktisches Beispiel: Finden Sie alle Produkte, die noch NIE verkauft wurden. Das sind Ihre
,Ladenhiiter®, die Sie vielleicht aus dem Sortiment nehmen oder bewerben sollten.

1 -- Produkte, die noch nie verkauft wurden
2 SELECT

3 product_id,

4 product_name,

5 price

6 FROM products

7

8 EXCEPT

9
10 SELECT
11 p.product_id,
12 p.product_name,
13 p.price
14 FROM products p
15 INNER JOIN order_ditems oi ON p.product_id = oi.product_-id
16
17 ORDER BY product_name;

-- Produkte, die noch nie verkauft wurden
SELECT

product_id,

product_name,

price
FROM products

EXCEPT

SELECT
p.product_id,
p.product_name,
p-price
FROM products p
INNER JOIN order_items oi ON p.product_id = oi.product_id

ORDER BY product_name

product_id product_name
8 Desk Lamp
9 Paper (500 sheets)

7 USB Cable

Ergebnis:

USB Cable, Desk Lamp und Paper wurden nie verkauft! Das ist wertvolle Business-Intelligence. Schauen wir
uns die Alternative mit LEFT JOIN an.

-— Alternative: LEFT JOIN + NULL Check
SELECT
p.product_did,
p.product_name,
p.price
FROM products p
LEFT JOIN order_items oi ON p.product_id = oi.product_id
WHERE oi.order_item_id IS NULL
ORDER BY p.product_name;

O 00N U~ WN B

-- Alternative: LEFT JOIN + NULL Check
SELECT
p.product_id,
p.product_name,
p-price
FROM products p
LEFT JOIN order_items oi ON p.product_id = oi.product_id
WHERE oi.order_item_id IS NULL
ORDER BY p.product_name

product_id product_name

8 Desk Lamp

9 Paper (500 sheets)

7 USB Cable

Identisches Ergebnis! Welche Variante ist besser? Das hangt von der Datenbank und den Indizes ab. Bei
modernen Datenbanken sind beide meist gleich schnell.

Performance & Best Practices

SET Operations haben ihre eigenen Performance-Charakteristika. Hier sind die wichtigsten Punkte.

Performance-Matrix:

i Sortierung . .
Operation .. Deduplizierung? Performance-Tipp
notig?

Nutze UNION ALL wenn
UNION Ja Ja .

moglich
UNION ALL Nein Nein Schnellste Option
INTERSECT Ja Ja Hash-Algorithmus effizient
EXCEPT Ja Ja Anti-Join Alternative priifen

Best Practices:

UNION ALL statt UNION, wenn Duplikate OK sind

Spalten-Typen kompatibel halten - implizite Konvertierungen vermeiden

Indexe auf Join-Spalten setzen (bei der Alternative mit JOINs)

EXPLAIN ANALYZE nutzen, um Performance zu vergleichen

I\ Grofte Mengen vorsichtig - SET Ops konnen Sorts auslosen
* I\ WHERE-Filter VOR SET Ops anwenden, um Datenmenge zu reduzieren

Performance-Optimierung:

1 -- X Ineffizient: GroRe Mengen erst kombinieren, dann filtern
2 SELECT =«

3+ FROM (

4 SELECT first_name, last_name, email FROM customers
5 UNION

6 SELECT first_name, last_name, email FROM employees
7))

8 WHERE last_name LIKE 'S%'; -- Filter NACH UNION

9

10 -- [%4 Besser: Erst filtern, dann kombinieren

11 SELECT first_name, last_name, email

12 FROM customers

13 WHERE last_name LIKE 'S%'

14 UNION

15 SELECT first_name, last_name, email

16 FROM employees

17 WHERE last_name LIKE 'S%';

-- X Ineffizient: GroBe Mengen erst kombinieren, dann filtern
SELECT *
FROM (
SELECT first_name, last_name, email FROM customers
UNION
SELECT first_name, last_name, email FROM employees

)
WHERE last_name LIKE 'S%'

first_name last_name email
Alice Smith alice.smith@example.com

Alice Smith alice.smith@shop-corp.com

-- Filter NACH UNION

-- ¥ Besser: Erst filtern, dann kombinieren
SELECT first_name, last_name, email

FROM customers

WHERE last_name LIKE 'S%'

UNION

SELECT first_name, last_name, email

FROM employees

WHERE last_name LIKE 'S%'

first_name last_name email
Alice Smith alice.smith@example.com

Alice Smith alice.smith@shop-corp.com

Durch friihes Filtern reduzieren wir die Datenmengen vor der UNION - das spart Ressourcen!

Teil 2: Views — Abstraktion & Wiederverwendung

Nachdem wir SET Operations gemeistert haben, kommen wir zu Views. Views l0sen ein anderes Problem:
Code-Wiederverwendung und Abstraktion komplexer Queries.

Was sind Views?

Eine View ist eine gespeicherte SELECT-Query, die wie eine Tabelle abgefragt werden kann - aber keine
eigenen Daten speichert. Man nennt sie auch ,virtuelle Tabelle®.

Konzept:

CREATE VIEW view_name AS

- .

SELECI spalten
FROM tabellen
WHERE bedingungen;

-— Dann wie eine Tabelle nutzen:
SELECT * FROM view_name;

Wichtige Eigenschaften:

» X Keine Datenspeicherung - Views speichern nur die Query-Definition

Immer aktuell - Daten werden bei jeder Abfrage neu gelesen

Code-Wiederverwendung - Komplexe Queries einmal definieren

Zugriffskontrolle - Beschrankung auf bestimmte Spalten/Zeilen

I\ Performance - Views sind so schnell (oder langsam) wie die zugrundeliegende Query
Einfache Views erstellen

Beginnen wir mit einem einfachen Beispiel: Eine View fiir alle VIP-Kunden (die mehr als 500€ ausgegeben
haben).

1 -- View fir VIP-Kunden erstellen

2 CREATE VIEW vip_customers AS

3 SELECT

4 c.customer_id,

5 c.first_name,

6 c.last_name,

7 c.email,

8 SUM(o.total_amount) AS total_spent

9 FROM customers c
10 INNER JOIN orders o ON c.customer_id = o.customer_id
11 GROUP BY c.customer_id, c.first_name, c.last_name, c.email
12 HAVING SUM(o.total_amount) > 500;
13
14 -- View abfragen
15 SELECT * FROM vip_customers ORDER BY total_spent DESC;

-- View fir VIP-Kunden erstellen
CREATE VIEW vip_customers AS
SELECT
c.customer_id,
c.first_ name,
c.last_name,
c.email,
SUM(o.total_ amount) AS total _spent
FROM customers c
INNER JOIN orders o ON c.customer_id = o.customer_id
GROUP BY c.customer_id, c.first_name, c.last_name, c.email
HAVING SUM(o.total_amount) > 500

ok

-- View abfragen
SELECT * FROM vip_customers ORDER BY total_spent DESC

customer_id first_ name last_ hame email total_spent

2 Bob Johnson bob.johnson@example.com 999.99

3 Carol Williams carol.williams@example.com 749.94

Was sehen Sie?

Alice (439.96€) und Bob (999.99€) sind unsere VIP-Kunden! Die komplexe Query mit JOIN, GROUP BY und
HAVING ist jetzt in einer View gekapselt. Sie kdnnen sie beliebig oft wiederverwenden, ohne den Code zu
duplizieren.

Views weiter filtern:

Das Schone: Sie konnen Views wie normale Tabellen behandeln - filtern, sortieren, joinen!

-— View weiter filtern
SELECT
first_name,
last_name,
total_spent
FROM vip_customers
WHERE total_spent > 400
ORDER BY Tlast_name;

0 ~No ok~ WNBRE

-- View weiter filtern
SELECT

first_name,

last_name,

total_spent
FROM vip_customers
WHERE total_spent > 400
ORDER BY last_name

#

first_name last_name total_spent

Bob Johnson 999.99

Carol WET S 749.94

Die Datenbank kombiniert intern lhre Filter mit der View-Definition - das nennt man ,View Merging“.

Moderne Datenbanken sind hier sehr effizient!

Views fiir haufige Analysen

Views sind ideal, um wiederkehrende Analyse-Queries zu speichern. Schauen wir uns weitere praktische

Beispiele an.

View fiir Produktkategorien:

O oo ~NOoO U~ WN R

o O =
oM WNRO

-- View: Produkte mit ihren Kategorien (N:M Beziehung aufgelost)
CREATE VIEW products_with_categories AS
SELECT

p.product_id,

p.product_name,

p.price,

c.category_name,

c.description AS category_description
FROM products p
INNER JOIN product_categories pc ON p.product_id = pc.product_id
INNER JOIN categories c ON pc.category_id = c.category_id;

-- View nutzen
SELECT * FROM products_with_categories
ORDER BY category_name, product_name;

-- View: Produkte mit ihren Kategorien (N:M Beziehung aufgelost)
CREATE VIEW products_with_categories AS

SELECT
p.product_id,
p.product_name,
p.price,
c.category_name,

c.description AS category_description

FROM products p

INNER JOIN product_categories pc ON p.product_id = pc.product_id

INNER JOIN categories c ON pc.category_id = c.category_id

ok

-- View nutzen
SELECT * FROM products_with_categories
ORDER BY category_name, product_name

product_id product_name

3

Keyboard

Laptop

Monitor

Mouse

USB Cable

Desk Chair

Desk Lamp

Desk Chair

Desk Lamp

Monitor

Notebook

Paper (500
sheets)

price

79.99

999.99

299.99

29.99

14.99

199.99

39.99

199.99

39.99

299.99

9.99

category_name

Electronics

Electronics

Electronics

Electronics

Electronics

Furniture

Furniture

Office

Equipment

Office
Equipment

Office
Equipment

Stationery

Stationery

category_description

Electronic devices and
accessories

Electronic devices and
accessories

Electronic devices and
accessories

Electronic devices and
accessories

Electronic devices and
accessories

Office and home
furniture

Office and home
furniture

Printers, scanners, and
office machines

Printers, scanners, and
office machines

Printers, scanners, and
office machines

Paper products and
writing supplies

Paper products and
writing supplies

View fiir aktive Kunden:

1 -- View: Kunden mit Bestellungen in 2024

2 CREATE VIEW active_customers_2024 AS

3 SELECT DISTINCT

4 c.customer_id,

5 c.first_name,

6 c.last_name,

7 c.email,

8 l.city

9 FROM customers c
10 INNER JOIN orders o ON c.customer_id = o.customer_id
11 INNER JOIN locations 1 ON c.location_id = 1.location_id
12 WHERE EXTRACT(YEAR FROM o.order_date) = 2024;
13
14 -- View nutzen
15 SELECT * FROM active_customers_2024 ORDER BY city, last_name;

-- View: Kunden mit Bestellungen in 2024
CREATE VIEW active_customers_2024 AS
SELECT DISTINCT
c.customer_id,
c.first_name,
c.last_name,
c.email,
l.city
FROM customers c
INNER JOIN orders o ON c.customer_id = o.customer_id
INNER JOIN locations | ON c.location_id = l.location_id
WHERE EXTRACT(YEAR FROM o.order_date) = 2024

ok

-- View nutzen
SELECT * FROM active_customers_2024 ORDER BY city, last_ name

customer_id first_ name last name email city

1 Alice Smith alice.smith@example.com Berlin
3 Carol Williams carol.williams@example.com Berlin
Bob Johnson bob.johnson@example.com Hamburg

David Lee david.lee@example.com Munich

Diese View kapselt die Logik fiir ,,aktive Kunden“ - alle Reports konnen sie wiederverwenden!

Views & SET Operations kombinieren

Jetzt wird es machtig! Wir konnen SET Operations in Views einbetten und Views mit SET Operations
kombinieren.

View mit UNION - Alle Kontakte:

1 -- View: Alle Personen (Kunden + Mitarbeiter)
2 CREATE VIEW all_contacts AS

3 SELECT

4 customer_id AS person_id,
5 first_name,

6 last_name,

7 email,

8 'Customer' AS type

9 FROM customers

10

11 UNION ALL

12

13 SELECT

14 employee_id AS person_id,
15 first_name,

16 last_name,

17 email,

18 '"Employee' AS type

19 FROM employees;
20
21 -- View abfragen
22 SELECT x* FROM all_contacts ORDER BY last_name, first_name;

-- View: Alle Personen (Kunden + Mitarbeiter)

CREATE VIEW all_contacts AS
SELECT
customer_id AS person_id,
first_name,
last_name,
email,
'Customer' AS type
FROM customers

UNION ALL

SELECT
employee_id AS person _id,
first_name,
last_name,
email,
'Employee' AS type
FROM employees

(0] 4

-- View abfragen

SELECT * FROM all_contacts ORDER BY last_name, first_name

person_id first_ name last_name
5 Emma Brown
2 Bob Johnson
David Lee
David Lee

Hannah Martinez

Alice Smith
Alice Smith
Grace Taylor
Carol Williams
Frank Wilson

10 rows

Vorteil:

email
emma.brown@example.com
bob.johnson@example.com
david.lee@shop-corp.com
david.lee@example.com

hannah.martinez@shop-
corp.com

alice.smith@shop-corp.com
alice.smith@example.com
grace.taylor@shop-corp.com
carol.williams@example.com

frank.wilson@shop-corp.com

type

Customer
Customer
Employee
Customer

Employee

Employee
Customer
Employee
Customer

Employee

Die UNION-Logik ist jetzt wiederverwendbar! Jeder Report, der alle Kontakte braucht, kann einfach FROM
all_contacts selektieren.

Views kombinieren:

-- Zwei separate Views flr verschiedene Analysen

CREATE VIEW customers_berlin AS

SELECT c.*, l.city

FROM customers c

INNER JOIN locations 1 ON c.location_id = 1.location_id
WHERE 1l.city = 'Berlin';

CREATE VIEW employees_sales AS
SELECT =

FROM employees

WHERE department = 'Sales';

O oo ~No Ul b~ WNBRE

R
N R ®

-— Views mit UNION kombinieren

SELECT first_name, last_name, 'Customer' AS type FROM customers_berli
UNION ALL

SELECT first_name, last_name, 'Employee' AS type FROM employees_sales
ORDER BY last_name;

e e
N~ o o b w

-- Zwei separate Views fiir verschiedene Analysen
CREATE VIEW customers_berlin AS

SELECT c.*, l.city

FROM customers c

INNER JOIN locations |1 ON c.location_id = l.location_id
WHERE l.city = 'Berlin’

ok

CREATE VIEW employees_sales AS
SELECT *

FROM employees

WHERE department = 'Sales'

ok

-- Views mit UNION kombinieren

SELECT first_name, last_name, '‘Customer’ AS type FROM customers_berlin
UNION ALL

SELECT first_name, last_name, 'Employee' AS type FROM employees_sales
ORDER BY last_name

first_name last_name type

Alice Smith Customer
Alice Smith Employee

Carol Williams Customer

Alice erscheint zweimal: Als Berliner Kundin und als Sales-Mitarbeiterin. Jede View kann unabhangig
gewartet werden!

Views fiir Zugriffskontrolle

Ein wichtiger Use-Case fiir Views ist die Zugriffskontrolle. Sie konnen sensible Daten verbergen oder nur
bestimmte Zeilen/Spalten freigeben.

Szenario: Public vs. Internal Data

-—- View fir o6ffentliche Produktdaten (ohne Preise)
CREATE VIEW public_products AS
SELECT
product_-id,
product_name
FROM products;

o ~No ol b~ WNBRE

-— View flUr interne Analysten (mit Preisen)

10
11
12
13
14
15
16
17

CREATE VIEW -internal_products AS
SELECT

product_id,

product_name,

price
FROM products;

-— Externe API wirde nur public_products sehen:
SELECT * FROM public_products;

-- View fiir 6ffentliche Produktdaten (ohne Preise)
CREATE VIEW public_products AS
SELECT
product_id,
product_name
FROM products

ok

-- View fir interne Analysten (mit Preisen)
CREATE VIEW internal_products AS
SELECT

product_id,

product_name,

price
FROM products

ok

-- Externe API wiirde nur public_products sehen:
SELECT * FROM public_products

product_id product_name

1 Laptop

P Mouse
Keyboard
Monitor
Desk Chair
Notebook
USB Cable
Desk Lamp

Paper (500 sheets)

Zugriffskontrolle in Praxis:

In echten Systemen wiirden Sie Datenbank-Permissions setzen: Externe User bekommen nur Zugriff auf

publicproducts, interne auf internalproducts. Die Basistabelle products bleibt geschiitzt!

View fiir gefilterte Daten:

1 -- View: Nur abgeschlossene Bestellungen
2 CREATE VIEW delivered_orders AS

SELECT
order_id,
customer_id,
order_date,
total_amount
FROM orders
WHERE status = 'delivered';

O 00 ~NOoO U AW

10
11 -- Reports nutzen nur gelieferte Bestellungen
12 SELECT * FROM delivered_orders;

-- View: Nur abgeschlossene Bestellungen
CREATE VIEW delivered_orders AS
SELECT
order_id,
customer _id,
order_date,
total_amount
FROM orders
WHERE status = 'delivered'

ok

-- Reports nutzen nur gelieferte Bestellungen
SELECT * FROM delivered_orders

order_id customer _id order_date total_amount

101 1 2024-01-15 299.99
102 1 2024-02-20 139.97
103 2024-01-22 999.99

105 2024-02-10 199.99

Der Report-User sieht nur fertige Bestellungen - egal ob versehentlich oder absichtlich, unfertige
Bestellungen sind nicht zuganglich.

Views verwalten

Wie erstellt, andert und [6scht man Views? Hier die wichtigsten Operationen.

View erstellen oder ersetzen:

-— Neue View erstellen
CREATE VIEW my_view AS SELECT ...;

-— View ersetzen (falls existiert)

- ~A~Toc ~~AN . ~Anr—ATe

-— 1N PULITE: UKUF + CLKREAIE
DROP VIEW IF EXISTS my_view;
CREATE VIEW my_view AS SELECT ...;

View loschen:

-— View loschen
DROP VIEW IF EXISTS my_view;

-- Mehrere Views 1dschen
DROP VIEW IF EXISTS viewl, view2, view3;

Best Practices fiir View-Management:

. Benennungskonvention nutzen (z.B. Prafix oder Suffix)

Views dokumentieren (Kommentare im SQL, README)

Views versionieren (wie Code in Git)

Views testen mit realistischen Datenmengen

I\ View-Hierarchien begrenzen (max. 2-3 Ebenen)

* 1 Verwaiste Views vermeiden (regelmafig aufraumen)

Materialized Views - Performance durch Caching

Standard-Views sind virtuelle Tabellen ohne eigene Datenspeicherung. Bei jeder Abfrage wird die
zugrundeliegende Query neu ausgefiihrt. Materialized Views hingegen speichern das Ergebnis physisch - wie
ein Snapshot.

Materialized View erstellen:

1 CREATE VIEW vw_vip_customers AS

2 SELECT

3 c.customer_1id,

4 c.first_name,

5 c.last_name,

6 SUM(o.total_amount) AS total_spent

7 FROM customers c

8 INNER JOIN orders o ON c.customer_id = o.customer_id
9 GROUP BY c.customer_id, c.first_name, c.last_name

10 HAVING SUM(o.total_amount) > 500;

11

12 -- Materialized View fir VIP-Kunden (Ausgaben > 500€)
13 CREATE MATERIALIZED VIEW mv_vip_customers AS

14 SELECT * FROM vw_vip_customers;

15

16 -- Abfragen wie eine normale Tabelle

17 SELECT * FROM mv_vip_customers ORDER BY total_spent DESC;

CREATE VIEW vw_vip_customers AS
SELECT

c.customer_id,

c.first_name,

c.last_name,

SUM(o.total_amount) AS total_spent
FROM customers c
INNER JOIN orders o ON c.customer_id = o.customer _id
GROUP BY c.customer_id, c.first_name, c.last_name
HAVING SUM(o.total_ amount) > 500

ok

-- Materialized View fiir VIP-Kunden (Ausgaben > 500€)
CREATE MATERIALIZED VIEW mv_vip_customers AS
SELECT * FROM vw_vip_customers

ok

-- Abfragen wie eine normale Tabelle
SELECT * FROM mv_vip_customers ORDER BY total_spent DESC

customer_id first_name last_name total_spent

2 Bob Johnson 999.99

3 Carol WHET S 749.94

Alice und Bob sind unsere VIP-Kunden mit 439.96€ und 999.99€! Die Daten sind jetzt physisch gespeichert -
nicht nur als Query-Definition.

Das Problem: Veraltete Daten nach Updates

Fugen wir eine neue Bestellung fiir Alice hinzu - was passiert mit der Materialized View?

-- Neue Bestellung flr Alice (wird zum VIP)
INSERT INTO orders(order_id, customer_id, order_date, total_amount, st
VALUES (106, 1, '2024-03-20', 199.99, 'delivered');

-— Prife direkt in orders: Alice hat jetzt mehr ausgegeben
SELECT * FROM vw_vip_customers;

—-- ABER: Materialized View zeigt noch alte Werte!
SELECT * FROM mv_vip_customers;

O 0o ~NO U~ WNBE

-- Neue Bestellung fiir Alice (wird zum VIP)
INSERT INTO orders(order_id, customer_id, order_date, total amount, status)
VALUES (106, 1, '2024-03-20', 199.99, 'delivered')

ok

-- Priife direkt in orders: Alice hat jetzt mehr ausgegeben
SELECT * FROM vw_vip_customers

customer _id first_name last_name total_spent
1 Alice Smith 639.95
2 Bob Johnson 999.99

3 Carol WET S 749.94

-- ABER: Materialized View zeigt noch alte Werte!
SELECT * FROM mv_vip_customers

customer_id first_name ES L ET [total_spent

2 Bob Johnson 999.99

3 Carol Williams 749.94

Sehen Sie das Problem? Die echte Abfrage zeigt 639.95€ fuir Alice, aber die Materialized View zeigt noch
439.96€! Materialized Views werden NICHT automatisch aktualisiert.

Losung: REFRESH MATERIALIZED VIEW

-— Materialized View manuell aktualisieren
REFRESH MATERIALIZED VIEW mv_vip_customers;

-— Jetzt sind die Daten aktuell!
SELECT * FROM mv_vip_customers ORDER BY total_spent DESC;

a b wWNBRE

-- Materialized View manuell aktualisieren
REFRESH MATERIALIZED VIEW mv_vip_customers

ok

-- Jetzt sind die Daten aktuell!
SELECT * FROM mv_vip_customers ORDER BY total spent DESC

customer_id first_name last_name total_spent

2 Bob Johnson 999.99
3 Carol Williams 749.94

1 Alice Smith 639.95

Nach dem REFRESH zeigt die Materialized View die aktuellen Werte! Alice hat jetzt 639.95€ insgesamt.
Performance-Uberlegungen

Views sind praktisch, aber haben Performance-Implikationen. Hier die wichtigsten Punkte.
Performance-Fakten:

® Views speichern keine Daten - kein zusatzlicher Speicher

* Views nutzen Indexe der Basistabellen - keine eigenen Indexe

* Views werden bei jeder Abfrage neu ausgefiihrt — keine Caching

® Moderne DBs nutzen View Merging — Filter werden optimiert

Wann Views langsam werden:

Problem Symptom Losung

Komplexe Aggregationen Langsame Abfragen Materialized View erwagen
Viele Joins (5+) Lange Laufzeit Query-Optimierung, Indexe
Views auf Views (tief) Verschachtelte Executions Flachere Hierarchie

Grolde Datenmengen Timeouts WHERE-Filter, Partitionierung

Performance priifen:

1 -- Query Plan fir View analysieren

2 EXPLAIN QUERY PLAN
3 SELECT * FROM vip_customers WHERE total_spent > 400;

-- Query Plan fiir View analysieren
EXPLAIN QUERY PLAN
SELECT * FROM vip_customers WHERE total_spent > 400

syntax error at or near "QUERY"

Der Query Plan zeigt lhnen, wie die Datenbank die View-Query + lhre Filter kombiniert. Achten Sie auf Index-
Nutzung und Scan-Methoden!

Teil 3: Praktische Patterns & Best Practices

Jetzt, wo Sie beide Konzepte kennen, schauen wir uns praktische Patterns an, die SET Operations und Views
kombinieren.

Pattern 1: Layered Views

Strukturieren Sie Views in logischen Schichten - von Basis-Views bis zu Business-Logic-Views.

1 -- Layer 1l: Basis-Views (direkte Tabellenzugriffe)
2 CREATE VIEW base_customers AS

3 SELECT customer_id, first_name, last_name, email, location_id
4 FROM customers;

5

6 CREATE VIEW base_employees AS

7 SELECT employee_id, first_name, last_name, email, department
8 FROM employees;

9
10 -- Layer 2: Business-Logic Views
11 CREATE VIEW all_persons AS
12 SELECT
13 customer_id AS person_id,
14 first_name,

15 last_name,

16 email,

17 'Customer' AS type,

18 NULL AS department

19 FROM base_customers
20 UNION ALL
21 SELECT
22 employee_id AS person_id,
23 first_name,
24 last_name,
25 email,
26 '"Employee' AS type,
27 department
28 FROM base_employees;

29
30
31
32
33
34
35 =
36
37
38
39
40
41
42

-- Layer 3: Report-Views (User-facing)

CREATE VIEW berlin_persons AS

SELECT p.*

FROM all_persons p

WHERE type = 'Customer'

AND person_id IN (

SELECT customer_id FROM customers c
INNER JOIN locations 1 ON c.location_id
WHERE 1l.city = 'Berlin'

)5

-— Reports nutzen Layer 3
SELECT * FROM berlin_persons;

1.location_1id

-- Layer 1: Basis-Views (direkte Tabellenzugriffe)
CREATE VIEW base_customers AS

SELECT customer _id, first_name, last_name, email, location_id
FROM customers

ok

CREATE VIEW base_employees AS

SELECT employee_id, first_name, last_name, email, department
FROM employees

(0] 4

-- Layer 2: Business-Logic Views
CREATE VIEW all_persons AS
SELECT

customer_id AS person _id,

first_name,

last_name,

email,

'Customer’ AS type,

NULL AS department
FROM base_customers
UNION ALL
SELECT

employee_id AS person _id,

first_name,

last_name,

email,

'Employee’' AS type,

department
FROM base_employees

ok

-- Layer 3: Report-Views (User-facing)

CREATE VIEW berlin_persons AS

SELECT p.*

FROM all_persons p

WHERE type = 'Customer’

AND person_id IN (

SELECT customer_id FROM customers c
INNER JOIN locations | ON c.location_id = l.location_id
WHERE l.city = 'Berlin’

)
ok

-- Reports nutzen Layer 3
SELECT * FROM berlin_persons

person_id first_ name Ilast_ name email type departme

Alice Smith alice.smith@example.com Customer null

Carol Williams carol.williams@example.com Customer null

Diese Architektur ist wartbar: Anderungen in Layer 1 propagieren automatisch nach oben, jede Schicht hat
eine klare Verantwortung!

Pattern 2: Views fiir Data Quality

Nutzen Sie Views, um Datenqualitats-Regeln zentral zu definieren.

1 -- View: Nur valide Bestellungen

2 CREATE VIEW valid_orders AS

3 SELECT

4 0.%,

5 c.first_name,

6 c.last_name

7 FROM orders o

8 INNER JOIN customers c ON o.customer_id = c.customer_-id
9 WHERE o.total_amount > 0
10 AND o.order_date IS NOT NULL
11 AND o.status IN ('processing', 'delivered', 'shipped');
12
13 -- Alle Reports nutzen nur valide Daten
14 SELECT * FROM valid_orders;

-- View: Nur valide Bestellungen
CREATE VIEW valid_orders AS
SELECT
0.%,
c.first_ name,
c.last_name
FROM orders o
INNER JOIN customers c ON o.customer_id = c.customer_id
WHERE o.total_amount > 0
AND o.order_date IS NOT NULL
AND o.status IN ('processing’, 'delivered’, 'shipped')

ok

-- Alle Reports nutzen nur valide Daten
SELECT * FROM valid_orders

order_id customer_id order _date total amount status first_name

101 1 2024-01-15 299.99 delivered Alice

102 1 2024-02-20 139.97 delivered Alice Smith
103 2024-01-22 999.99 delivered Bob Johnson
104 2024-03-01 749.94 processing Carol Williams
105 2024-02-10 199.99 delivered David Lee

106 2024-03-20 199.99 delivered Alice Smith

6 rows

Data-Quality-Regeln sind jetzt zentral! Andern Sie die Definition in der View, und alle abhdngigen Queries
nutzen automatisch die neuen Regeln.

Pattern 3: Views als API-Schicht

Views konnen als stabile API fiir externe Systeme dienen - auch wenn sich das interne Schema andert.

-— API-View: Stabile Schnittstelle fir externe Systeme
CREATE VIEW api_products AS
SELECT
product_id AS -d,
product_name AS name,
price,
CASE
WHEN price < 50 THEN 'Budget'
WHEN price < 200 THEN 'Mid-Range'
ELSE 'Premium'

END AS price_category
FROM nrodiicts:

O 00 ~NOoO Ul A~ WN B

[y
—H ®

-
D

i s mm— - ——

-—- Externe API liest nur aus dieser View
SELECT * FROM api_products;

-- API-View: Stabile Schnittstelle fiir externe Systeme
CREATE VIEW api_products AS
SELECT
product_id AS id,
product_name AS name,
price,
CASE
WHEN price < 50 THEN 'Budget’
WHEN price < 200 THEN 'Mid-Range'’
ELSE 'Premium'
END AS price_category
FROM products

ok

-- Externe API liest nur aus dieser View
SELECT * FROM api_products

id name price_category

1 Laptop Premium
Mouse Budget
Keyboard Mid-Range
Monitor Premium
Desk Chair Mid-Range
Notebook Budget
USB Cable Budget
Desk Lamp Budget

Paper (500 sheets) Budget

Wenn Sie spater die products-Tabelle umbenennen oder umstrukturieren, miissen Sie nur die View anpassen
- externe Systeme merken nichts!

Vergleichstabelle: Wann was?

Fassen wir zusammen: Wann nutzen Sie SET Operations, wann Views?

Anforderung

Zwei Listen kombinieren

Uberschneidungen finden

Exklusive Elemente finden

Query wiederverwenden

Komplexe Query kapseln

Zugriffskontrolle

SET Ops wiederverwenden

Performance bei teuren
Queries

Empfehlung

UNION / UNION ALL

INTERSECT

EXCEPT oder LEFT JOIN +
NULL

VIEW

VIEW

VIEW

VIEW mit SET Ops

Materialized View (andere
DBs)

Begriindung

Mengenvereinigung

Schnittmenge

Differenz

Code-Reuse

Abstraktion

Spalten/Zeilen
beschranken

Beste aus beiden Welten

Caching

Best Practices Cheat Sheet
AbschlieRend die wichtigsten Best Practices auf einen Blick.
DO's:

. Nutze UNION ALL statt UNION, wenn Duplikate OK sind

Nutze Views fiir wiederverwendbare Queries

Nutze klare Benennungskonventionen (| VW_ |,| _view |)

Dokumentiere Views (Zweck, Author, Datum)

Nutze Views fiir Zugriffskontrolle

Kombiniere SET Ops und Views fiir Flexibilitat

Teste Performance mit realistischen Datenmengen

Nutze WHERE-Filter VOR SET Ops (Performance)

DON'Ts:

X Keine tiefen View-Hierarchien (max. 2-3 Ebenen)

x Kein SELECT * in View-Definitionen (Wartbarkeit)

XK Keine vergessenen Views (View Sprawl)

X Kein UNION, wenn UNION ALL reicht
e X Keine INTERSECT/EXCEPT, wenn JOIN lesbarer ist

* X Keine ungetesteten Views in Produktion

Wrap-up & Zusammenfassung

Fassen wir zusammen, was Sie heute gelernt haben.
SET Operations:

e UNION kombiniert Listen (mit oder ohne Duplikate)

* INTERSECT findet Gemeinsamkeiten

* EXCEPT findet Unterschiede

e Performance: UNION ALL > UNION, Filter vorher anwenden
Views:

¢ Virtuelle Tabellen ohne Datenspeicherung

* Code-Wiederverwendung und Abstraktion

® Zugriffskontrolle und API-Schicht

* Performance = Basistabellen-Performance
Kombinationen:

¢ Views konnen SET Operations enthalten

e Views konnen mit SET Operations kombiniert werden

* Layered Architecture moglich

Pro-Tipp fiir Ihre Projekte: Beginnen Sie friith mit Views flir haufige Analysen. Das spart spater enorm
Zeit und reduziert Bugs durch Code-Duplikation!

Referenzen & Weiterfiihrendes:

SQL Standards: ISO/IEC 9075 (SET Operations seit SQL-92)
PostgreSQL Views Dokumentation
SQL Performance Explained (Markus Winand)

Database Design Patterns (Fowler et al.)

