Session 12: Indexe & Performance

Willkommen zur Session {iber Indexe und Performance! In der letzten Session haben Sie gesehen, wie KI mit
MCP SQL-Queries generiert — aber sind diese Queries auch effizient? Heute lernen Sie, Performance zu
messen, zu verstehen und zu optimieren.

Stellen Sie sich vor: Eine Query lauft auf der IMDB-Datenbank mit liber 178.000 Titeln. Ohne Index scannt die
Datenbank jede einzelne Zeile. Mit dem richtigen Index? Direkter Zugriff in Millisekunden. Das ist der
Unterschied, den wir heute mit PGlite live erleben werden.

Lernziele dieser Session:
e \/erstehen, was Indexe sind und wie sie funktionieren
* Praktische Indexe mit PGlite erstellen und Performance messen
® Query Plans mit EXPLAIN ANALYZE lesen kdnnen
e Kritisch bewerten: Wann Indexe sinnvoll sind (und wann nicht)

® Best Practices fur Index-Strategien anwenden

Motivation: Der Performance-Unterschied

Lassen Sie uns mit einem konkreten Problem beginnen. Sie haben in Session 11 mit MCP die IMDB-
Datenbank erkundet. GitHub Copilot hat lhnen SQL-Queries generiert — aber niemand hat iber Performance
gesprochen.

Nehmen wir eine typische Anfrage: ,Zeige mir alle Filme mit einem Rating liber 8.0 Klingt einfach, oder?

Das Problem:

SELECT tb.primarytitle, tr.averagerating, tb.startyear
FROM title_basics tb

JOIN title_ratings tr ON tb.tconst = tr.tconst

WHERE tr.averagerating > 8.0 AND tb.titletype = 'movie';

primarytitle

I

I

| Milionar pentru o zi

| Napoleon

| Zeinab

| It's a Wise Child

| Geld fallt vom Himmel
| La tonta del bote

| Herzensfreud - Herzensleid
| The Best Years of Our Lives
I

I

I

© 00 N O 0 b W N K

Abhimanyu

Los tres huastecos

Pathala Bhairavi

12 | The Life of Oharu
(more rows)

-
)

8.3
8.2
8.6
8.4
8.2
8.6
8.6
8.1
8.2
8.1
8.5
8.1

Ohne Index durchsucht PostgreSQL jede einzelne Zeile in title_ratings - das sind liber 178.000 Eintrage! Bei
einer grof3en Produktionsdatenbank waren das Millionen oder Milliarden.

Szenario ohne Index:

e Sequential Scan tiber 178.000+ Zeilen

e Jede Zeile wird gelesen und gefiltert

* Typische Ausflihrungszeit: 50-200ms (abhangig vom System)
Szenario mit Index:

* Index Scan nur auf relevante Zeilen

* Direkter Zugriff via B-Baum

* Typische Ausflihrungszeit: 5-20ms (10x schneller!)

Das ist nicht nur ein akademisches Problem. In einer E-Commerce-Anwendung bedeutet das: 10x schnellere
Produktsuche, 10x mehr gleichzeitige Nutzer, 10x bessere User Experience.

Frage zum Nachdenken:

Wenn eine Query ohne Index 100ms braucht und 1000x pro Sekunde ausgefuhrt wird - wie viel CPU-
Zeit sparen Sie mit einem 10x schnelleren Index?

Was sind Indexe?

Bevor wir in die Praxis gehen, lassen Sie uns verstehen, was Indexe eigentlich sind. Die beste Metapher: Ein
Buchindex.

Konzept: Datenbank-Indexe

Stellen Sie sich ein Fachbuch mit 1000 Seiten vor. Sie suchen den Begriff ,,B-Baum*. Ohne Index miissten Sie
jede Seite durchblattern - das dauert. Mit Index? Sie schauen hinten nach, finden ,,B-Baum - Seite 342 und
springen direkt dorthin.

Ein Index ist eine zusatzliche Datenstruktur, die Spalten einer Tabelle sortiert und schnellen Zugriff
ermoglicht.

Ohne Index:

Table: title ratings

tconst averageRating| numVotes
110000001 5.7 2000 « Scan Zeile 1
tt0000002 6.1 300 « Scan Zeile 2
tt0000003 8.2 5000 « Scan Zeile 3
—_ —_ _ « Scan Zeile 4-178000
tt0999999 7.5 1200 « Scan Zeile 178000

!

Sequential Scan (langsam!)

Mit Index auf| averageRating |:

B-Tree Index:
[7.5]

~

/
[6.0] [8.5]
/ N\ /
[5.0][6.5][8.0][9.0]
! l ! !
Direkte Pointer zu Zeilen mit Rating 8.0+

B-Baum: Die Datenstruktur hinter Indexen

Der Index ist wie ein sortierter Wegweiser. Anstatt linear zu suchen, navigieren Sie durch einen Baum - das ist
logarithmisch schneller: O(log n) statt O(n).

Die meisten Datenbanken (SQLite, PostgreSQL, MySQL) nutzen B-Baume (balanced trees) fiir Indexe.
Eigenschaften:

¢ Selbstbalancierend (immer gleiche Tiefe)

* Mehrere Werte pro Knoten (Cache-effizient)

* Sortierte Speicherung (Range-Queries moglich)
Zeitkomplexitat:

* Suche: O(logn)

¢ Einfligen: O(log n)

* Loschen: O(logn)
Beispiel: Bei 1.000.000 Zeilen:

® OhneIndex: ~1.000.000 Vergleiche

* Mit B-Baum: ~20 Vergleiche (log, 1.000.000 ~ 20)
Das ist der Grund, warum Indexe so machtig sind. Aber Vorsicht: Jeder Index kostet Speicherplatz und
verlangsamt INSERT/UPDATE/DELETE. Es ist ein Trade-off.

Trade-offs: Die Kehrseite der Medaille
Aspekt Vorteil Nachteil 4\

Schnellere Abfragen (10x-

SELECT -
100x)
INSERT - Langsamer (Index aktualisieren)
UPDATE - Langsamer (Index neu sortieren)
DELETE - Langsamer (Index bereinigen)
. Zusatzlicher Platzbedarf (~10-30% der
Speicher -
Tabelle)
Maintenance - Fragmentierung, VACUUM notig

Die Kunst des Datenbankdesigns ist es, die richtigen Indexe zu wahlen: Genug fiir Performance, aber nicht zu
viele, um Writes nicht zu bremsen.

Demo

B tree Node split percentage Keys per node Find a range of values @

25% 50% 75% 100% - 4 + - 5 + - 10 + Find
Search for a key Add a key Add a random key
- 5 + Search - 100 + Add Add random Play insertions

Reset @

https://btree.app

Hands-on: Indexe in Aktion

Jetzt wird es praktisch! Wir nutzen die IMDB-Datenbank aus Session 11 und fiihren Performance-
Experimente durch. Sie werden den Unterschied selbst sehen - und messen.

Setup: IMDB-Datenbank verbinden

Flihren Sie das folgenden Script aus um die IMDB-Datenbank fiir diese Session in PGlite zu laden.

1~ function wait(ms) {
2 return new Promise(resolve => setTimeout(resolve, ms));
3

t

https://btree.app/
https://btree.app/
https://btree.app/
https://btree.app/
https://btree.app/
https://btree.app/
https://btree.app/
https://btree.app/
https://btree.app/

4
El 5 const response = await fetch("../assets/dat/imdb.sql");
6~ if (!response.ok) {
7 console.error("Failed to fetch SQL dump");
8 return;
9 }
10
EBl11 1let sql = await response.text();
12 sgl = sql

13 split(/;\s*x\n/) // split on statement-ending semicolon
14 .map(s => s.trim())

15 .filter (Boolean)

16 .map(s => s + ";"); // re-add semicolon

17

18

19 let size = Math.round(sql.length / 100);
20~ for (let i = 0; i < sql.length; i += size) {

21 console.log((i * 100) / sql.length, "%");
B22 await db.exec(sql.slice(i, i+size).join("\n"));
823 await wait(50); // small delay to keep UI responsive
24 1}
25

26 // Load 1into PGlite
i 27 console.log("done")

PGlite-Setup:

* Datenbank lauft im Browser (kein Server notig!)
e Alle Queries fiihren Sie direkt in dieser Session aus

¢ Die Daten bleiben im Browser-Speicher

Priifen wir zunachst, welche Indexe bereits existieren. Neue Tabellen haben meist nur einen Index auf dem
Primarschliissel.

Schritt 1: Vorhandene Indexe priifen

—-- PostgreSQL-Syntax: Alle Indexe in der aktuellen Datenbank
SELECT

schemaname,

tablename,

indexname,

indexdef
FROM pg_indexes

LWILIEPDE ~~AhlhAanAanmAana — ol 2 ~0

P ~NO U1 WN K

o wrncne sciliciiialiailice — puwLiIcC

9 ORDER BY tablename, -indexname;

-- PostgreSQL-Syntax: Alle Indexe in der aktuellen Datenbank
SELECT

schemaname,

tablename,

indexname,

indexdef
FROM pg_indexes

WHERE schemaname = 'public’
ORDER BY tablename, indexname

schemaname tablename indexname indexdef

Sie sehen vermutlich nur automatische Indexe auf Primarschliisseln wie | tconst_pkey |oder
| nconst_pkey | Gut - das ist unser Ausgangspunkt.

Experiment 0: (Index-) Scan Typen

Bevor wir zu komplexen Beispielen kommen, lernen wir die verschiedenen Scan-Strategien kennen.
PostgreSQL wahlt unterschiedliche Ansatze, je nachdem welche Spalten abgefragt werden. Wir erstellen erst
einen Index und testen dann drei Szenarien.

Index auf primaryTitle erstellen

-— Index flr unsere Experimente
CREATE INDEX IF NOT EXISTS
idx_title
ON title_basics(primaryTitle);

—-- Bitmap Scan (vorlaufig ausschalten)
SET enable_bitmapscan = off;

~No o~ WN B

-- Index fiir unsere Experimente
CREATE INDEX IF NOT EXISTS
idx_title
ON title_basics(primaryTitle)

relation "title_basics" does not exist

Jetzt haben wir einen B-Baum-Index auf den Filmtiteln. Schauen wir uns an, wie PostgreSQL diesen Index
nutzt.

1 -- Suche nach Titel-Muster (Index kann nicht helfen!)

EXPLAIN

SELECT primaryTitle, startYear

FROM title_basics

WHERE primaryTitle LIKE '%Matrix%';

a b~ WN

-- Suche nach Titel-Muster (Index kann nicht helfen!)
EXPLAIN

SELECT primaryTitle, startYear

FROM title_basics

WHERE primaryTitle LIKE '%Matrix%'

relation "title_basics" does not exist

Sie sehen ,,Seq Scan“ - warum? Weil | LIKE '%Matrix%"' |in der Mitte sucht. Der Index ist alphabetisch

sortiert, kann aber nur Prafix-Suchen optimieren. Hier muss jede Zeile gelesen werden.

Szenario 2: Index Scan (Index + Table)

EXPLAIN

SELECT primaryTitle, startYear, titleType, genres
FROM title_basiics

WHERE primaryTitle LIKE 'Matrix%';

A WN R

EXPLAIN

SELECT primaryTitle, startYear, titleType, genres
FROM title_basics

WHERE primaryTitle LIKE 'Matrix%'

relation "title_basics" does not exist

Jetzt sehen Sie ,Index Scan using idx_title“ - PostgreSQL nutzt den Index, um die Zeile zu finden, muss aber

zusatzlich die Tabelle lesen,um| startYear |,| titleType |und| genres |zu holen (die sind NICHT im

)

Index gespeichert).

Index Scan bedeutet: 1. Index durchsuchen — Zeilen-Position finden 2. Zur Tabelle (Heap) springen — Alle
Spalten lesen

Szenario 3: Index Only Scan (nur Index!)

—— Query NUR auf die indexierte Spalte
EXPLAIN

SELECT primaryTitle

FROM title_basiics

WHERE primaryTitle::Text = 'Interstellar';

a b wWwN =

-- Query NUR auf die indexierte Spalte
EXPLAIN

SELECT primaryTitle

FROM title_basics

WHERE primaryTitle::Text = ‘Interstellar’

relation "title_basics" does not exist

Jetzt konnte PGlite/PostgreSQL einen ,Index Only Scan“ verwenden - alle Daten (nur primaryTitle) sind
bereits im Index! Kein Table-Read nétig. Das ist die schnellste Variante.

Index Only Scan bedeutet:
1. Indexdurchsuchen — Wert direkt aus Index lesen
2. Kein Heap-Zugriff notig!

Hinweis: In PGlite/PostgreSQL funktioniert Index Only Scan nur, wenn: - Alle SELECT-Spalten im Index sind -
Die Tabelle ,visibility map“ hat (VACUUM wurde ausgefiihrt)

Bonus: COUNT mit Index

—-— Zahlen mit Index-Unterstutzung

EXPLAIN ANALYZE

SELECT COUNT (%)

FROM title_basics

WHERE primaryTitle LIKE 'Matrix%';

O b WN

-- Zahlen mit Index-Unterstiitzung

EXPLAIN ANALYZE
SELECT COUNT(*)
FROM title_basics
WHERE primaryTitle LIKE 'Matrix%!'

relation "title_basics" does not exist

Diese Query findet 4 Filme mit ,,Matrix“ am Anfang. PGlite kann den Index nutzen, weil es eine Prafix-Suche
ist (sortierter Index hilft!). Je nach Optimierung sehen Sie einen Bitmap Index Scan.

Experiment 1: Index auf | averageRating

Unser erstes Experiment: Wir suchen alle Titel mit einem Rating liber 9.5. Erst ohne Index, dann mit Index -
und vergleichen die Performance.

Schritt 2: Baseline messen (ohne Index)

[

-— Bitmap Scan (wieder einschalten)
SET enable_bitmapscan = on;

-— Query ohne Index analysieren
EXPLAIN ANALYZE

SELECT * FROM title_ratings
WHERE averagerating > 9.5;

~No o WNBE

-- Bitmap Scan (wieder einschalten)
SET enable_bitmapscan = on

ok

-- Query ohne Index analysieren
EXPLAIN ANALYZE

SELECT * FROM title_ratings
WHERE averagerating > 9.5

relation "title_ratings" does not exist

Das| EXPLAIN ANALYZE |zeigt uns, wie PostgreSQL die Query ausfiihrt UND misst die tatsachliche Zeit.
Sie sehen vermutlich ,,Seq Scan on title_ratings“ - das bedeutet: Sequential Scan, jede Zeile wird gelesen.

Erwartete Ausgabe:

Seq Scan on title_ratings (cost=10000000000.00..10000002837.50 rows=45400
=40)

Jetzt fiihren wir die Query tatsachlich aus und zahlen die Ergebnisse:

1 -- Query ausfihren und Anzahl zdhlen
2 SELECT COUNT(*) FROM title_ratings
3 WHERE averagerating > 9.5;

-- Query ausfiihren und Anzahl zahlen
SELECT COUNT(*) FROM title_ratings
WHERE averagerating > 9.5

relation "title_ratings" does not exist

PGlite ist im Browser sehr schnell, aber bei grofleren Datenmengen sehen Sie trotzdem den Unterschied.
Merken Sie sich die Ausflihrungszeit!

Schritt 3: Index erstellen

1 -- Index auf averagerating erstellen

2 CREATE INDEX 1dx_r;ting ON title_ratings(averagerating);

-- Index auf averagerating erstellen
CREATE INDEX idx_rating ON title_ratings(averagerating)

relation "title_ratings" does not exist

Das Erstellen dauert ein paar Sekunden - die Datenbank sortiert jetzt alle 178.000+ Eintrage nach Rating und
baut den B-Baum auf.

Schritt 4: Gleiche Query mit Index

-— Query erneut analysieren (mit Index)
EXPLAIN ANALYZE

SELECT * FROM title_ratings

WHERE averagerating > 9.5;

A WDN R

-- Query erneut analysieren (mit Index)
EXPLAIN ANALYZE

SELECT * FROM title_ratings

WHERE averagerating > 9.5

relation "title_ratings" does not exist

Jetzt sollten Sie ,,Index Scan using idx_rating® oder ,,Bitmap Index Scan“ sehen. PostgreSQL nutzt den Index!

Erwartete Ausgabe:

Index Scan using idx_rating on title_ratings (cost=0.29..XXX.XX rows=XXXX
=XX)
Index Cond: (averagerating > '8.0'::numeric)

Messen wir erneut durch direktes Ausfuihren:

1 SELECT COUNT(x) FROM title_ratings
2 WHERE averagerating > 9.5;

SELECT COUNT(*) FROM title_ratings
WHERE averagerating > 9.5

relation "title_ratings" does not exist

Typisches Ergebnis: 2-10ms - das ist 5x-10x schneller! Je groRer die Datenbank, desto dramatischer der
Unterschied.

Reflexion:
* Wie grol® war der Speedup bei lhnen?
e Wirden Sie diesen Index in Production einsetzen?

e Welche Queries wiirden davon profitieren?

Cleanup: Index fiir nachstes Experiment entfernen

1 -- Index wieder 1loschen flr saubere Ausgangslage
2 DROP INDEX IF EXISTS idx_rating;

-- Index wieder lI6schen fiir saubere Ausgangslage
DROP INDEX IF EXISTS idx_rating

ok

Experiment 2: Composite Index auf|startYear |[+|titleType

Manchmal filtern Queries nach mehreren Spalten. Ein Composite Index (Multi-Column Index) kann hier
helfen - aber die Reihenfolge der Spalten ist wichtig!

Szenario: Alle Filme aus 2020 oder spater

—— Query ohne Composite Index

EXPLAIN ANALYZE

SELECT * FROM title_basics

WHERE startyear >= '2020' AND titletype = 'movie';

A WONBR

-- Query ohne Composite Index
EXPLAIN ANALYZE
SELECT * FROM title_basics

WHERE startyear >= '2020' AND titletype = 'movie’

relation "title_basics" does not exist

Ohne Index: Sequential Scan. Bei 178.000+ Titeln dauert das.

Schritt 5: Composite Index erstellen

1 -- Wichtig: Reihenfolge beachten!
2 -- Meist gefilterte Spalte zuerst
3 CREATE INDEX +idx_year_type ON title_basics(startyear, titletype);

-- Wichtig: Reihenfolge beachten!
-- Meist gefilterte Spalte zuerst
CREATE INDEX idx_year_type ON title_basics(startyear, titletype)

relation "title_basics" does not exist

Warum diese Reihenfolge? Weil eine Range st (>=),| tit'leType |eine Gleichheit (=). B-

Baume arbeiten am besten, wenn Ranges zuerst kommen.

Schritt 6: Query mit Composite Index

1 EXPLAIN ANALYZE
2 SELECT * FROM title_basics
3 WHERE startyear >= '2020' AND titletype = 'movie';

EXPLAIN ANALYZE
SELECT * FROM title_basics
WHERE startyear >= '2020' AND titletype = 'movie’

relation "title_basics" does not exist

Jetzt nutzt SQLite den Composite Index - aber nur, wenn beide Spalten im WHERE vorkommen!

Wichtige Erkenntnis:

Ein Index auf hilft bei:

e |[WHERE A = ... |
e |[WHERE A = AND B = ... |[%
. |WHERE B=... |X (Nur zweite Spalte — Index nutzlos!)

Reihenfolge der Spalten im Index ist entscheidend!

Testen Sie das selbst: Erstellen Sie einen Index| (titleType, startYear) | und vergleichen Sie die

Performance. Sie werden sehen: Oft langsamer!

Cleanup: Index fiir nachstes Experiment entfernen

1 -- Index wieder loschen fur saubere Ausgangslage
2 DROP INDEX IF EXISTS idx_year_type;

-- Index wieder l6schen fiir saubere Ausgangslage
DROP INDEX IF EXISTS idx_year_type

ok

Experiment 3: JOIN-Performance mit Foreign Keys

Jetzt wird es dramatisch! Joins ohne Index sind der Performance-Albtraum schlechthin. Ohne Index auf der
JOIN-Spalte muss die Datenbank einen Nested Loop durchfuihren - bei 178.000 Zeilen bedeutet das
theoretisch 31 MILLIARDEN Vergleiche!

Szenario: Top-bewertete Filme mit allen Details

Schritt 7: Baseline ohne Index (LANGSAM!)

—— Query OHNE Index auf tconst analysieren

EXPLAIN ANALYZE

SELECT tb.primaryTitle, tr.averageRating, tb.startYear
FROM title_basics tb

JOIN title_ratings tr ON tb.tconst = tr.tconst

WHERE tr.averageRating >= '9.0'

ORDER BY tr.averageRating DESC

LIMIT 20;

o ~No ok~ WNBRE

-- Query OHNE Index auf tconst analysieren

EXPLAIN ANALYZE

SELECT tb.primaryTitle, tr.averageRating, tb.startYear
FROM title_basics tb

JOIN title_ratings tr ON tb.tconst = tr.tconst

WHERE tr.averageRating >= '9.0'

ORDER BY tr.averageRating DESC
LIMIT 20

relation "title_basics" does not exist

Sie sehen vermutlich ,,Seq Scan® auf beiden Tabellen und einen ,,Hash Join“ oder ,Nested Loop“. Bei groRRen
Datenmengen ist das extrem langsam - jede Zeile aus titleratings muss mit ALLEN Zeilen aus titlebasics
verglichen werden.

Erwartete Ausgabe (ohne Index):

I

Hash Join (COST=500U..15000 rows=10UuV)
-> Seq Scan on title_basics tb
-> Hash
-> Seq Scan on title_ratings tr
Filter: (averageRating >= '9.0"')

Messen wir die tatsachliche Zeit durch direktes Ausfihren:

—-— Query ausfuhren und Ergebnisse zahlen
SELECT COUNT(*) as result_count

FROM title_basics tb

JOIN title_ratings tr ON tb.tconst = tr.tconst
WHERE tr.averageRating >= '9.0';

a b wWNBRE

-- Query ausfithren und Ergebnisse zahlen
SELECT COUNT(*) as result_count

FROM title_basics tb

JOIN title_ratings tr ON tb.tconst = tr.tconst

WHERE tr.averageRating >= '9.0'

relation "title_basics" does not exist

Bei mir im Browser dauert das ohne Index spurbar langer - merken Sie sich die Zeit!

Schritt 8: Indexe auf JOIN-Spalten erstellen

—-— Index auf tconst in BEIDEN Tabellen erstellen
CREATE INDEX IF NOT EXISTS -1idx_tconst_basics ON title_basics(tconst);
CREATE INDEX IF NOT EXISTS -1idx_tconst_ratings ON title_ratings(tconst)

-- Bonus: Index auf averageRating fir den WHERE-Filter
CREATE INDEX IF NOT EXISTS -1idx_rating ON title_ratings(averageRating);

O U b WNH

-- Index auf tconst in BEIDEN Tabellen erstellen
CREATE INDEX IF NOT EXISTS idx_tconst_basics ON title_basics(tconst)

relation "title_basics" does not exist

Das Erstellen dauert ein paar Sekunden - die Datenbank baut jetzt B-Baume flir schnelle Lookups auf. In
Production wiirden diese Indexe normalerweise bereits existieren (besonders auf Primar- und
Fremdschliisseln).

Schritt 9: Gleiche Query mit Index

1 -- Query erneut analysieren (MIT Index)
2 EXPLAIN ANALYZE
2 QFIFCT +h nrimarvTHitle +r averaceRatinoc +h <ctart+Vear

-~ ~ e B S A e D) R AL RO L L T R

FROM title_basics tb

JOIN title_ratings tr ON tb.tconst = tr.tconst
WHERE tr.averageRating >= '9.0'

ORDER BY tr.averageRating DESC

LIMIT 20;

o ~N o ol b

-- Query erneut analysieren (MIT Index)

EXPLAIN ANALYZE

SELECT tb.primaryTitle, tr.averageRating, tb.startYear
FROM title_basics tb

JOIN title_ratings tr ON tb.tconst = tr.tconst

WHERE tr.averageRating >= '9.0'

ORDER BY tr.averageRating DESC
LIMIT 20

relation "title_basics" does not exist

Jetzt sollten Sie ,,Index Scan®“ oder ,,Index Only Scan“ sehen - die Datenbank nutzt die Indexe! Der JOIN wird
dramatisch schneller.

Erwartete Ausgabe (mit Index):

Nested Loop (cost=0.29..500 rows=10000)
-> 1Index Scan using 1idx_rating on title_ratings tr
Index Cond: (averageRating >= '9.0'")
-> Index Scan using idx_tconst_basics on title_basics tb
Index Cond: (tconst = tr.tconst)

Die Komplexitat ist von O(n?) auf O(n log n) gesunken - das ist bei groRen Datenmengen der Unterschied
zwischen Minuten und Millisekunden!

Performance-Vergleich:

-- Erneut ausfihren und Zeit vergleichen
SELECT COUNT(*) as result_count

FROM title_basics tb

JOIN title_ratings tr ON tb.tconst = tr.tconst
WHERE tr.averageRating >= '9.0';

a b wWNRE

-- Erneut ausfiihren und Zeit vergleichen
SELECT COUNT(*) as result_count

FROM title_basics tb

JOIN title_ratings tr ON tb.tconst = tr.tconst
WHERE tr.averageRating >= '9.0'

relation "title_basics" does not exist

Typisches Ergebnis: 5-20x schneller! Bei Millionen von Zeilen ware der Unterschied noch dramatischer - aus
mehreren Minuten werden Sekunden.

Best Practice:

Jede Foreign Key-Spalte sollte einen Index haben.

Das gilt besonders fiir: - Primarschliissel (meist automatisch) - Foreign Keys (oft manuell erstellen!) -
Haufig gejoinete Spalten

Unsere IMDB-Demo-DB hat bewusst KEINE Indexe, um den Performance-Unterschied zu zeigen. In
Production ware das ein kritischer Fehler!

Reflexion: Uberlegen Sie sich - welche anderen Spalten in der IMDB-Datenbank wiirden von Indexen
profitieren? Welche nicht?

Cleanup: Indexe fiir nachstes Experiment entfernen

-— Alle Indexe wieder loschen fir saubere Ausgangslage
DROP INDEX IF EXISTS -didx_tconst_basics;

DROP INDEX IF EXISTS -idx_tconst_ratings;

DROP INDEX IF EXISTS 1idx_rating;

A WDNRE

-- Alle Indexe wieder léschen fiir saubere Ausgangslage
DROP INDEX IF EXISTS idx_tconst_basics

ok

DROP INDEX IF EXISTS idx_tconst_ratings

ok

DROP INDEX IF EXISTS idx_rating

ok

Experiment 4: Partielle Indexe (Filtered Indexes)

Partial Indexes sind Indexe mit einer WHERE-Bedingung - sie indexieren nur einen Teil der Daten. Das spart
Speicher, beschleunigt Writes und macht Queries auf diesem Subset extrem schnell!

Szenario: Moderne Film-Discovery-App

1 -- Typische Query: Nur moderne Filme (seit 2020)
2 SELECT orimarvTitle. startYear. titleTvpe

3 FROM title_basiics

- - - - 7 - VN

4 WHERE startYear >= '2020' AND titleType = 'movie'
5 ORDER BY startYear DESC;

-- Typische Query: Nur moderne Filme (seit 2020)
SELECT primaryTitle, startYear, titleType

FROM title_basics

WHERE startYear >= '2020' AND titleType = 'movie’

ORDER BY startYear DESC

relation "title_basics" does not exist

Diese App interessiert sich fast ausschlief3lich flir neue Filme - alte Filme werden selten abgefragt. Ein

normaler Index wiirde alle 178.124 Zeilen indexieren. Brauchen wir das wirklich?

Schritt 10: Datenverteilung analysieren

ua b~ WN R

O 00 N O

10
11
12
13

-— Wie viele Filme gibt es ab 20207
SELECT
'"Moderne Filme (2020+)' as category,
COUNT(*) as count,
ROUND(100.0 * COUNT(x) / (SELECT COUNT(*) FROM title_basics), 1) as
percent
FROM title_basics
WHERE startYear >= '2020'
UNION ALL
SELECT
"Alle Filme' as category,
COUNT(*) as count,
100.0 as percent
FROM title_basics;

-- Wie viele Filme gibt es ab 2020?
SELECT
'Moderne Filme (2020+)' as category,
COUNT(*) as count,
ROUND(100.0 * COUNT(*) / (SELECT COUNT(*) FROM title_basics), 1) as percent
FROM title_basics
WHERE startYear >= '2020'
UNION ALL
SELECT
'Alle Filme' as category,
COUNT(*) as count,
100.0 as percent
FROM title_basics

relation "title_basics" does not exist

Sie sehen: Nur 42.396 Filme (24%) sind seit 2020. Warum sollten wir einen Index auf 100% der Daten bauen,

wenn 76% irrelevant sind?

Schritt 11: Partial Index erstellen

-— Partial Index: NUR moderne Filme -indexieren
CREATE INDEX -didx_modern_films

ON title_basics(startYear, titleType)

WHERE startYear >= '2020';

N wWN R

-- Partial Index: NUR moderne Filme indexieren
CREATE INDEX idx_modern_films
ON title_basics(startYear, titleType)

WHERE startYear >= '2020'

relation "title_basics" does not exist

Dieser Index ist 76% kleiner als ein vollstéandiger Index - aber genauso schnell fiir Queries auf moderne
Filme!

Schritt 12: Performance-Vergleich

-— Query mit Partial Index

EXPLAIN ANALYZE

SELECT primaryTitle, startYear

FROM title_basiics

WHERE startYear >= '2020' AND titleType = 'movie'
ORDER BY startYear DESC

LIMIT 100;

~No ok N R

-- Query mit Partial Index

EXPLAIN ANALYZE

SELECT primaryTitle, startYear

FROM title_basics

WHERE startYear >= '2020' AND titleType = 'movie’
ORDER BY startYear DESC

LIMIT 100

relation "title_basics" does not exist

Sie sollten ,Index Scan using idxmodernfilms“ sehen - der Partial Index wird genutzt! Weil die Query-

Bedingung(| startYear >= '2020' [)dieIndex—Bedingungenthélt.

Wann wird der Partial Index NICHT genutzt?

‘ 1 -- Query auRerhalb des Index-Filters

EXPLAIN ANALYZE

SELECT primaryTitle, startYear

FROM title_basiics

WHERE startYear >= '2010' AND titleType = 'movie'
LIMIT 100;

o b~ wWwN

-- Query auBBerhalb des Index-Filters

EXPLAIN ANALYZE

SELECT primaryTitle, startYear

FROM title_basics

WHERE startYear >= '2010' AND titleType = 'movie’

LIMIT 100

relation "title_basics" does not exist

Jetzt sehen Sie ,,Seq Scan“ - der Partial Index wird ignoriert! Warum? Die Query fragt nach Filmen ab 2010,
aber der Index hat nur Daten ab 2020. PostgreSQL kann ihn nicht nutzen.

Trade-offs: Wann sind Partial Indexes sinnvoll?

(%4 verwenden bei: - Hot Data: 80% der Queries greifen auf 20% der Daten zu (z.B. nur aktuelle Filme) -
Status-Filter: Nur| status = 'active' | indexieren (oft 5-10% der Daten) - Zeitbasierte Daten: Nur
letzte 2 Jahre (alte Daten selten relevant) - Hohe Write-Last: Weniger Index-Updates bei INSERTs/UPDATEs

Y NICHT verwenden bei: - Queries iiber verschiedene Zeitrdume (manchmal 2020+, manchmal 2010+) -
GleichmaRige Datenverteilung (keine Hot Spots) - Kleine Tabellen (< 10.000 Zeilen - Overhead nicht wert)

Reale Performance-Zahlen:

-— Normaler Composite Index
CREATE INDEX 1idx_all_films ON title_basics(startYear, titleType);
-— GroRe: ~178.124 Eintrage

-— Partial Index (unserer)

CREATE INDEX +didx_modern_films ON title_basics(startYear, titleType)
WHERE startYear >= '2020';

-- GroRe: ~42.396 Eintrage (76% kleiner!)

—-- Speedup bei INSERTs: ~20% schneller (weniger Index-Updates)
-— Speedup bei Queries auf 2020+: Gleich schnell wie normaler Index
-- Memory: 76% weniger RAM-Verbrauch

Cleanup: Index fiir saubere Ausgangslage entfernen

1 -- Index wieder 1loschen
2 DROP INDEX IF EXISTS idx_modern_films;

-- Index wieder I6schen
DROP INDEX IF EXISTS idx_modern_films

ok

Best Practice fiir IMDB-App:

Wenn 90% der Queries moderne Filme abfragen, ist ein Partial Index optimal: - Schnellere Writes
(weniger Index-Maintenance) - Kleinerer Index (passt besser in Cache) - Gleiche Query-Performance
fur relevante Daten

Trade-off: Queries auf alte Filme (< 2020) machen Sequential Scan - aber das ist selten!

Reflexion: Welche anderen Partial Indexes waren fiir IMDB sinnvoll? Z.B. nur Top-Ratings (| WHERE
averageRating >= 8.@\) oder nur Serien (|WHERE titleType = 'tvSeries' |)?

EXPLAIN ANALYZE: Query Plans verstehen

Bisher haben wir mit| EXPLAIN ANALYZE |gearbeitet - das zeigt uns sowohl den Plan ALS AUCH die
tatsachliche Ausfliihrung mit echten Timings. Das ist besonders wertvoll in PostgreSQL!

Lassen Sie uns einen Query Plan Schritt fiir Schritt lesen. Das ist wie eine Landkarte fiir die Datenbank.

Anatomie eines Query Plans

EXPLAIN ANALYZE

SELECT tb.primarytitle, tr.averagerating

FROM title_basics tb

JOIN title_ratings tr ON tb.tconst = tr.tconst

WHERE tr.averagerating > 9.0 AND tb.startyear > '2010';

a b wN

EXPLAIN ANALYZE

SELECT tb.primarytitle, tr.averagerating
FROM title_basics tb

JOIN title_ratings tr ON tb.tconst = tr.tconst

WHERE tr.averagerating > 9.0 AND tb.startyear > '2010'

relation "title_basics" does not exist

Ein typischer PostgreSQL-Plan sieht so aus:

Hash Join (cost=X..Y rows=Z width=W) (actual time=...)
Hash Cond: (tb.tconst = tr.tconst)

-> Seq Scan on title_basics tb (cost=...)
Filter: ((startyear)::text > '2010'::text)
-> Hash (cost=...)

-> 1Index Scan using idx_rating on title_ratings tr (cost=...
Index Cond: (averagerating > '9.0'::numeric)

Was bedeutet das? Die Datenbank arbeitet von innen nach aufRen:

1. SEARCH tr USING INDEX idx_rating

e Start: Durchsuche| title_ratings |mit|ndex| idx_rating

* Filter:|averageRating > 9.0|

* Ergebnis: Liste von —Werten

2. SEARCH tb USING INTEGER PRIMARY KEY

e Firjeden aus Schritt 1:

* Suche passende Zeile in| title_basics |

* Nutze Primary Key (schneller Lookup)

3. Impliziter Filter:

* Priife| startYear > '2010' |

* Nur Zeilen, die beide Bedingungen erfiillen
Das ist ein effizienter Plan: Zwei Index-Lookups, kein Sequential Scan. Gut!

{{4h}

Scan-Typen verstehen

Scan-Typ (PostgreSQL) Bedeutung

Seq Scan Sequential Scan (jede Zeile)
Index Scan Index Scan (B-Baum)

Index Only Scan Alle Daten aus Index

Bitmap Index Scan Index + Bitmap fiir viele Zeilen
Hash Join / Merge Join Effiziente JOIN-Strategien

Ihr Ziel beim Optimieren: SCAN vermeiden, SEARCH maximieren!

{51}

Performance
® Langsam
%’ Schnell

4’ 4’ Ultraschnell

%’ Mittelschnell

%’ Schnell

Checkliste fiir Query-Plan-Analyse

Wenn Sie einen Query Plan sehen, fragen Sie sich:

D Gibt es Seq Scans? - Fehlende Indexe?

O Werden die richtigen Indexe genutzt? - Vergleich mit| pg_indexes

O Ist die Reihenfolge der JOINs sinnvoll? - Kleinste Tabelle zuerst
O Gibt es Subqueries, die vermeidbar waren? — CTEs oder Joins nutzen
D Sind Filter friih angewendet? — WHERE vor JOIN

O Sind die Kosten (cost) realistisch? — ANALYZE regelmaRig ausfiihren

Mit dieser Checkliste konnen Sie selbst komplexe Queries debuggen und optimieren.

Wann Indexe NICHT helfen

Jetzt kommt der kritische Teil: Indexe sind kein Allheilmittel. Es gibt Situationen, in denen sie sogar schaden
konnen. Lassen Sie uns vier typische Falle analysieren.

Fall 1: Kleine Tabellen

Bei Tabellen mit weniger als 1000 Zeilen ist der Overhead eines Index oft groRer als der Nutzen.

Beispiel:

-- Tabelle mit 100 Eintragen
SELECT * FROM users WHERE role = 'admin';

Ohne Index: 100 Zeilen lesen = tmsMitindextndextesen+Zeitentesen=1ms. Kein Unterschied - aber der
Index kostet Speicher und verlangsamt INSERTSs.

Faustregel:
® <100 Zeilen: Nie Index (aufder Primary Key)

® 100-1000 Zeilen: Nur bei sehr haufigen Queries

° 1000 Zeilen: Index meist sinnvoll

Fall 2: Hohe Write-Last

Jeder INSERT, UPDATE, DELETE muss alle Indexe aktualisieren. Bei schreibintensiven Anwendungen wird das
zum Flaschenhals.

Szenario: Logging-Tabelle mit 10.000 Eintragen pro Sekunde

INSERT INTO access_logs (timestamp, user_id, endpoint)
VALUES (NOW(), 42, '/api/data');

Mit 5 Indexen muss die Datenbank bei jedem INSERT 5 B-Baume aktualisieren - das kostet Performance.
Trade-off-Strategie:

1. Option A: Wenige Indexe (nur die wichtigsten)

2. Option B: Batch-Inserts ohne Index, spater REINDEX

3. Option C: Partitionierung (z.B. nach Datum)

In Data Warehouses (viel Lesen, wenig Schreiben) sind 10+ Indexe normal. In OLTP-Systemen (viel Schreiben)
sind 2-3 Indexe oft optimal.

Fall 3: Low Selectivity

»Selectivity” bedeutet: Wie viele verschiedene Werte hat eine Spalte? Bei niedriger Selectivity (wenige Werte)
bringt ein Index kaum etwas.

Beispiel: Geschlecht in einer Nutzertabelle

SELECT * FROM users WHERE gender = 'F';

Angenommen, 50% der Nutzer sind weiblich. Ein Index hilft hier nicht - die Datenbank musste trotzdem die
Halfte aller Zeilen lesen!

Selectivity berechnen (Konzept):

-— Beispiel mit IMDB: Wie viele verschiedene titletype-Werte?
SELECT COUNT(DISTINCT titletype) FROM title_basics;

-— Wie viele Zeilen insgesamt?
SELECT COUNT(*) FROM title_basics;

-— Selectivity = DISTINCT values / Total rows
-- Wenn das Ergebnis < 5%, ist ein Index oft nicht sinnvoll

co~NOoO Ul b WNHRE

-- Beispiel mit IMDB: Wie viele verschiedene titletype-Werte?
SELECT COUNT(DISTINCT titletype) FROM title_basics

relation "title_basics" does not exist

Faustregel: Index nur, wenn Selectivity > 5%. Bei Gender (0.002%) ist ein Index verschwendet.

Hohe Selectivity = Index sinnvoll:
* E-Mail-Adressen (100% unique)
* IDs (100% unique)
* Namen (80%+ unique)
Niedrige Selectivity = Index nutzlos:
* Boolean-Felder (50% Selectivity)
e Status-Felder (z.B. active/inactive)

* Geschlecht (50% Selectivity)

Fall 4: Funktionen in WHERE-Klauseln

Wenn Sie in WHERE eine Funktion auf die Spalte anwenden, kann SQLite den Index oft nicht nutzen.

Beispiel:
1 -- Index wird NICHT genutzt:
2 SELECT * FROM title_basics
3 WHERE LOWER(primarytitle) = 'dinception';
4
5 -- Index WIRD genutzt:
6 SELECT * FROM title_basiics
7 WHERE primarytitle = 'Inception';

-- Index wird NICHT genutzt:
SELECT * FROM title_basics
WHERE LOWER(primarytitle) = ‘inception’

relation "title_basics" does not exist

Warum? Der Index ist auf| primaryTitle |gebaut - aber| LOWER (primaryTitle) |ist ein anderer

Wert. Die Datenbank musste jeden Eintrag transformieren.

Losungen:

1. Funktion vermeiden: Exakte Suche statt Case-Insensitive

2. Computed Column: Spalte mit| LOWER (primarytitle) |speichern +Index darauf

3. Function-Based Index: In PostgreSQL moglich! (Beispiel unten)

-- PostgreSQL: Expression Index (Function-Based Index)
CREATE INDEX 1didx_title_lower ON title_basics(LOWER(primarytitle));

-— Jetzt funktioniert die Query mit Index:
SELECT * FROM title_basics WHERE LOWER(primarytitle) = 'dinception';

-- PostgreSQL: Expression Index (Function-Based Index)
CREATE INDEX idx_title_lower ON title_basics(LOWER(primarytitle))

relation "title_basics" does not exist

Weitere Funktionen, die Indexe ,brechen:| SUBSTRING () |,| CONCAT () |,| DATE ()

Operationen (| salary » 1.1 |).

, arithmetische

>

Best Practice:

Indexe funktionieren am besten auf rohen Spaltenwerten.

o [Y|WHERE startyear = '2020'

Y |WHERE CAST(startyear AS INTEGER) = 2020 |

4| WHERE created_at > '2024-01-01' |

M |WHERE EXTRACT(YEAR FROM created_at) = 2024 |

_|(PostgreSQL)|CREATE INDEX ON table(EXTRACT(YEAR FROM created_at))|

Best Practices & Strategien

Sie haben jetzt gesehen, wie Indexe funktionieren - und wann sie scheitern. Lassen Sie uns das in actionable
Strategien Uibersetzen.

1. Analysiere erst, optimiere dann

Der haufigste Fehler: ,,Blindly“ Indexe erstellen, ohne zu messen. Das flihrt zu Index-Bloat und verschlechtert
die Performance.

Workflow:
1. Profiling: Welche Queries sind langsam? (> 100ms)
2. EXPLAIN: Query Plan analysieren - wo sind Sequential Scans?
3. Index Candidate: Welche WHERE/JOIN-Spalten werden gefiltert?
4. Erstellen: Index auf diese Spalten
5. Messen: Hat sich die Performance verbessert?
6. Monitoring: Index-Nutzung tiber Zeit beobachten

Viele Datenbanken bieten Tools, um ungenutzte Indexe zu finden. In PostgreSQL:
| pg_stat_user_indexes | In SQLite: Manuelle Analyse mit EXPLAIN.

-- PostgreSQL: Unused Indexes finden

-— (Hinweis: pg_stat_user_indexes ist in PGlite moglicherweise nicht verflg
-- funktioniert aber 1in vollstandigen PostgreSQL-Installationen)

SELECT schemaname, tablename, indexname, idx_scan

FROM pg_stat_user_indexes

WHERE idx_scan = 0 AND indexname NOT LIKE 'pg_toast%';

2. Index auf haufig gefilterte Spalten

Schauen Sie sich Ihre Top 10 langsamsten Queries an. Welche Spalten tauchen in WHERE, JOIN, ORDER BY
auf?

Prioritatsliste:

Prio Spalten-Typ Beispiel
C Hoch Foreign Keys | user_id || product_id|,|order_-id |
@ Hoch Haufige WHERE-Filter | status ||| created_at|,| email|
) Mittel ORDER BY-Spalten | created_at DESC||price ASC|
) Mittel GROUP BY-Spalten | category |,| region |
@ Niedrig Selten genutzte Spalten | middle_name || favorite_color

Ein einfacher Trick: Loggen Sie alle SQL-Queries tiber eine Woche und zahlen Sie, welche Spalten am
haufigsten gefiltert werden.

3. Composite Indexe richtig nutzen

Die Reihenfolge der Spalten in einem Composite Index ist kritisch. Hier ist die Formel:

Reihenfolge-Regel:

1. Equality-Filterzuerst:|WHERE titleType = 'mov-ie'|

2. Range-Filter danach:|WHERE startYear >= '2020'|

3. ORDERBY zuletzt:|ORDER BY startYear DESC |

Beispiel: Realistische IMDB-Query mit mehreren Filtern

-— Alle Filme seit zwischen 2015 und 2017
EXPLAIN ANALYZE
SELECT primaryTitle, startYear
FROM title_basics tb
WHERE titleType = 'movie'
AND startYear >= '2015'
AND startYEAR <= 2017
ORDER BY startYear DESC
LIMIT 50;

O 0o ~NO U b~ WN R

-- Alle Filme seit zwischen 2015 und 2017
EXPLAIN ANALYZE
SELECT primaryTitle, startYear
FROM title_basics tb
WHERE titleType = 'movie’
AND startYear >= '2015'
AND startYEAR <= 2017
ORDER BY startYear DESC
LIMIT 50

relation "title_basics" does not exist

Diese Query findet 1.638 Top-Filme seit 2015. Ohne Index: Sequential Scan liber 178.124 Zeilen. Welcher
Index ware optimal?

Optimaler Composite Index:

1 -- Equality (titleType) zuerst, Range (startYear) danach
2 CREATE INDEX -+idx_type_year
3 ON title_basics(titleType, startYear);

-- Equality (titleType) zuerst, Range (startYear) danach
CREATE INDEX idx_type_year
ON title_basics(titleType, startYear)

relation "title_basics" does not exist

Warum diese Reihenfolge?| titleType = 'movie' |isteine Equality (=),| startYear >= '2015'

ist eine Range (>=). B-Baume filtern erst exakt, dann im Bereich.

Test: Query mit optimalem Index

EXPLAIN ANALYZE

SELECT COUNT (*)

FROM title_basics

WHERE titleType = 'movie' AND startYear >= '2015';

A WDN R

EXPLAIN ANALYZE
SELECT COUNT(*)
FROM title_basics
WHERE titleType = 'movie' AND startYear >= '2015'

relation "title_basics" does not exist

Sie sehen vermutlich ,Index Scan using idx_type_year“ oder ,,Bitmap Index Scan“ - der Index wird effizient
genutzt!

Falscher Index: Range zuerst

DROP INDEX IF EXISTS -+idx_type_year;

—-- FALSCH: Range (startYear) vor Equality (titleType)
CREATE INDEX idx_year_type_wrong

ON title_basics(startYear, titleType);

A WDN R

DROP INDEX IF EXISTS idx_type_year

ok

-- FALSCH: Range (startYear) vor Equality (titleType)

CREATE INDEX idx_year_type_wrong
ON title_basics(startYear, titleType)

relation "title_basics" does not exist

Mit diesem Index kann PostgreSQL nur nutzen -| titleType |wird ignoriert, weil es nach

der Range kommt. Bei 136 verschiedenen Jahren weniger effizient!

Vergleich: Welche Queries profitieren?

-— Index: (titleType, startYear)

-— (4 NUTZT Index effizient:
WHERE titleType = 'movie' AND startYear >= '2015';

-—- ("4 NUTZT Index teilweise (nur titleType):
WHERE titleType = 'movie';

-— A\ NUTZT Index schlecht (nur startYear):
WHERE startYear >= '2015';

-— Y NUTZT Index NICHT:
WHERE startYear >= '2015' AND titleType = 'movie'; -- Reihenfolge egal!

Merke: Die WHERE-Reihenfolge im SQL ist egal - aber die Index-Spalten-Reihenfolge ist kritisch!

4. Redundante Indexe vermeiden

Ein Index auf deckt auch Queries auf allein ab. Aber nicht auf allein!

Beispiel:

-- Gegeben: Index auf (startyear, titletype)

-- ["4 Index wird genutzt:
WHERE startyear = '2020';

-- Y4 Index wird genutzt:
WHERE startyear = '2020' AND titletype = 'movie';

-— X Index wird NICHT effizient genutzt:
WHERE titletype = 'movie';

Das bedeutet: Sie brauchen keinen separaten Index auf , wenn Sie bereits| (startYear,
titleType)|habem

Redundanz-Check:

* [ndex + Index - Redundant! Losche| (A)
* [ndex + Index - Nicht redundant (verschiedene Queries)
* Index + Index — Nicht redundant (verschiedene Spalten)

5. Monitoring & Wartung

Indexe fragmentieren liber Zeit - besonders bei vielen UPDATE/DELETE-Operationen. Regelmafiige Wartung

ist notig.
PostgreSQL/PGlite:
1 -- Statistiken aktualisieren (wichtig fir Query Planer!)
2 ANALYZE;
3
4 —- Spezifische Tabelle analysieren
5 ANALYZE title_ratings;
6
7 -- Index neu aufbauen (selten notig)
8 REINDEX INDEX -idx_rating;

-- Statistiken aktualisieren (wichtig fiir Query Planer!)
ANALYZE

ok

-- Spezifische Tabelle analysieren
ANALYZE title_ratings

relation "title_ratings" does not exist

In PostgreSQL ist| ANALYZE |besonders wichtig — der Query Planer braucht aktuelle Statistiken, um die
besten Indexe zu wahlen!

Monitoring-Metriken:
* Index Size: Zu grof3? Redundante Indexe?
* Index Scans: Wird der Index genutzt?
* Sequential Scans: Steigen sie an?
* Write Performance: Verlangsamen Indexe INSERTS?

Empfohlene Frequenz: VACUUM wochentlich, REINDEX monatlich (oder bei Performance-Problemen).

Referenzen & Ressourcen

Pflichtlektiire

Hier sind weiterfihrende Ressourcen zum Thema Indexe und Performance:

¢ Use The Index, Luke! - https://use-the-index-luke.com - Bestes kostenloses Buch zu SQL-Indexen
(auch als Print)

* PostgreSQL: Using EXPLAIN - https://www.postgresql.org/docs/current/using-explain.html — Query
Plans verstehen (direkt fiir PGlite relevant!)

* PostgreSQL Indexes - https://www.postgresql.org/docs/current/indexes.html — Offizielle
Dokumentation mit fortgeschrittenen Techniken

Weiterfihrende Ressourcen

* B-Tree Visualisierung - https://www.cs.usfca.edu/~galles/visualization/BTree.html — Interaktive

Animation der Datenstruktur

* DuckDB Performance Guide - https://duckdb.org/docs/guides/performance/indexing — Moderne
Ansétze (Column Store statt B-Tree)

* Artikel: ,When NOT to use an index“ - Stack Overflow — Diskussion zu Edge Cases

* YouTube: , Database Indexing Explained“ - Hussein Nasser — Video-Tutorial (30 Min)
Tools fur die Praxis

* PGlite - https://pglite.dev — PostgreSQL im Browser (was wir in dieser Session nutzen!)

* DBeaver - https://dbeaver.io - Universeller Datenbank-Client (mit EXPLAIN-Visualisierung)

* pgAdmin - https://www.pgadmin.org — PostgreSQL-spezifisch, gute Query-Analyse

e EXPLAIN Visualizer - https://explain.dalibo.com — PostgreSQL EXPLAIN Plans visualisieren

Das war Session 12! Sie haben jetzt die Werkzeuge, um jede PostgreSQL-Datenbank zu analysieren und zu
optimieren - direkt im Browser mit PGlite. In der nachsten Session erweitern wir lhr SQL-Arsenal mit
Advanced Techniques - alles aufbauend auf dem, was Sie heute gelernt haben.

®
Happy Optimizing mit PGlite! %7 |,]

https://use-the-index-luke.com/
https://use-the-index-luke.com/
https://www.postgresql.org/docs/current/using-explain.html
https://www.postgresql.org/docs/current/using-explain.html
https://www.postgresql.org/docs/current/indexes.html
https://www.postgresql.org/docs/current/indexes.html
https://www.cs.usfca.edu/~galles/visualization/BTree.html
https://www.cs.usfca.edu/~galles/visualization/BTree.html
https://duckdb.org/docs/guides/performance/indexing
https://duckdb.org/docs/guides/performance/indexing
https://pglite.dev/
https://pglite.dev/
https://dbeaver.io/
https://dbeaver.io/
https://www.pgadmin.org/
https://www.pgadmin.org/
https://explain.dalibo.com/
https://explain.dalibo.com/

