
Session 12: Indexe & Performance
Willkommen zur Session über Indexe und Performance! In der letzten Session haben Sie gesehen, wie KI mit
MCP SQL-Queries generiert – aber sind diese Queries auch effizient? Heute lernen Sie, Performance zu
messen, zu verstehen und zu optimieren.

Stellen Sie sich vor: Eine Query läuft auf der IMDB-Datenbank mit über 178.000 Titeln. Ohne Index scannt die
Datenbank jede einzelne Zeile. Mit dem richtigen Index? Direkter Zugriff in Millisekunden. Das ist der
Unterschied, den wir heute mit PGlite live erleben werden.

Lernziele dieser Session:

Motivation: Der Performance-Unterschied
Lassen Sie uns mit einem konkreten Problem beginnen. Sie haben in Session 11 mit MCP die IMDB-
Datenbank erkundet. GitHub Copilot hat Ihnen SQL-Queries generiert – aber niemand hat über Performance
gesprochen.

Nehmen wir eine typische Anfrage: „Zeige mir alle Filme mit einem Rating über 8.0“. Klingt einfach, oder?

Das Problem:

Verstehen, was Indexe sind und wie sie funktionieren

Praktische Indexe mit PGlite erstellen und Performance messen

Query Plans mit EXPLAIN ANALYZE lesen können

Kritisch bewerten: Wann Indexe sinnvoll sind (und wann nicht)

Best Practices für Index-Strategien anwenden

SELECT tb.primarytitle, tr.averagerating, tb.startyear
FROM title_basics tb
JOIN title_ratings tr ON tb.tconst = tr.tconst
WHERE tr.averagerating > 8.0 AND tb.titletype = 'movie';



#	primarytitle	averagerating	startyear
1	Milionar pentru o zi	8.3	1924
2	Napoleon	8.2	1927
3	Zeinab	8.6	1930
4	It's a Wise Child	8.4	1931
5	Geld fällt vom Himmel	8.2	1938
6	La tonta del bote	8.6	1939
7	Herzensfreud - Herzensleid	8.6	1940
8	The Best Years of Our Lives	8.1	1946
9	Abhimanyu	8.2	1948
10	Los tres huastecos	8.1	1948
11	Pathala Bhairavi	8.5	1951
12	The Life of Oharu	8.1	1952
... (more rows) ...

Ohne Index durchsucht PostgreSQL jede einzelne Zeile in title_ratings – das sind über 178.000 Einträge! Bei
einer großen Produktionsdatenbank wären das Millionen oder Milliarden.

Szenario ohne Index:

Szenario mit Index:

Das ist nicht nur ein akademisches Problem. In einer E-Commerce-Anwendung bedeutet das: 10× schnellere
Produktsuche, 10× mehr gleichzeitige Nutzer, 10× bessere User Experience.

Frage zum Nachdenken:

Wenn eine Query ohne Index 100ms braucht und 1000× pro Sekunde ausgeführt wird – wie viel CPU-
Zeit sparen Sie mit einem 10× schnelleren Index?

Was sind Indexe?

Sequential Scan über 178.000+ Zeilen

Jede Zeile wird gelesen und gefiltert

Typische Ausführungszeit: 50–200ms (abhängig vom System)

Index Scan nur auf relevante Zeilen

Direkter Zugriff via B-Baum

Typische Ausführungszeit: 5–20ms (10× schneller!)

Bevor wir in die Praxis gehen, lassen Sie uns verstehen, was Indexe eigentlich sind. Die beste Metapher: Ein
Buchindex.

Konzept: Datenbank-Indexe

Stellen Sie sich ein Fachbuch mit 1000 Seiten vor. Sie suchen den Begriff „B-Baum“. Ohne Index müssten Sie
jede Seite durchblättern – das dauert. Mit Index? Sie schauen hinten nach, finden „B-Baum → Seite 342“ und
springen direkt dorthin.

Ein Index ist eine zusätzliche Datenstruktur, die Spalten einer Tabelle sortiert und schnellen Zugriff
ermöglicht.

Ohne Index:

sgnitar_eltit:elbaT

┐─────────┬──────────────┬────────────┌

│setoVmun│gnitaRegareva│tsnoct│

┤─────────┼──────────────┼────────────├

1elieZnacS←│0002│7.5│1000000tt│

2elieZnacS←│003│1.6│2000000tt│

3elieZnacS←│0005│2.8│3000000tt│

000871-4elieZnacS←││││

000871elieZnacS←│0021│5.7│9999990tt│

┘─────────┴──────────────┴────────────└

↓

)!masgnal(nacSlaitneuqeS

Mit Index auf averageRating :

:xednIeerT-B

]5.7[

]5.8[]0.6[

]0.9[]0.8[]5.6[]0.5[

↓↓↓↓

+0.8gnitaRtimnelieZuzretnioPetkeriD

B-Baum: Die Datenstruktur hinter Indexen

Der Index ist wie ein sortierter Wegweiser. Anstatt linear zu suchen, navigieren Sie durch einen Baum – das ist
logarithmisch schneller: O(log n) statt O(n).

Die meisten Datenbanken (SQLite, PostgreSQL, MySQL) nutzen B-Bäume (balanced trees) für Indexe.

Eigenschaften:

Zeitkomplexität:

Beispiel: Bei 1.000.000 Zeilen:

Das ist der Grund, warum Indexe so mächtig sind. Aber Vorsicht: Jeder Index kostet Speicherplatz und
verlangsamt INSERT/UPDATE/DELETE. Es ist ein Trade-off.

Trade-offs: Die Kehrseite der Medaille

SELECT
Schnellere Abfragen (10×–
100×)

–

INSERT – Langsamer (Index aktualisieren)

UPDATE – Langsamer (Index neu sortieren)

DELETE – Langsamer (Index bereinigen)

Speicher –
Zusätzlicher Platzbedarf (~10–30% der
Tabelle)

Maintenance – Fragmentierung, VACUUM nötig

Die Kunst des Datenbankdesigns ist es, die richtigen Indexe zu wählen: Genug für Performance, aber nicht zu
viele, um Writes nicht zu bremsen.

Demo

Selbstbalancierend (immer gleiche Tiefe)

Mehrere Werte pro Knoten (Cache-effizient)

Sortierte Speicherung (Range-Queries möglich)

Suche: O(log n)

Einfügen: O(log n)

Löschen: O(log n)

Ohne Index: ~1.000.000 Vergleiche

Mit B-Baum: ~20 Vergleiche (log₂ 1.000.000 ≈ 20)

Aspekt Vorteil ✅ Nachteil ⚠️

https://btree.app

Hands-on: Indexe in Aktion
Jetzt wird es praktisch! Wir nutzen die IMDB-Datenbank aus Session 11 und führen Performance-
Experimente durch. Sie werden den Unterschied selbst sehen – und messen.

Setup: IMDB-Datenbank verbinden
Führen Sie das folgenden Script aus um die IMDB-Datenbank für diese Session in PGlite zu laden.

function wait(ms) {
 return new Promise(resolve => setTimeout(resolve, ms));
}

1
2
3



https://btree.app/
https://btree.app/
https://btree.app/
https://btree.app/
https://btree.app/
https://btree.app/
https://btree.app/
https://btree.app/
https://btree.app/

Failed to fetch

PGlite-Setup:

Prüfen wir zunächst, welche Indexe bereits existieren. Neue Tabellen haben meist nur einen Index auf dem
Primärschlüssel.

Schritt 1: Vorhandene Indexe prüfen

}

const response = await fetch("../assets/dat/imdb.sql");
if (!response.ok) {
 console.error("Failed to fetch SQL dump");
 return;
}

let sql = await response.text();
sql = sql
 .split(/;\s*\n/) // split on statement-ending semicolon
 .map(s => s.trim())
 .filter(Boolean)
 .map(s => s + ";"); // re-add semicolon

let size = Math.round(sql.length / 100);
for (let i = 0; i < sql.length; i += size) {
 console.log((i * 100) / sql.length, "%");
 await db.exec(sql.slice(i, i+size).join("\n"));
 await wait(50); // small delay to keep UI responsive
}

// Load into PGlite
console.log("done")

Datenbank läuft im Browser (kein Server nötig!)

Alle Queries führen Sie direkt in dieser Session aus

Die Daten bleiben im Browser-Speicher

-- PostgreSQL-Syntax: Alle Indexe in der aktuellen Datenbank
SELECT
 schemaname,
 tablename,
 indexname,
 indexdef
FROM pg_indexes
WHERE schemaname = 'public'

4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

1
2
3
4
5
6
7
8



-- PostgreSQL-Syntax: Alle Indexe in der aktuellen Datenbank

SELECT

 schemaname,

 tablename,

 indexname,

 indexdef

FROM pg_indexes

WHERE schemaname = 'public'

ORDER BY tablename, indexname

0 rows

Sie sehen vermutlich nur automatische Indexe auf Primärschlüsseln wie tconst_pkey oder
nconst_pkey . Gut – das ist unser Ausgangspunkt.

Experiment 0: (Index-) Scan Typen
Bevor wir zu komplexen Beispielen kommen, lernen wir die verschiedenen Scan-Strategien kennen.
PostgreSQL wählt unterschiedliche Ansätze, je nachdem welche Spalten abgefragt werden. Wir erstellen erst
einen Index und testen dann drei Szenarien.

Index auf primaryTitle erstellen

-- Index für unsere Experimente

CREATE INDEX IF NOT EXISTS

 idx_title

 ON title_basics(primaryTitle)

relation "title_basics" does not exist

Jetzt haben wir einen B-Baum-Index auf den Filmtiteln. Schauen wir uns an, wie PostgreSQL diesen Index
nutzt.

WHERE schemaname = public
ORDER BY tablename, indexname;

-- Index für unsere Experimente
CREATE INDEX IF NOT EXISTS
 idx_title
 ON title_basics(primaryTitle);

-- Bitmap Scan (vorläufig ausschalten)
SET enable_bitmapscan = off;

-- Suche nach Titel-Muster (Index kann nicht helfen!)

8
9

1
2
3
4
5
6
7

1

schemaname tablename indexname indexdef





-- Suche nach Titel-Muster (Index kann nicht helfen!)

EXPLAIN

SELECT primaryTitle, startYear

FROM title_basics

WHERE primaryTitle LIKE '%Matrix%'

relation "title_basics" does not exist

Sie sehen „Seq Scan“ – warum? Weil LIKE '%Matrix%' in der Mitte sucht. Der Index ist alphabetisch
sortiert, kann aber nur Präfix-Suchen optimieren. Hier muss jede Zeile gelesen werden.

Szenario 2: Index Scan (Index + Table)

EXPLAIN

SELECT primaryTitle, startYear, titleType, genres

FROM title_basics

WHERE primaryTitle LIKE 'Matrix%'

relation "title_basics" does not exist

Jetzt sehen Sie „Index Scan using idx_title“ – PostgreSQL nutzt den Index, um die Zeile zu finden, muss aber
zusätzlich die Tabelle lesen, um startYear , titleType und genres zu holen (die sind NICHT im
Index gespeichert).

Index Scan bedeutet: 1. Index durchsuchen → Zeilen-Position finden 2. Zur Tabelle (Heap) springen → Alle
Spalten lesen

Szenario 3: Index Only Scan (nur Index!)

EXPLAIN
SELECT primaryTitle, startYear
FROM title_basics
WHERE primaryTitle LIKE '%Matrix%';

EXPLAIN
SELECT primaryTitle, startYear, titleType, genres
FROM title_basics
WHERE primaryTitle LIKE 'Matrix%';

-- Query NUR auf die indexierte Spalte
EXPLAIN
SELECT primaryTitle
FROM title_basics
WHERE primaryTitle::Text = 'Interstellar';

2
3
4
5

1
2
3
4

1
2
3
4
5





-- Query NUR auf die indexierte Spalte

EXPLAIN

SELECT primaryTitle

FROM title_basics

WHERE primaryTitle::Text = 'Interstellar'

relation "title_basics" does not exist

Jetzt könnte PGlite/PostgreSQL einen „Index Only Scan“ verwenden – alle Daten (nur primaryTitle) sind
bereits im Index! Kein Table-Read nötig. Das ist die schnellste Variante.

Index Only Scan bedeutet:

Hinweis: In PGlite/PostgreSQL funktioniert Index Only Scan nur, wenn: - Alle SELECT-Spalten im Index sind -
Die Tabelle „visibility map“ hat (VACUUM wurde ausgeführt)

Bonus: COUNT mit Index

-- Zählen mit Index-Unterstützung

EXPLAIN ANALYZE

SELECT COUNT(*)

FROM title_basics

WHERE primaryTitle LIKE 'Matrix%'

relation "title_basics" does not exist

Diese Query findet 4 Filme mit „Matrix“ am Anfang. PGlite kann den Index nutzen, weil es eine Präfix-Suche
ist (sortierter Index hilft!). Je nach Optimierung sehen Sie einen Bitmap Index Scan.

Experiment 1: Index auf averageRating
Unser erstes Experiment: Wir suchen alle Titel mit einem Rating über 9.5. Erst ohne Index, dann mit Index –
und vergleichen die Performance.

Schritt 2: Baseline messen (ohne Index)

1.

2.

Index durchsuchen → Wert direkt aus Index lesen

Kein Heap-Zugriff nötig!

-- Zählen mit Index-Unterstützung

EXPLAIN ANALYZE
SELECT COUNT(*)
FROM title_basics
WHERE primaryTitle LIKE 'Matrix%';

1
2
3
4
5
6



-- Bitmap Scan (wieder einschalten)

SET enable_bitmapscan = on

ok

-- Query ohne Index analysieren

EXPLAIN ANALYZE

SELECT * FROM title_ratings

WHERE averagerating > 9.5

relation "title_ratings" does not exist

Das EXPLAIN ANALYZE zeigt uns, wie PostgreSQL die Query ausführt UND misst die tatsächliche Zeit.
Sie sehen vermutlich „Seq Scan on title_ratings“ – das bedeutet: Sequential Scan, jede Zeile wird gelesen.

Erwartete Ausgabe:

Jetzt führen wir die Query tatsächlich aus und zählen die Ergebnisse:

-- Query ausführen und Anzahl zählen

SELECT COUNT(*) FROM title_ratings

WHERE averagerating > 9.5

relation "title_ratings" does not exist

PGlite ist im Browser sehr schnell, aber bei größeren Datenmengen sehen Sie trotzdem den Unterschied.
Merken Sie sich die Ausführungszeit!

Schritt 3: Index erstellen

-- Bitmap Scan (wieder einschalten)
SET enable_bitmapscan = on;

-- Query ohne Index analysieren
EXPLAIN ANALYZE
SELECT * FROM title_ratings
WHERE averagerating > 9.5;

Seq Scan on title_ratings (cost=10000000000.00..10000002837.50 rows=45400
 =40)

-- Query ausführen und Anzahl zählen
SELECT COUNT(*) FROM title_ratings
WHERE averagerating > 9.5;

-- Index auf averagerating erstellen

1
2
3
4
5
6
7

1
2
3

1









-- Index auf averagerating erstellen

CREATE INDEX idx_rating ON title_ratings(averagerating)

relation "title_ratings" does not exist

Das Erstellen dauert ein paar Sekunden – die Datenbank sortiert jetzt alle 178.000+ Einträge nach Rating und
baut den B-Baum auf.

Schritt 4: Gleiche Query mit Index

-- Query erneut analysieren (mit Index)

EXPLAIN ANALYZE

SELECT * FROM title_ratings

WHERE averagerating > 9.5

relation "title_ratings" does not exist

Jetzt sollten Sie „Index Scan using idx_rating“ oder „Bitmap Index Scan“ sehen. PostgreSQL nutzt den Index!

Erwartete Ausgabe:

Messen wir erneut durch direktes Ausführen:

SELECT COUNT(*) FROM title_ratings

WHERE averagerating > 9.5

relation "title_ratings" does not exist

g g
CREATE INDEX idx_rating ON title_ratings(averagerating);

-- Query erneut analysieren (mit Index)
EXPLAIN ANALYZE
SELECT * FROM title_ratings
WHERE averagerating > 9.5;

Index Scan using idx_rating on title_ratings (cost=0.29..XXX.XX rows=XXXX
 =XX)
 Index Cond: (averagerating > '8.0'::numeric)

SELECT COUNT(*) FROM title_ratings
WHERE averagerating > 9.5;

2

1
2
3
4

1
2









Typisches Ergebnis: 2–10ms – das ist 5×–10× schneller! Je größer die Datenbank, desto dramatischer der
Unterschied.

Reflexion:

Cleanup: Index für nächstes Experiment entfernen

-- Index wieder löschen für saubere Ausgangslage

DROP INDEX IF EXISTS idx_rating

ok

Experiment 2: Composite Index auf startYear + titleType
Manchmal filtern Queries nach mehreren Spalten. Ein Composite Index (Multi-Column Index) kann hier
helfen – aber die Reihenfolge der Spalten ist wichtig!

Szenario: Alle Filme aus 2020 oder später

-- Query ohne Composite Index

EXPLAIN ANALYZE

SELECT * FROM title_basics

WHERE startyear >= '2020' AND titletype = 'movie'

relation "title_basics" does not exist

Ohne Index: Sequential Scan. Bei 178.000+ Titeln dauert das.

Wie groß war der Speedup bei Ihnen?

Würden Sie diesen Index in Production einsetzen?

Welche Queries würden davon profitieren?

-- Index wieder löschen für saubere Ausgangslage
DROP INDEX IF EXISTS idx_rating;

-- Query ohne Composite Index
EXPLAIN ANALYZE
SELECT * FROM title_basics
WHERE startyear >= '2020' AND titletype = 'movie';

1
2

1
2
3
4





Schritt 5: Composite Index erstellen

-- Wichtig: Reihenfolge beachten!

-- Meist gefilterte Spalte zuerst

CREATE INDEX idx_year_type ON title_basics(startyear, titletype)

relation "title_basics" does not exist

Warum diese Reihenfolge? Weil startYear eine Range ist (>=), titleType eine Gleichheit (=). B-
Bäume arbeiten am besten, wenn Ranges zuerst kommen.

Schritt 6: Query mit Composite Index

EXPLAIN ANALYZE

SELECT * FROM title_basics

WHERE startyear >= '2020' AND titletype = 'movie'

relation "title_basics" does not exist

Jetzt nutzt SQLite den Composite Index – aber nur, wenn beide Spalten im WHERE vorkommen!

Wichtige Erkenntnis:

Ein Index auf (A, B) hilft bei:

Reihenfolge der Spalten im Index ist entscheidend!

Testen Sie das selbst: Erstellen Sie einen Index (titleType, startYear) und vergleichen Sie die
Performance. Sie werden sehen: Oft langsamer!

Cleanup: Index für nächstes Experiment entfernen

-- Wichtig: Reihenfolge beachten!
-- Meist gefilterte Spalte zuerst
CREATE INDEX idx_year_type ON title_basics(startyear, titletype);

EXPLAIN ANALYZE
SELECT * FROM title_basics
WHERE startyear >= '2020' AND titletype = 'movie';

WHERE A = ... ✅

WHERE A = ... AND B = ... ✅

WHERE B = ... ❌ (Nur zweite Spalte → Index nutzlos!)

1
2
3

1
2
3





-- Index wieder löschen für saubere Ausgangslage

DROP INDEX IF EXISTS idx_year_type

ok

Experiment 3: JOIN-Performance mit Foreign Keys
Jetzt wird es dramatisch! Joins ohne Index sind der Performance-Albtraum schlechthin. Ohne Index auf der
JOIN-Spalte muss die Datenbank einen Nested Loop durchführen – bei 178.000 Zeilen bedeutet das
theoretisch 31 MILLIARDEN Vergleiche!

Szenario: Top-bewertete Filme mit allen Details

Schritt 7: Baseline ohne Index (LANGSAM!)

-- Query OHNE Index auf tconst analysieren

EXPLAIN ANALYZE

SELECT tb.primaryTitle, tr.averageRating, tb.startYear

FROM title_basics tb

JOIN title_ratings tr ON tb.tconst = tr.tconst

WHERE tr.averageRating >= '9.0'

ORDER BY tr.averageRating DESC

LIMIT 20

relation "title_basics" does not exist

Sie sehen vermutlich „Seq Scan“ auf beiden Tabellen und einen „Hash Join“ oder „Nested Loop“. Bei großen
Datenmengen ist das extrem langsam – jede Zeile aus titleratings muss mit ALLEN Zeilen aus titlebasics
verglichen werden.

Erwartete Ausgabe (ohne Index):

-- Index wieder löschen für saubere Ausgangslage
DROP INDEX IF EXISTS idx_year_type;

-- Query OHNE Index auf tconst analysieren
EXPLAIN ANALYZE
SELECT tb.primaryTitle, tr.averageRating, tb.startYear
FROM title_basics tb
JOIN title_ratings tr ON tb.tconst = tr.tconst
WHERE tr.averageRating >= '9.0'
ORDER BY tr.averageRating DESC
LIMIT 20;

H h J i (t 5000 15000 10000)

1
2

1
2
3
4
5
6
7
8







Messen wir die tatsächliche Zeit durch direktes Ausführen:

-- Query ausführen und Ergebnisse zählen

SELECT COUNT(*) as result_count

FROM title_basics tb

JOIN title_ratings tr ON tb.tconst = tr.tconst

WHERE tr.averageRating >= '9.0'

relation "title_basics" does not exist

Bei mir im Browser dauert das ohne Index spürbar länger – merken Sie sich die Zeit!

Schritt 8: Indexe auf JOIN-Spalten erstellen

-- Index auf tconst in BEIDEN Tabellen erstellen

CREATE INDEX IF NOT EXISTS idx_tconst_basics ON title_basics(tconst)

relation "title_basics" does not exist

Das Erstellen dauert ein paar Sekunden – die Datenbank baut jetzt B-Bäume für schnelle Lookups auf. In
Production würden diese Indexe normalerweise bereits existieren (besonders auf Primär- und
Fremdschlüsseln).

Schritt 9: Gleiche Query mit Index

Hash Join (cost=5000..15000 rows=10000)
 -> Seq Scan on title_basics tb
 -> Hash
 -> Seq Scan on title_ratings tr
 Filter: (averageRating >= '9.0')

-- Query ausführen und Ergebnisse zählen
SELECT COUNT(*) as result_count
FROM title_basics tb
JOIN title_ratings tr ON tb.tconst = tr.tconst
WHERE tr.averageRating >= '9.0';

-- Index auf tconst in BEIDEN Tabellen erstellen
CREATE INDEX IF NOT EXISTS idx_tconst_basics ON title_basics(tconst);
CREATE INDEX IF NOT EXISTS idx_tconst_ratings ON title_ratings(tconst)

-- Bonus: Index auf averageRating für den WHERE-Filter
CREATE INDEX IF NOT EXISTS idx_rating ON title_ratings(averageRating);

-- Query erneut analysieren (MIT Index)
EXPLAIN ANALYZE
SELECT tb.primaryTitle tr.averageRating tb.startYear

1
2
3
4
5

1
2
3
4
5
6

1
2
3









-- Query erneut analysieren (MIT Index)

EXPLAIN ANALYZE

SELECT tb.primaryTitle, tr.averageRating, tb.startYear

FROM title_basics tb

JOIN title_ratings tr ON tb.tconst = tr.tconst

WHERE tr.averageRating >= '9.0'

ORDER BY tr.averageRating DESC

LIMIT 20

relation "title_basics" does not exist

Jetzt sollten Sie „Index Scan“ oder „Index Only Scan“ sehen – die Datenbank nutzt die Indexe! Der JOIN wird
dramatisch schneller.

Erwartete Ausgabe (mit Index):

Die Komplexität ist von O(n²) auf O(n log n) gesunken – das ist bei großen Datenmengen der Unterschied
zwischen Minuten und Millisekunden!

Performance-Vergleich:

-- Erneut ausführen und Zeit vergleichen

SELECT COUNT(*) as result_count

FROM title_basics tb

JOIN title_ratings tr ON tb.tconst = tr.tconst

WHERE tr.averageRating >= '9.0'

relation "title_basics" does not exist

SELECT tb.primaryTitle, tr.averageRating, tb.startYear
FROM title_basics tb
JOIN title_ratings tr ON tb.tconst = tr.tconst
WHERE tr.averageRating >= '9.0'
ORDER BY tr.averageRating DESC
LIMIT 20;

Nested Loop (cost=0.29..500 rows=10000)
 -> Index Scan using idx_rating on title_ratings tr
 Index Cond: (averageRating >= '9.0')
 -> Index Scan using idx_tconst_basics on title_basics tb
 Index Cond: (tconst = tr.tconst)

-- Erneut ausführen und Zeit vergleichen
SELECT COUNT(*) as result_count
FROM title_basics tb
JOIN title_ratings tr ON tb.tconst = tr.tconst
WHERE tr.averageRating >= '9.0';

3
4
5
6
7
8

1
2
3
4
5





Typisches Ergebnis: 5–20× schneller! Bei Millionen von Zeilen wäre der Unterschied noch dramatischer – aus
mehreren Minuten werden Sekunden.

Best Practice:

Jede Foreign Key-Spalte sollte einen Index haben.

Das gilt besonders für: - Primärschlüssel (meist automatisch) - Foreign Keys (oft manuell erstellen!) -
Häufig gejoinete Spalten

Unsere IMDB-Demo-DB hat bewusst KEINE Indexe, um den Performance-Unterschied zu zeigen. In
Production wäre das ein kritischer Fehler!

Reflexion: Überlegen Sie sich – welche anderen Spalten in der IMDB-Datenbank würden von Indexen
profitieren? Welche nicht?

Cleanup: Indexe für nächstes Experiment entfernen

-- Alle Indexe wieder löschen für saubere Ausgangslage

DROP INDEX IF EXISTS idx_tconst_basics

ok

DROP INDEX IF EXISTS idx_tconst_ratings

ok

DROP INDEX IF EXISTS idx_rating

ok

Experiment 4: Partielle Indexe (Filtered Indexes)
Partial Indexes sind Indexe mit einer WHERE-Bedingung – sie indexieren nur einen Teil der Daten. Das spart
Speicher, beschleunigt Writes und macht Queries auf diesem Subset extrem schnell!

Szenario: Moderne Film-Discovery-App

-- Alle Indexe wieder löschen für saubere Ausgangslage
DROP INDEX IF EXISTS idx_tconst_basics;
DROP INDEX IF EXISTS idx_tconst_ratings;
DROP INDEX IF EXISTS idx_rating;

-- Typische Query: Nur moderne Filme (seit 2020)
SELECT primaryTitle, startYear, titleType

1
2
3
4

1
2





-- Typische Query: Nur moderne Filme (seit 2020)

SELECT primaryTitle, startYear, titleType

FROM title_basics

WHERE startYear >= '2020' AND titleType = 'movie'

ORDER BY startYear DESC

relation "title_basics" does not exist

Diese App interessiert sich fast ausschließlich für neue Filme – alte Filme werden selten abgefragt. Ein
normaler Index würde alle 178.124 Zeilen indexieren. Brauchen wir das wirklich?

Schritt 10: Datenverteilung analysieren

-- Wie viele Filme gibt es ab 2020?

SELECT

 'Moderne Filme (2020+)' as category,

 COUNT(*) as count,

 ROUND(100.0 * COUNT(*) / (SELECT COUNT(*) FROM title_basics), 1) as percent

FROM title_basics

WHERE startYear >= '2020'

UNION ALL

SELECT

 'Alle Filme' as category,

 COUNT(*) as count,

 100.0 as percent

FROM title_basics

relation "title_basics" does not exist

S C p a y tle, sta t ea , t tle ype
FROM title_basics
WHERE startYear >= '2020' AND titleType = 'movie'
ORDER BY startYear DESC;

-- Wie viele Filme gibt es ab 2020?
SELECT
 'Moderne Filme (2020+)' as category,
 COUNT(*) as count,
 ROUND(100.0 * COUNT(*) / (SELECT COUNT(*) FROM title_basics), 1) as
 percent
FROM title_basics
WHERE startYear >= '2020'
UNION ALL
SELECT
 'Alle Filme' as category,
 COUNT(*) as count,
 100.0 as percent
FROM title_basics;

3
4
5

1
2
3
4
5

6
7
8
9
10
11
12
13



Sie sehen: Nur 42.396 Filme (24%) sind seit 2020. Warum sollten wir einen Index auf 100% der Daten bauen,
wenn 76% irrelevant sind?

Schritt 11: Partial Index erstellen

-- Partial Index: NUR moderne Filme indexieren

CREATE INDEX idx_modern_films

ON title_basics(startYear, titleType)

WHERE startYear >= '2020'

relation "title_basics" does not exist

Dieser Index ist 76% kleiner als ein vollständiger Index – aber genauso schnell für Queries auf moderne
Filme!

Schritt 12: Performance-Vergleich

-- Query mit Partial Index

EXPLAIN ANALYZE

SELECT primaryTitle, startYear

FROM title_basics

WHERE startYear >= '2020' AND titleType = 'movie'

ORDER BY startYear DESC

LIMIT 100

relation "title_basics" does not exist

Sie sollten „Index Scan using idxmodernfilms“ sehen – der Partial Index wird genutzt! Weil die Query-
Bedingung (startYear >= '2020') die Index-Bedingung enthält.

Wann wird der Partial Index NICHT genutzt?

-- Partial Index: NUR moderne Filme indexieren
CREATE INDEX idx_modern_films
ON title_basics(startYear, titleType)
WHERE startYear >= '2020';

-- Query mit Partial Index
EXPLAIN ANALYZE
SELECT primaryTitle, startYear
FROM title_basics
WHERE startYear >= '2020' AND titleType = 'movie'
ORDER BY startYear DESC
LIMIT 100;

-- Query außerhalb des Index-Filters

1
2
3
4

1
2
3
4
5
6
7

1







-- Query außerhalb des Index-Filters

EXPLAIN ANALYZE

SELECT primaryTitle, startYear

FROM title_basics

WHERE startYear >= '2010' AND titleType = 'movie'

LIMIT 100

relation "title_basics" does not exist

Jetzt sehen Sie „Seq Scan“ – der Partial Index wird ignoriert! Warum? Die Query fragt nach Filmen ab 2010,
aber der Index hat nur Daten ab 2020. PostgreSQL kann ihn nicht nutzen.

Trade-offs: Wann sind Partial Indexes sinnvoll?

✅ Verwenden bei: - Hot Data: 80% der Queries greifen auf 20% der Daten zu (z.B. nur aktuelle Filme) -
Status-Filter: Nur status = 'active' indexieren (oft 5-10% der Daten) - Zeitbasierte Daten: Nur
letzte 2 Jahre (alte Daten selten relevant) - Hohe Write-Last: Weniger Index-Updates bei INSERTs/UPDATEs

❌ NICHT verwenden bei: - Queries über verschiedene Zeiträume (manchmal 2020+, manchmal 2010+) -
Gleichmäßige Datenverteilung (keine Hot Spots) - Kleine Tabellen (< 10.000 Zeilen – Overhead nicht wert)

Reale Performance-Zahlen:

Cleanup: Index für saubere Ausgangslage entfernen

EXPLAIN ANALYZE
SELECT primaryTitle, startYear
FROM title_basics
WHERE startYear >= '2010' AND titleType = 'movie'
LIMIT 100;

-- Normaler Composite Index
CREATE INDEX idx_all_films ON title_basics(startYear, titleType);
-- Größe: ~178.124 Einträge

-- Partial Index (unserer)
CREATE INDEX idx_modern_films ON title_basics(startYear, titleType)
WHERE startYear >= '2020';
-- Größe: ~42.396 Einträge (76% kleiner!)

-- Speedup bei INSERTs: ~20% schneller (weniger Index-Updates)
-- Speedup bei Queries auf 2020+: Gleich schnell wie normaler Index
-- Memory: 76% weniger RAM-Verbrauch

-- Index wieder löschen
DROP INDEX IF EXISTS idx_modern_films;

2
3
4
5
6

1
2





-- Index wieder löschen

DROP INDEX IF EXISTS idx_modern_films

ok

Best Practice für IMDB-App:

Wenn 90% der Queries moderne Filme abfragen, ist ein Partial Index optimal: - Schnellere Writes
(weniger Index-Maintenance) - Kleinerer Index (passt besser in Cache) - Gleiche Query-Performance
für relevante Daten

Trade-off: Queries auf alte Filme (< 2020) machen Sequential Scan – aber das ist selten!

Reflexion: Welche anderen Partial Indexes wären für IMDB sinnvoll? Z.B. nur Top-Ratings (WHERE
averageRating >= 8.0) oder nur Serien (WHERE titleType = 'tvSeries')?

EXPLAIN ANALYZE: Query Plans verstehen
Bisher haben wir mit EXPLAIN ANALYZE gearbeitet – das zeigt uns sowohl den Plan ALS AUCH die
tatsächliche Ausführung mit echten Timings. Das ist besonders wertvoll in PostgreSQL!

Lassen Sie uns einen Query Plan Schritt für Schritt lesen. Das ist wie eine Landkarte für die Datenbank.

Anatomie eines Query Plans

EXPLAIN ANALYZE

SELECT tb.primarytitle, tr.averagerating

FROM title_basics tb

JOIN title_ratings tr ON tb.tconst = tr.tconst

WHERE tr.averagerating > 9.0 AND tb.startyear > '2010'

relation "title_basics" does not exist

Ein typischer PostgreSQL-Plan sieht so aus:

EXPLAIN ANALYZE
SELECT tb.primarytitle, tr.averagerating
FROM title_basics tb
JOIN title_ratings tr ON tb.tconst = tr.tconst
WHERE tr.averagerating > 9.0 AND tb.startyear > '2010';

Hash Join (cost=X..Y rows=Z width=W) (actual time=...)
 Hash Cond: (tb.tconst = tr.tconst)

S S titl b i tb (t)

1
2
3
4
5





Was bedeutet das? Die Datenbank arbeitet von innen nach außen:

Das ist ein effizienter Plan: Zwei Index-Lookups, kein Sequential Scan. Gut!

{{4}}

Scan-Typen verstehen

Seq Scan Sequential Scan (jede Zeile) 🐌 Langsam

Index Scan Index Scan (B-Baum) 🚀 Schnell

Index Only Scan Alle Daten aus Index 🚀🚀 Ultraschnell

Bitmap Index Scan Index + Bitmap für viele Zeilen 🚀 Mittelschnell

Hash Join / Merge Join Effiziente JOIN-Strategien 🚀 Schnell

Ihr Ziel beim Optimieren: SCAN vermeiden, SEARCH maximieren!

{{5}}

 -> Seq Scan on title_basics tb (cost=...)
 Filter: ((startyear)::text > '2010'::text)
 -> Hash (cost=...)
 -> Index Scan using idx_rating on title_ratings tr (cost=...)
 Index Cond: (averagerating > '9.0'::numeric)

1.

2.

3.

SEARCH tr USING INDEX idx_rating

Start: Durchsuche title_ratings mit Index idx_rating

Filter: averageRating > 9.0

Ergebnis: Liste von tconst -Werten

SEARCH tb USING INTEGER PRIMARY KEY

Für jeden tconst aus Schritt 1:

Suche passende Zeile in title_basics

Nutze Primary Key (schneller Lookup)

Impliziter Filter:

Prüfe startYear > '2010'

Nur Zeilen, die beide Bedingungen erfüllen

Scan-Typ (PostgreSQL) Bedeutung Performance

Checkliste für Query-Plan-Analyse
Wenn Sie einen Query Plan sehen, fragen Sie sich:

Mit dieser Checkliste können Sie selbst komplexe Queries debuggen und optimieren.

Wann Indexe NICHT helfen
Jetzt kommt der kritische Teil: Indexe sind kein Allheilmittel. Es gibt Situationen, in denen sie sogar schaden
können. Lassen Sie uns vier typische Fälle analysieren.

Fall 1: Kleine Tabellen
Bei Tabellen mit weniger als 1000 Zeilen ist der Overhead eines Index oft größer als der Nutzen.

Beispiel:

Ohne Index: 100 Zeilen lesen = 1ms. Mit Index: Index lesen + Zeilen lesen = 1ms. Kein Unterschied – aber der
Index kostet Speicher und verlangsamt INSERTs.

Faustregel:

Gibt es Seq Scans? → Fehlende Indexe?

Werden die richtigen Indexe genutzt? → Vergleich mit pg_indexes

Ist die Reihenfolge der JOINs sinnvoll? → Kleinste Tabelle zuerst

Gibt es Subqueries, die vermeidbar wären? → CTEs oder Joins nutzen

Sind Filter früh angewendet? → WHERE vor JOIN

Sind die Kosten (cost) realistisch? → ANALYZE regelmäßig ausführen

-- Tabelle mit 100 Einträgen
SELECT * FROM users WHERE role = 'admin';

< 100 Zeilen: Nie Index (außer Primary Key)

100–1000 Zeilen: Nur bei sehr häufigen Queries

1000 Zeilen: Index meist sinnvoll



Fall 2: Hohe Write-Last
Jeder INSERT, UPDATE, DELETE muss alle Indexe aktualisieren. Bei schreibintensiven Anwendungen wird das
zum Flaschenhals.

Szenario: Logging-Tabelle mit 10.000 Einträgen pro Sekunde

Mit 5 Indexen muss die Datenbank bei jedem INSERT 5 B-Bäume aktualisieren – das kostet Performance.

Trade-off-Strategie:

In Data Warehouses (viel Lesen, wenig Schreiben) sind 10+ Indexe normal. In OLTP-Systemen (viel Schreiben)
sind 2–3 Indexe oft optimal.

Fall 3: Low Selectivity
„Selectivity“ bedeutet: Wie viele verschiedene Werte hat eine Spalte? Bei niedriger Selectivity (wenige Werte)
bringt ein Index kaum etwas.

Beispiel: Geschlecht in einer Nutzertabelle

Angenommen, 50% der Nutzer sind weiblich. Ein Index hilft hier nicht – die Datenbank müsste trotzdem die
Hälfte aller Zeilen lesen!

Selectivity berechnen (Konzept):

INSERT INTO access_logs (timestamp, user_id, endpoint)
VALUES (NOW(), 42, '/api/data');

1.

2.

3.

Option A: Wenige Indexe (nur die wichtigsten)

Option B: Batch-Inserts ohne Index, später REINDEX

Option C: Partitionierung (z.B. nach Datum)

SELECT * FROM users WHERE gender = 'F';

-- Beispiel mit IMDB: Wie viele verschiedene titletype-Werte?
SELECT COUNT(DISTINCT titletype) FROM title_basics;

-- Wie viele Zeilen insgesamt?
SELECT COUNT(*) FROM title_basics;

-- Selectivity = DISTINCT values / Total rows
-- Wenn das Ergebnis < 5%, ist ein Index oft nicht sinnvoll

1
2
3
4
5
6
7
8







-- Beispiel mit IMDB: Wie viele verschiedene titletype-Werte?

SELECT COUNT(DISTINCT titletype) FROM title_basics

relation "title_basics" does not exist

Faustregel: Index nur, wenn Selectivity > 5%. Bei Gender (0.002%) ist ein Index verschwendet.

Hohe Selectivity = Index sinnvoll:

Niedrige Selectivity = Index nutzlos:

Fall 4: Funktionen in WHERE-Klauseln
Wenn Sie in WHERE eine Funktion auf die Spalte anwenden, kann SQLite den Index oft nicht nutzen.

Beispiel:

-- Index wird NICHT genutzt:

SELECT * FROM title_basics

WHERE LOWER(primarytitle) = 'inception'

relation "title_basics" does not exist

Warum? Der Index ist auf primaryTitle gebaut – aber LOWER(primaryTitle) ist ein anderer
Wert. Die Datenbank müsste jeden Eintrag transformieren.

E-Mail-Adressen (100% unique)

IDs (100% unique)

Namen (80%+ unique)

Boolean-Felder (50% Selectivity)

Status-Felder (z.B. active/inactive)

Geschlecht (50% Selectivity)

-- Index wird NICHT genutzt:
SELECT * FROM title_basics
WHERE LOWER(primarytitle) = 'inception';

-- Index WIRD genutzt:
SELECT * FROM title_basics
WHERE primarytitle = 'Inception';

1
2
3
4
5
6
7



Lösungen:

-- PostgreSQL: Expression Index (Function-Based Index)

CREATE INDEX idx_title_lower ON title_basics(LOWER(primarytitle))

relation "title_basics" does not exist

Weitere Funktionen, die Indexe „brechen“: SUBSTRING() , CONCAT() , DATE() , arithmetische
Operationen (salary * 1.1).

Best Practice:

Indexe funktionieren am besten auf rohen Spaltenwerten.

Best Practices & Strategien
Sie haben jetzt gesehen, wie Indexe funktionieren – und wann sie scheitern. Lassen Sie uns das in actionable
Strategien übersetzen.

1. Analysiere erst, optimiere dann
Der häufigste Fehler: „Blindly“ Indexe erstellen, ohne zu messen. Das führt zu Index-Bloat und verschlechtert
die Performance.

1.

2.

3.

Funktion vermeiden: Exakte Suche statt Case-Insensitive

Computed Column: Spalte mit LOWER(primarytitle) speichern + Index darauf

Function-Based Index: In PostgreSQL möglich! (Beispiel unten)

-- PostgreSQL: Expression Index (Function-Based Index)
CREATE INDEX idx_title_lower ON title_basics(LOWER(primarytitle));

-- Jetzt funktioniert die Query mit Index:
SELECT * FROM title_basics WHERE LOWER(primarytitle) = 'inception';

✅ WHERE startyear = '2020'

❌ WHERE CAST(startyear AS INTEGER) = 2020

✅ WHERE created_at > '2024-01-01'

❌ WHERE EXTRACT(YEAR FROM created_at) = 2024

✅ (PostgreSQL) CREATE INDEX ON table(EXTRACT(YEAR FROM created_at))

1
2
3
4
5



Workflow:

Viele Datenbanken bieten Tools, um ungenutzte Indexe zu finden. In PostgreSQL:
pg_stat_user_indexes . In SQLite: Manuelle Analyse mit EXPLAIN.

2. Index auf häufig gefilterte Spalten
Schauen Sie sich Ihre Top 10 langsamsten Queries an. Welche Spalten tauchen in WHERE, JOIN, ORDER BY
auf?

Prioritätsliste:

🔴 Hoch Foreign Keys user_id , product_id , order_id

🔴 Hoch Häufige WHERE-Filter status , created_at , email

🟡 Mittel ORDER BY-Spalten created_at DESC , price ASC

🟡 Mittel GROUP BY-Spalten category , region

🟢 Niedrig Selten genutzte Spalten middle_name , favorite_color

Ein einfacher Trick: Loggen Sie alle SQL-Queries über eine Woche und zählen Sie, welche Spalten am
häufigsten gefiltert werden.

1.

2.

3.

4.

5.

6.

Profiling: Welche Queries sind langsam? (> 100ms)

EXPLAIN: Query Plan analysieren – wo sind Sequential Scans?

Index Candidate: Welche WHERE/JOIN-Spalten werden gefiltert?

Erstellen: Index auf diese Spalten

Messen: Hat sich die Performance verbessert?

Monitoring: Index-Nutzung über Zeit beobachten

-- PostgreSQL: Unused Indexes finden
-- (Hinweis: pg_stat_user_indexes ist in PGlite möglicherweise nicht verfüg
-- funktioniert aber in vollständigen PostgreSQL-Installationen)
SELECT schemaname, tablename, indexname, idx_scan
FROM pg_stat_user_indexes
WHERE idx_scan = 0 AND indexname NOT LIKE 'pg_toast%';

Prio Spalten-Typ Beispiel



3. Composite Indexe richtig nutzen
Die Reihenfolge der Spalten in einem Composite Index ist kritisch. Hier ist die Formel:

Reihenfolge-Regel:

Beispiel: Realistische IMDB-Query mit mehreren Filtern

-- Alle Filme seit zwischen 2015 und 2017

EXPLAIN ANALYZE

SELECT primaryTitle, startYear

FROM title_basics tb

WHERE titleType = 'movie'

 AND startYear >= '2015'

 AND startYEAR <= 2017

ORDER BY startYear DESC

LIMIT 50

relation "title_basics" does not exist

Diese Query findet 1.638 Top-Filme seit 2015. Ohne Index: Sequential Scan über 178.124 Zeilen. Welcher
Index wäre optimal?

Optimaler Composite Index:

1.

2.

3.

Equality-Filter zuerst: WHERE titleType = 'movie'

Range-Filter danach: WHERE startYear >= '2020'

ORDER BY zuletzt: ORDER BY startYear DESC

-- Alle Filme seit zwischen 2015 und 2017
EXPLAIN ANALYZE
SELECT primaryTitle, startYear
FROM title_basics tb
WHERE titleType = 'movie'
 AND startYear >= '2015'
 AND startYEAR <= 2017
ORDER BY startYear DESC
LIMIT 50;

-- Equality (titleType) zuerst, Range (startYear) danach
CREATE INDEX idx_type_year
ON title_basics(titleType, startYear);

1
2
3
4
5
6
7
8
9

1
2
3





-- Equality (titleType) zuerst, Range (startYear) danach

CREATE INDEX idx_type_year

ON title_basics(titleType, startYear)

relation "title_basics" does not exist

Warum diese Reihenfolge? titleType = 'movie' ist eine Equality (=), startYear >= '2015'
ist eine Range (>=). B-Bäume filtern erst exakt, dann im Bereich.

Test: Query mit optimalem Index

EXPLAIN ANALYZE

SELECT COUNT(*)

FROM title_basics

WHERE titleType = 'movie' AND startYear >= '2015'

relation "title_basics" does not exist

Sie sehen vermutlich „Index Scan using idx_type_year“ oder „Bitmap Index Scan“ – der Index wird effizient
genutzt!

Falscher Index: Range zuerst

DROP INDEX IF EXISTS idx_type_year

ok

-- FALSCH: Range (startYear) vor Equality (titleType)

CREATE INDEX idx_year_type_wrong

ON title_basics(startYear, titleType)

relation "title_basics" does not exist

EXPLAIN ANALYZE
SELECT COUNT(*)
FROM title_basics
WHERE titleType = 'movie' AND startYear >= '2015';

DROP INDEX IF EXISTS idx_type_year;
-- FALSCH: Range (startYear) vor Equality (titleType)
CREATE INDEX idx_year_type_wrong
ON title_basics(startYear, titleType);

1
2
3
4

1
2
3
4





Mit diesem Index kann PostgreSQL nur startYear nutzen – titleType wird ignoriert, weil es nach
der Range kommt. Bei 136 verschiedenen Jahren weniger effizient!

Vergleich: Welche Queries profitieren?

Merke: Die WHERE-Reihenfolge im SQL ist egal – aber die Index-Spalten-Reihenfolge ist kritisch!

4. Redundante Indexe vermeiden
Ein Index auf (A, B) deckt auch Queries auf A allein ab. Aber nicht auf B allein!

Beispiel:

Das bedeutet: Sie brauchen keinen separaten Index auf startYear , wenn Sie bereits (startYear,
titleType) haben.

Redundanz-Check:

-- Index: (titleType, startYear)

-- ✅ NUTZT Index effizient:
WHERE titleType = 'movie' AND startYear >= '2015';

-- ✅ NUTZT Index teilweise (nur titleType):
WHERE titleType = 'movie';

-- ⚠️ NUTZT Index schlecht (nur startYear):
WHERE startYear >= '2015';

-- ❌ NUTZT Index NICHT:
WHERE startYear >= '2015' AND titleType = 'movie'; -- Reihenfolge egal!

-- Gegeben: Index auf (startyear, titletype)

-- ✅ Index wird genutzt:
WHERE startyear = '2020';

-- ✅ Index wird genutzt:
WHERE startyear = '2020' AND titletype = 'movie';

-- ❌ Index wird NICHT effizient genutzt:
WHERE titletype = 'movie';

Index (A) + Index (A, B) → Redundant! Lösche (A)

Index (A, B) + Index (B, A) → Nicht redundant (verschiedene Queries)

Index (A) + Index (B) → Nicht redundant (verschiedene Spalten)





5. Monitoring & Wartung
Indexe fragmentieren über Zeit – besonders bei vielen UPDATE/DELETE-Operationen. Regelmäßige Wartung
ist nötig.

PostgreSQL/PGlite:

-- Statistiken aktualisieren (wichtig für Query Planer!)

ANALYZE

ok

-- Spezifische Tabelle analysieren

ANALYZE title_ratings

relation "title_ratings" does not exist

In PostgreSQL ist ANALYZE besonders wichtig – der Query Planer braucht aktuelle Statistiken, um die
besten Indexe zu wählen!

Monitoring-Metriken:

Empfohlene Frequenz: VACUUM wöchentlich, REINDEX monatlich (oder bei Performance-Problemen).

Referenzen & Ressourcen
Pflichtlektüre

Hier sind weiterführende Ressourcen zum Thema Indexe und Performance:

-- Statistiken aktualisieren (wichtig für Query Planer!)
ANALYZE;

-- Spezifische Tabelle analysieren
ANALYZE title_ratings;

-- Index neu aufbauen (selten nötig)
REINDEX INDEX idx_rating;

Index Size: Zu groß? Redundante Indexe?

Index Scans: Wird der Index genutzt?

Sequential Scans: Steigen sie an?

Write Performance: Verlangsamen Indexe INSERTs?

1
2
3
4
5
6
7
8



Weiterführende Ressourcen

Tools für die Praxis

Das war Session 12! Sie haben jetzt die Werkzeuge, um jede PostgreSQL-Datenbank zu analysieren und zu
optimieren – direkt im Browser mit PGlite. In der nächsten Session erweitern wir Ihr SQL-Arsenal mit
Advanced Techniques – alles aufbauend auf dem, was Sie heute gelernt haben.

Happy Optimizing mit PGlite! 🚀📊

Use The Index, Luke! – https://use-the-index-luke.com → Bestes kostenloses Buch zu SQL-Indexen
(auch als Print)

PostgreSQL: Using EXPLAIN – https://www.postgresql.org/docs/current/using-explain.html → Query
Plans verstehen (direkt für PGlite relevant!)

PostgreSQL Indexes – https://www.postgresql.org/docs/current/indexes.html → Offizielle
Dokumentation mit fortgeschrittenen Techniken

B-Tree Visualisierung – https://www.cs.usfca.edu/~galles/visualization/BTree.html → Interaktive
Animation der Datenstruktur

DuckDB Performance Guide – https://duckdb.org/docs/guides/performance/indexing → Moderne
Ansätze (Column Store statt B-Tree)

Artikel: „When NOT to use an index“ – Stack Overflow → Diskussion zu Edge Cases

YouTube: „Database Indexing Explained“ – Hussein Nasser → Video-Tutorial (30 Min)

PGlite – https://pglite.dev → PostgreSQL im Browser (was wir in dieser Session nutzen!)

DBeaver – https://dbeaver.io → Universeller Datenbank-Client (mit EXPLAIN-Visualisierung)

pgAdmin – https://www.pgadmin.org → PostgreSQL-spezifisch, gute Query-Analyse

EXPLAIN Visualizer – https://explain.dalibo.com → PostgreSQL EXPLAIN Plans visualisieren



https://use-the-index-luke.com/
https://use-the-index-luke.com/
https://www.postgresql.org/docs/current/using-explain.html
https://www.postgresql.org/docs/current/using-explain.html
https://www.postgresql.org/docs/current/indexes.html
https://www.postgresql.org/docs/current/indexes.html
https://www.cs.usfca.edu/~galles/visualization/BTree.html
https://www.cs.usfca.edu/~galles/visualization/BTree.html
https://duckdb.org/docs/guides/performance/indexing
https://duckdb.org/docs/guides/performance/indexing
https://pglite.dev/
https://pglite.dev/
https://dbeaver.io/
https://dbeaver.io/
https://www.pgadmin.org/
https://www.pgadmin.org/
https://explain.dalibo.com/
https://explain.dalibo.com/

