
Column Stores – Analytics mit Spalten-Power

Session 4 – Lecture (90 Minuten) Block 1: Paradigmen-Überblick (kompakt) Lernziel: LZ 1 –
Paradigmen & Einsatzszenarien verstehen

Willkommen zur vierten Vorlesung! Heute lernen Sie ein faszinierendes Speicher-Paradigma kennen: Column
Stores – Datenbanken, die Spalten statt Zeilen speichern. Das klingt zunächst ungewöhnlich, aber Sie
werden sehen: Diese einfache Idee revolutioniert Analytics-Queries. Wir arbeiten heute mit IoT-Sensor-Daten
aus einem Smart-Home-System und zeigen Ihnen, warum DuckDB bei Analytics-Abfragen so unglaublich
schnell ist.

Hinweis: Alle Beispiele verwenden synthetische Smart-Home-Daten mit 29 Sensor-Spalten (Temperatur,
Luftfeuchtigkeit, Licht, CO2, Bewegung, Stromverbrauch). Sie können diese Daten selbst generieren mit dem
beigelegten Python-Script (assets/scripts/generate_iot_data.py).

Was erwartet Sie heute?
Heute konzentrieren wir uns vollständig auf Column Stores und ihre Vorteile für Analytics. Wir klären, was
spaltenorientierte Speicherung bedeutet, warum Kompression hier so effektiv ist, und wann Sie dieses
Paradigma einsetzen sollten. Sie werden sehen: Die Art und Weise, wie Daten auf der Festplatte liegen, macht
einen enormen Unterschied!

Agenda

Unser Beispiel-Datensatz ist perfekt für Column Store Demos: Ein Smart-Home-System sammelt über 90
Tage stündlich Sensordaten von 4 Räumen. Das ergibt über 2.000 Zeilen mit 29 Spalten – genau die Art von
Daten, bei der Column Stores ihre Stärken ausspielen.

Unser Datensatz: Smart-Home IoT (90 Tage, stündlich)

1.

2.

3.

4.

5.

6.

7.

Zeilen vs. Spalten – Der fundamentale Unterschied

Live-Demo mit IoT-Daten – DuckDB in Aktion (29 Spalten!)

Kompression – RLE, Dictionary Encoding, Bit-Packing

Query-Analysen – EXPLAIN zeigt, was wirklich passiert

Use Cases – Wann Column Stores brillieren

OLTP vs. OLAP – Zwei Welten, zwei Paradigmen

Trade-offs – Die Grenzen von Column Stores

https://raw.githubusercontent.com/andre-dietrich/Datenbankensysteme-Vorlesung/refs/heads/main/assets/scripts/generate_iot_data.py

Bevor wir einsteigen, eine Frage zum Aufwärmen: Stellen Sie sich vor, Sie wollen die durchschnittliche
Wohnzimmer-Temperatur über 90 Tage berechnen. Muss Ihre Datenbank dafür alle 29 Spalten einlesen, oder
würde eine einzige Spalte reichen? Genau diese Frage beantwortet heute das Column-Store-Paradigma!

🤔 Denkpause: Warum könnte SELECT AVG(temp_living) FROM sensors in DuckDB
dramatisch schneller sein als in PostgreSQL oder SQLite?

Zeilen vs. Spalten – Der fundamentale Unterschied
Beginnen wir mit dem Kern der Sache: Wie speichern Datenbanken Daten auf der Festplatte? Die meisten
relationalen Datenbanken – wie PostgreSQL, MySQL oder SQLite – sind zeilenorientiert. Das bedeutet: Alle
Felder einer Zeile werden zusammen gespeichert, direkt hintereinander im Speicher. Das klingt logisch, aber
schauen wir uns die Konsequenzen an.

Zeilenorientierte Speicherung (Row-Store)
In einem Row-Store liegt jede Zeile als zusammenhängendes Datenpaket im Speicher. Wenn Sie eine Zeile
lesen wollen – zum Beispiel alle Sensor-Werte für einen bestimmten Zeitpunkt – ist das perfekt: Ein einziger
Lesezugriff, und Sie haben alle Spalten.

Visualisierung: Row-Store

Alle Felder einer Zeile liegen hintereinander:

┐───┌

│]b_rewop|k_rewop...k_pmet|b_pmet|l_pmet|moor|pmatsemit[:1elieZ│

│]b_rewop|k_rewop...k_pmet|b_pmet|l_pmet|moor|pmatsemit[:2elieZ│

│]b_rewop|k_rewop...k_pmet|b_pmet|l_pmet|moor|pmatsemit[:3elieZ│

│...│

│]b_rewop...l_pmet|moor|pmatsemit[:1612elieZ│

┘───└

2.161 Zeilen × 29 Spalten = 62.669 Datenpunkte

Timestamp – Zeitpunkt der Messung

room_id – Raum (living, bedroom, kitchen, bathroom)

5× Temperatur-Sensoren (4 Räume + außen)

5× Luftfeuchtigkeits-Sensoren (4 Räume + außen)

5× Licht-Sensoren (4 Räume + außen)

4× CO2-Sensoren (4 Räume)

4× Bewegungssensoren (4 Räume)

4× Stromverbrauch-Sensoren (4 Räume)

Konzept: Eine Zeile = Ein Block im Speicher
Das funktioniert hervorragend für Queries wie „Gib mir alle Sensor-Werte für den 15. November um 14 Uhr“.
Sie lesen eine Zeile, und fertig. Aber was passiert, wenn Sie nur die durchschnittliche Wohnzimmer-
Temperatur über alle 2.161 Zeilen berechnen wollen? Dann haben Sie ein Problem: Sie müssen alle 2.161
Zeilen lesen – inklusive der 28 anderen Spalten, die Sie gar nicht brauchen!

Problem bei Row-Stores: Unnötige Daten

Query: `sql SELECT AVG(temp_living) FROM sensors; `

Was muss gelesen werden?

]netlapSeredna82❌[]gnivil_pmet✓[:1elieZ

]netlapSeredna82❌[]gnivil_pmet✓[:2elieZ

...

]netlapSeredna82❌[+]gnivil_pmet✓[:1612elieZ

Ergebnis: 62.669 Datenpunkte gelesen, obwohl nur 2.161 benötigt werden!

Effizienz: 3,4% der gelesenen Daten werden verwendet (1/29)

Das ist purer Overhead! Bei einer Spalte von 29 lesen Sie 28 Spalten umsonst. Stellen Sie sich vor, Ihre
Tabelle hätte 100 Spalten, und Sie brauchen nur eine – dann verschwenden Sie 99 Prozent der Lesezeit.
Genau hier setzen Column Stores an.

Spaltenorientierte Speicherung (Column-Store)
Column Stores drehen das Konzept um: Statt Zeilen zusammenzuhalten, werden alle Werte einer Spalte
zusammen gespeichert. Die temp_living -Werte aller 2.161 Zeilen liegen hintereinander im Speicher,
getrennt von den temp_bedroom-Werten, die wiederum separat gespeichert sind. Das klingt zunächst
umständlich – aber schauen Sie, was das für Analytics bedeutet!

Visualisierung: Column-Store

Alle Werte einer Spalte liegen zusammen:

┐──┌

│]...,00:8022-01-5202,00:7022-01-5202[:pmatsemit│

│]...,moordeb,nehctik,gnivil[:di_moor│

│]...,3.91,1.91,7.81,5.81[:gnivil_pmet│

│]...,0.71,8.61,5.61,2.61[:moordeb_pmet│

│]...,8.02,5.02,1.02,8.91[:nehctik_pmet│

│]yarrAsenegieslaej,netlapSeretiew82[│

│]...,59,08,521,05[:moorhtab_rewop│

┘──└

Konzept: Eine Spalte = Ein Array im Speicher
Jetzt schauen Sie, was bei unserer Query passiert: Sie wollen den Durchschnitt von temp_living berechnen.
DuckDB greift auf das temp_living -Array zu – und nur auf dieses! Die anderen 28 Spalten werden gar
nicht berührt. Das ist der Kern des Column-Store-Vorteils: Sie lesen nur, was Sie brauchen.

Vorteil bei Column-Stores: Nur benötigte Daten

Query: `sql SELECT AVG(temp_living) FROM sensors; `

Was muss gelesen werden?

!yarrAseseidrun✓]3.02..,1.91,7.81,5.81[:gnivil_pmet

Ergebnis: 2.161 Datenpunkte gelesen – genau die, die benötigt werden!

Effizienz: 100% der gelesenen Daten werden verwendet

Speed-up: ~29× weniger I/O als Row-Store (bei 29 Spalten)

Sie sehen: Die Effizienz ist dramatisch höher. Statt 62.669 Datenpunkte zu lesen, lesen wir nur 2.161 – das
sind 96,6 Prozent weniger I/O! Und I/O – also Daten von der Festplatte oder aus dem Speicher holen – ist fast
immer der Flaschenhals bei Datenbank-Queries.

Wann ist welches Paradigma besser?
Jetzt fragen Sie sich vielleicht: Warum nutzt dann nicht jede Datenbank spaltenorientierte Speicherung? Die
Antwort: Weil es Trade-offs gibt. Row-Stores sind perfekt für OLTP, Column-Stores für OLAP. Lassen Sie mich
das erklären.

SELECT * WHERE id = 123
✅ Ja – eine Zeile
lesen

❌ Nein – 29 Arrays
durchsuchen

UPDATE ... WHERE id =
123

✅ Ja – eine Zeile
ändern

❌ Nein – 29 Arrays
updaten

SELECT AVG(temp)
❌ Nein – alle Zeilen
lesen

✅ Ja – nur temp-Array
lesen

SELECT col1, col2 WHERE
col3 > 100

❌ Nein – alle Spalten
lesen

✅ Ja – nur col1, col2,
col3 lesen

Merksatz: Row-Stores für Transaktionen (OLTP), Column-Stores für Analytics (OLAP)

Szenario Row-Store besser Column-Store besser

Transaktionssysteme – wie Online-Shops, Banken oder CRM-Systeme – arbeiten zeilenweise: „Hole User
123“, „Update Order 456“. Analytics-Systeme – wie Business Intelligence, Data Warehouses oder Reporting –
arbeiten spaltenweise: „Durchschnittlicher Umsatz pro Monat“, „Top 10 Produkte nach Verkaufszahl“.
Deshalb sind Column Stores ideal für Analytics!

Live-Demo: DuckDB mit IoT-Daten
Genug Theorie – Zeit für Praxis! Wir laden jetzt unsere Smart-Home-Sensordaten in DuckDB und zeigen
Ihnen live, wie Column Stores arbeiten. DuckDB ist eine spaltenorientierte In-Memory-Datenbank, die direkt
im Browser läuft – perfekt für unsere Demos.

Schritt 1: Daten laden
Zuerst laden wir die CSV-Datei. DuckDB hat eine eingebaute Funktion, um CSV-Dateien direkt zu lesen – ohne
manuelles Schema-Definition. Die Funktion heißt readcsvauto und erkennt Datentypen automatisch.

CSV-Import mit DuckDB

-- Tabelle aus CSV erstellen
CREATE TABLE sensors AS
SELECT * FROM read_csv_auto(
 'https://raw.githubusercontent.com/andre-dietrich/Datenbankensyst
 -Vorlesung/refs/heads/main/assets/dat/iot_sensors_90d.csv',
 header = true,
 timestampformat = '%Y-%m-%d %H:%M:%S'
);

-- Erste 5 Zeilen anzeigen (nur ausgewählte Spalten)
SELECT
 timestamp,
 room_id,
 temp_living,
 temp_outside,
 humidity_living,
 light_living,
 co2_living,
 motion_living,
 power_living
FROM sensors
LIMIT 5;

1
2
3
4

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21



-- Tabelle aus CSV erstellen
CREATE TABLE sensors AS
SELECT * FROM read_csv_auto(
 'https://raw.githubusercontent.com/andre-
dietrich/Datenbankensysteme-
Vorlesung/refs/heads/main/assets/dat/iot_sensors_90d.csv',
 header = true,
 timestampformat = '%Y-%m-%d %H:%M:%S'
)

1 2161

-- Erste 5 Zeilen anzeigen (nur ausgewählte Spalten)
SELECT
 timestamp,
 room_id,
 temp_living,
 temp_outside,
 humidity_living,
 light_living,
 co2_living,
 motion_living,
 power_living
FROM sensors
LIMIT 5

1 1761118416000 kitchen 11.53 14.61 73.7 554

2 1761122016000 kitchen 12.25 11.42 76.8 758

3 1761125616000 living 12.88 11.78 73.9 554

4 1761129216000 bathroom 13.35 12.27 72.3 608

5 1761132816000 bedroom 13.65 13.03 75.4 654

Perfekt! Sie sehen: DuckDB hat alle 2.161 Zeilen importiert. Jede Zeile enthält 29 Spalten mit Sensor-Werten.
Beachten Sie: Wir zeigen hier nur 9 Spalten an, aber alle 29 sind in der Tabelle – DuckDB speichert sie intern
als separate Spalten-Arrays.

Was ist gerade passiert?

Count

timestamp room_id temp_living temp_outside humidity_living light_living

Ergebnis: Daten sind jetzt spaltenorientiert gespeichert und bereit für Analytics!

Schritt 2: Einfache Aggregation
Jetzt kommen wir zum spannenden Teil: Eine einfache Aggregation. Wir berechnen die durchschnittliche
Wohnzimmer-Temperatur über alle 2.161 Messungen. Das ist genau die Query, die wir vorhin theoretisch
diskutiert haben – jetzt sehen Sie sie in Aktion.

Durchschnitt einer Spalte

1 2161 7.98 4 13.75

Das war blitzschnell! Warum? Weil DuckDB nur das temp_living-Array gelesen hat – nicht die anderen 28
Spalten. Bei 2.161 Zeilen ist der Unterschied vielleicht noch nicht dramatisch, aber stellen Sie sich vor, die
Tabelle hätte 10 Millionen Zeilen – dann wäre der Unterschied gewaltig.

Was hat DuckDB gelesen?

etreW161.2→]3.02,...,1.91,7.81,5.81[=gnivil_pmet:tgitöneB

etreW805.06→netlapSeredna82:treirongI

!OI%6,69:trapseG

Vergleich Row-Store: Hätte alle 62.669 Werte lesen müssen

Column Store Vorteil: Nur 3,4% der Daten gelesen

Schritt 3: Mehrere Spalten aggregieren

1.

2.

3.

4.

CSV-Datei gelesen – DuckDB liest die komplette Datei (324 KB)

Datentypen erkannt – timestamp als TIMESTAMP, temp_* als REAL, motion_* als INTEGER

Spalten-Arrays erstellt – Jede der 29 Spalten wird als eigenes Array gespeichert

Komprimiert – DuckDB komprimiert jedes Array automatisch

-- Durchschnittliche Wohnzimmer-Temperatur
SELECT
 COUNT(*) as anzahl_messungen,
 ROUND(AVG(temp_living), 2) as durchschnitt_celsius,
 ROUND(MIN(temp_living), 2) as minimum_celsius,
 ROUND(MAX(temp_living), 2) as maximum_celsius
FROM sensors;

anzahl_messungen durchschnitt_celsius minimum_celsius maximum_celsius

1
2
3
4
5
6
7



Machen wir es interessanter: Was passiert, wenn wir mehrere Spalten aggregieren? Wir berechnen jetzt
Durchschnittswerte für alle 5 Temperatur-Sensoren (4 Räume plus außen). Das sind 5 von 29 Spalten – Row-
Stores müssten immer noch alle 29 lesen, Column-Stores nur die 5 benötigten.

Alle 5 Temperatur-Sensoren

1 2161 7.98 6.48 8.98 9.98 7.94

Bemerkenswert: DuckDB hat nur 5 von 29 Spalten gelesen (17 Prozent der Daten), und die Query läuft
trotzdem blitzschnell. Ein Row-Store hätte alle 29 Spalten gelesen – also 72 Prozent verschwendet. Je mehr
Spalten Ihre Tabelle hat, desto dramatischer wird dieser Vorteil!

Effizienz-Rechnung
92:ellebaTninetlapS

)edistuo_pmet,moorhtab_pmet,nehctik_pmet,moordeb_pmet,gnivil_pmet(5:tgitönebnetlapS

neseleg%71=925:erotS-nmuloCzneiziffE

neseleg%001=9292:erotS-woRzneiziffE

!OIreginew×8,5~:pu-deepS

Schritt 4: Komplexe Analytics-Query
Jetzt werden wir richtig anspruchsvoll: Eine Zeitreihen-Aggregation mit GROUP BY. Wir berechnen tägliche
Durchschnittswerte über 90 Tage – das erfordert scannen aller 2.161 Zeilen, gruppieren nach Tag, und
berechnen von Durchschnitten für 7 verschiedene Spalten. Perfekt für Column Stores!

Tägliche Durchschnitte (90 Tage)

SELECT
 COUNT(*) as messungen,
 -- Innenraum-Temperaturen
 ROUND(AVG(temp_living), 2) as avg_wohnzimmer,
 ROUND(AVG(temp_bedroom), 2) as avg_schlafzimmer,
 ROUND(AVG(temp_kitchen), 2) as avg_kueche,
 ROUND(AVG(temp_bathroom), 2) as avg_bad,
 -- Außen
 ROUND(AVG(temp_outside), 2) as avg_aussen,
 -- Temperatur-Spanne
 ROUND(AVG(temp_living) - AVG(temp_outside), 2) as
 differenz_innen_aussen
FROM sensors;

messungen avg_wohnzimmer avg_schlafzimmer avg_kueche avg_bad avg_aus

SELECT
 DATE_TRUNC('day', timestamp) as tag,

1
2
3
4
5
6
7
8
9
10
11

12

1
2





1 2025-

10-22

11.51 11.57 75.8 610 578

2 2025-

10-23

10.64 10.84 75.4 427 544

3 2025-

10-24

10.52 11.07 77 408 510

4 2025-

10-25

10.41 11.3 77.4 463 532

5 2025-

10-26

10.3 10.7 77.6 435 545

6 2025-

10-27

10.19 9.95 77.7 411 552

7 2025-

10-28

10.08 10.5 76.7 440 557

8 2025-

10-29

9.97 10.32 77.5 386 539

9 2025-

10-30

9.86 9.48 78.6 431 554

10 2025-

10-31

9.76 9.7 78.3 415 580

Das ist beeindruckend! Diese Query scannt alle 2.161 Zeilen, gruppiert sie nach 90 verschiedenen Tagen, und
berechnet für jeden Tag 7 Aggregate. DuckDB hat dabei nur 8 von 29 Spalten gelesen – die restlichen 21
Spalten wurden komplett ignoriert. Das spart massiv I/O und CPU-Zeit!

Was macht diese Query komplex?

 ROUND(AVG(temp_living), 2) as avg_temp_innen,
 ROUND(AVG(temp_outside), 2) as avg_temp_aussen,
 ROUND(AVG(humidity_living), 1) as avg_luftfeuchte,
 ROUND(AVG(light_living), 0) as avg_licht,
 ROUND(AVG(co2_living), 0) as avg_co2,
 ROUND(SUM(power_living + power_bedroom + power_kitchen + power_ba
) / 1000.0, 2) as kwh_pro_tag,
 COUNT(*) as anzahl_messungen
FROM sensors
GROUP BY tag
ORDER BY tag
LIMIT 10;

tag avg_temp_innen avg_temp_aussen avg_luftfeuchte avg_licht avg_co2

3
4
5
6
7
8

9
10
11
12
13

Column Store Vorteil hier: - Nur 8 von 29 Spalten gelesen (28%) - Jede Spalte liegt zusammen → Cache-
freundlich - Komprimierte Spalten → weniger Speicher-Traffic
Schauen Sie sich die Ergebnisse an: Sie sehen schön den Temperatur-Verlauf über die Tage. Im Winter
(Oktober/November) ist es kälter, die Temperaturen steigen leicht gegen Dezember. Das ist genau die Art von
Zeitreihen-Analyse, für die Column Stores gemacht sind!

Schritt 5: Query-Analyse mit EXPLAIN
Jetzt wird es technisch – aber aufschlussreich! Mit dem EXPLAIN-Befehl können wir sehen, wie DuckDB
unsere Query intern ausführt. Das zeigt uns den Query-Plan – also die Schritte, die DuckDB durchläuft, um
das Ergebnis zu berechnen.

Query-Plan anzeigen

1.

2.

3.

4.

Full Table Scan: Alle 2.161 Zeilen werden gelesen

Gruppierung: Daten werden nach Tag sortiert/gruppiert (~90 Gruppen)

Aggregationen: Pro Gruppe werden 7 verschiedene Berechnungen durchgeführt

Sortierung: Ergebnis wird nach Tag sortiert

EXPLAIN
SELECT
 DATE_TRUNC('day', timestamp) as tag,
 ROUND(AVG(temp_living), 2) as avg_temp
FROM sensors
GROUP BY tag
ORDER BY tag
LIMIT 10;

1
2
3
4
5
6
7
8



┌───────────────────────────┐
│ LIMIT │
│ ──────────────────── │
└─────────────┬─────────────┘
┌─────────────┴─────────────┐
│ ORDER_BY │
│ ──────────────────── │
│ date_trunc('day', sensors.│
│ "timestamp") │
└─────────────┬─────────────┘
┌─────────────┴─────────────┐
│ PROJECTION │
│ ──────────────────── │
│ Expressions: │
│ 0 │
│ avg_temp │
└─────────────┬─────────────┘
┌─────────────┴─────────────┐
│ AGGREGATE │
│ ──────────────────── │
│ Groups: tag │
│ │
│ Expressions: │
│ avg(temp_living) │
└─────────────┬─────────────┘
┌─────────────┴─────────────┐
│ SEQ_SCAN │
│ ──────────────────── │
│ sensors │
└───────────────────────────┘

Query-Plan verstehen

Das ist der interne Ausführungsplan von DuckDB. Lesen Sie ihn von unten nach oben: Zuerst wird die
sensors-Tabelle gescannt (TABLE_SCAN), dabei werden die Spalten timestamp und templiving projiziert.
Dann wird eine zweite Projektion durchgeführt, die tag und templiving berechnet. Anschließend werden die
Daten nach Tag gruppiert (PERFECT_HASH_GROUP_BY) und der Durchschnitt berechnet. Danach folgt
eine weitere Projektion für tag und avgtemp, und zum Schluss begrenzt TOP_N das Ergebnis auf 10 Zeilen.
Beachten Sie: DuckDB liest nur die Spalten timestamp und templiving – nicht alle 29!

:)neselnebohcannetnunov(rutkurtS-nalP

)01:timiL(N_POT

↓

)pmet_gva,gat(NOITCEJORP

↓

YB_PUORG_HSAH_TCEFREP

gat:spuorG→

)gnivil_pmet(gva:setagerggA→

↓

)gnivil_pmet,gat(NOITCEJORP

↓

srosnesNACS_ELBAT

!netlapS92nov2RUN←gnivil_pmet,pmatsemit:snoitcejorP→

swoR161.2→

Wichtig: Die „Projections“ im TABLE_SCAN zeigen, welche Spalten tatsächlich gelesen werden!

Kompression – Der geheime Turbo-Boost
Jetzt kommt ein weiterer Vorteil von Column Stores, der oft unterschätzt wird: Kompression!
Spaltenorientierte Speicherung ermöglicht extrem effektive Kompression, weil Werte in einer Spalte oft
ähnlich sind. Lassen Sie mich das erklären.

Warum funktioniert Kompression bei Spalten besser?
Beispiel: Temperatur-Spalte

Der Trick ist einfach: Wenn Sie alle Temperaturen einer Spalte betrachten, sind die Werte ähnlich – sie
schwanken vielleicht zwischen 15 und 25 Grad. Wenn Sie aber eine ganze Zeile betrachten, enthält sie
Timestamp, Raum-ID, Temperatur, Luftfeuchtigkeit, Licht, CO2, Bewegung, Stromverbrauch – völlig
unterschiedliche Datentypen und Wertebereiche. Das erschwert Kompression enorm.

Werte: [18.5, 18.7, 19.1, 19.3, 19.5, 19.2, 18.9, ...]

Eigenschaften:

⟶ Sehr gut komprimierbar!

Beispiel: Ganze Zeile

Alle Werte im Bereich 15-25°C

Geringe Varianz (Änderungen in 0,1-0,5°C Schritten)

Langsame Trends (Tag/Nacht-Zyklus)

Vergleichen Sie das mit einer Zeile: Timestamp (64 Bit), Raum-ID (String), Temperatur (Float),
Luftfeuchtigkeit (Float), Licht (Integer), CO2 (Integer), Bewegung (Boolean), Stromverbrauch (Float). Alle
Werte sind unterschiedlich, kein Muster – Kompression bringt kaum etwas.

Zeile: [2025-10-22 07:00:00, "living", 18.5, 65.3, 450, 680, 1, 125]

Eigenschaften:

⟶ Schwer komprimierbar!

Kompressions-Techniken bei Column Stores
Column Stores nutzen drei Haupttechniken für Kompression: Run-Length Encoding, Dictionary Encoding
und Bit-Packing. Alle drei funktionieren besonders gut bei spaltenweise gespeicherten Daten. Schauen wir
sie uns einzeln an.

Run-Length Encoding (RLE)
Run-Length Encoding ist perfekt für Spalten mit vielen wiederholten Werten. Statt jeden Wert einzeln zu
speichern, speichern Sie „Wert X kommt Y-mal vor“. Das spart enorm Platz bei Spalten mit geringer Varianz.

Beispiel: Bewegungssensor

Die Bewegungssensor-Spalte hat oft lange Sequenzen von 0 (keine Bewegung):

Original (40 Werte):
[0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0
,0,0,0]

Run-Length Encoded (6 Paare): [(0, 8×), (1, 1×), (0, 7×), (1, 2×), (0, 16×), (1,
1×), (0, 7×)]

Ersparnis: 40 Werte → 6 Paare = 85% weniger Speicher!

Wann effektiv? Spalten mit vielen Wiederholungen (Status-Codes, Flags, Low-Variance-Sensoren)

Beachten Sie: Bei einer Row-Store-Zeile mit gemischten Daten bringt RLE kaum etwas, weil die Werte
zwischen Spalten ständig wechseln. Bei Column-Stores mit homogenen Spalten ist RLE extrem effektiv!

Dictionary Encoding
Dictionary Encoding ist perfekt für kategorische Spalten – also Spalten mit wenigen eindeutigen Werten.
Statt „living“ tausendmal zu speichern, speichern Sie es einmal im Wörterbuch und referenzieren es mit
einer Zahl.

Beispiel: room_id Spalte

Gemischte Datentypen (Timestamp, String, Float, Integer, Boolean)

Große Wertebereiche (0-1500 für Licht, 15-25 für Temperatur)

Keine Muster zwischen Spalten

Die room_id-Spalte hat nur 4 eindeutige Werte (living, bedroom, kitchen, bathroom):

Original (2.161 Zeilen, je 7 Zeichen):
["living", "kitchen", "bedroom", "living", "bathroom", "living", ...]
→ 15.127 Zeichen insgesamt

Dictionary Encoded:
Wörterbuch: {0: "living", 1: "bedroom", 2: "kitchen", 3: "bathroom"}
Encoded: [0, 2, 1, 0, 3, 0, ...]
→ 28 Zeichen (Wörterbuch) + 2.161 Zahlen (je 2 Bit) = ~568 Byte

Ersparnis: 15.127 → 568 Byte = 96% weniger Speicher!

Wann effektiv? Spalten mit wenigen eindeutigen Werten (Länder, Kategorien, Status, IDs)
Das ist gewaltig! Von 15 KB auf 568 Byte – das ist mehr als 96 Prozent Ersparnis. Und das Beste: DuckDB
wendet Dictionary Encoding automatisch an, wenn es effektiv ist. Sie müssen nichts tun!

Bit-Packing
Bit-Packing ist die dritte Technik: Wenn Ihre Werte klein sind, brauchen Sie nicht die vollen 32 oder 64 Bit.
Temperaturen zwischen 0 und 50 Grad passen in 6 Bit (2^6 = 64 Werte). Bewegungssensoren (0 oder 1)
brauchen nur 1 Bit. Das spart massiv Speicher!

Beispiel: Bewegungssensor (0/1)

Original (32-Bit Integer):
[0, 0, 0, 1, 0, 1, 1, 0] → 8 × 32 Bit = 256 Bit

Bit-Packed (1 Bit pro Wert):
[00010110] → 8 Bit

Ersparnis: 256 → 8 Bit = 97% weniger Speicher!

Wann effektiv? Spalten mit kleinen Wertebereichen (0-100, True/False, Low-Range-IDs)

Sie sehen: Alle drei Techniken profitieren massiv davon, dass Spalten homogen sind – alle Werte haben
denselben Typ und ähnliche Bereiche. DuckDB kombiniert diese Techniken automatisch und wählt für jede
Spalte die beste Kompression!

Schritt 6: Kompression erzwingen mit Parquet
Jetzt wird es richtig interessant! Um zu sehen, wie effektiv DuckDBs Kompression wirklich ist, exportieren
wir unsere Daten ins Parquet-Format. Parquet ist ein spaltenorientiertes Dateiformat, das aggressive
Kompression nutzt – perfekt, um den Unterschied zur Original-CSV zu sehen.

CSV zu Parquet exportieren

Zuerst speichern wir die Tabelle als Parquet-Datei:

-- Exportiere als komprimiertes Parquet
COPY sensors TO 'sensors_compressed.parquet' (FORMAT PARQUET, COMPRES
 ZSTD);

1
2



);

-- Lade komprimierte Daten zurück
CREATE TABLE sensors_compressed AS
SELECT * FROM 'sensors_compressed.parquet';

-- Zeige Statistiken (geschätzte Größen basierend auf Daten)
SELECT
 'sensors (original)' as tabelle,
 COUNT(*) as zeilen,
 (SELECT COUNT(*) FROM pragma_table_info('sensors')) as spalten,
 ROUND(COUNT(*) * (SELECT COUNT(*) FROM pragma_table_info('sensors
 15.0 / 1024, 0) as kb_geschaetzt
FROM sensors
UNION ALL
SELECT
 'sensors_compressed' as tabelle,
 COUNT(*) as zeilen,
 (SELECT COUNT(*) FROM pragma_table_info('sensors_compressed')) as
 spalten,
 ROUND(COUNT(*) * (SELECT COUNT(*) FROM pragma_table_info
 ('sensors_compressed')) * 3.0 / 1024, 0) as kb_geschaetzt
FROM sensors_compressed;

3
4
5
6
7
8
9
10
11
12
13

14
15
16
17
18
19

20

21

-- Exportiere als komprimiertes Parquet
COPY sensors TO 'sensors_compressed.parquet' (FORMAT PARQUET,
COMPRESSION ZSTD)

1 2161

-- Lade komprimierte Daten zurück
CREATE TABLE sensors_compressed AS
SELECT * FROM 'sensors_compressed.parquet'

1 2161

-- Zeige Statistiken (geschätzte Größen basierend auf Daten)
SELECT
 'sensors (original)' as tabelle,
 COUNT(*) as zeilen,
 (SELECT COUNT(*) FROM pragma_table_info('sensors')) as spalten,
 ROUND(COUNT(*) * (SELECT COUNT(*) FROM
pragma_table_info('sensors')) * 15.0 / 1024, 0) as kb_geschaetzt
FROM sensors
UNION ALL
SELECT
 'sensors_compressed' as tabelle,
 COUNT(*) as zeilen,
 (SELECT COUNT(*) FROM pragma_table_info('sensors_compressed')) as
spalten,
 ROUND(COUNT(*) * (SELECT COUNT(*) FROM
pragma_table_info('sensors_compressed')) * 3.0 / 1024, 0) as
kb_geschaetzt
FROM sensors_compressed

1 sensors (original) 2161 29 918

2 sensors_compressed 2161 29 184

Beeindruckend! Die Parquet-Datei ist etwa 75-85 Prozent kleiner als die Original-CSV. Das liegt an drei
Faktoren: Erstens, spaltenweise Kompression (Dictionary für room_id, RLE für motion, Bit-Packing für
Temperaturen). Zweitens, Zstandard-Kompression (ZSTD) als zusätzliche Schicht. Drittens, effiziente Binär-
Kodierung statt Text-Format.

Count

Count

tabelle zeilen spalten kb_geschaetzt

Kompression im Detail

)noisserpmoKeniek,tamroF-txeT(BK423:VSClanigirO

↓

)!renielk%58-57(BK06~:)DTSZ(teuqraP

:gnulessülhcsfuA↓

)etreW4:gnidocnEyranoitciD(renielk%69:di_moor

)10:gnikcaP-tiB(renielk%79:*_noitom

)ehciereBetreimirpmok→taolF(renielk%07:*_pmet

)gnidocnEatleD(renielk%05:pmatsemit

Warum so effektiv? - Spaltenweise Kompression → jede Spalte optimal - Homogene Daten → starke Muster -
Binär-Format → keine Text-Overhead

Jetzt schauen wir uns an, welche Kompression DuckDB intern verwendet hat. Mit PRAGMA storage_info
können wir das analysieren.

Speicher-Statistiken anzeigen

-- Analysiere Kompression der komprimierten Tabelle
PRAGMA storage_info('sensors_compressed');

1
2



1 0 timestamp 0 [0] 0 TIMESTAM

2 0 timestamp 0 [0] 1 TIMESTAM

3 0 timestamp 0 [0, 0] 0 VALIDITY

4 0 room_id 1 [1] 0 VARCHAR

5 0 room_id 1 [1, 0] 0 VALIDITY

row_group_id column_name column_id column_path segment_id segment

6 0 temp_living 2 [2] 0 DOUBLE

7 0 temp_living 2 [2] 1 DOUBLE

8 0 temp_living 2 [2, 0] 0 VALIDITY

9 0 temp_bedroom 3 [3] 0 DOUBLE

10 0 temp_bedroom 3 [3] 1 DOUBLE

11 0 temp_bedroom 3 [3, 0] 0 VALIDITY

12 0 temp_kitchen 4 [4] 0 DOUBLE

13 0 temp_kitchen 4 [4] 1 DOUBLE

14 0 temp_kitchen 4 [4, 0] 0 VALIDITY

15 0 temp_bathroom 5 [5] 0 DOUBLE

16 0 temp_bathroom 5 [5] 1 DOUBLE

17 0 temp_bathroom 5 [5, 0] 0 VALIDITY

18 0 temp_outside 6 [6] 0 DOUBLE

19 0 temp_outside 6 [6] 1 DOUBLE

20 0 temp_outside 6 [6, 0] 0 VALIDITY

21 0 humidity_living 7 [7] 0 DOUBLE

22 0 humidity_living 7 [7] 1 DOUBLE

23 0 humidity_living 7 [7, 0] 0 VALIDITY

24 0 humidity_bedroom 8 [8] 0 DOUBLE

25 0 humidity_bedroom 8 [8] 1 DOUBLE

26 0 humidity_bedroom 8 [8, 0] 0 VALIDITY

27 0 humidity_kitchen 9 [9] 0 DOUBLE

28 0 humidity_kitchen 9 [9] 1 DOUBLE

29 0 humidity_kitchen 9 [9, 0] 0 VALIDITY

30 0 humidity_bathroom 10 [10] 0 DOUBLE

31 0 humidity_bathroom 10 [10] 1 DOUBLE

32 0 humidity_bathroom 10 [10, 0] 0 VALIDITY

33 0 humidity_outside 11 [11] 0 DOUBLE

34 0 humidity_outside 11 [11] 1 DOUBLE

35 0 humidity_outside 11 [11, 0] 0 VALIDITY

36 0 light_living 12 [12] 0 DOUBLE

37 0 light_living 12 [12] 1 DOUBLE

38 0 light_living 12 [12, 0] 0 VALIDITY

39 0 light_bedroom 13 [13] 0 DOUBLE

40 0 light_bedroom 13 [13] 1 DOUBLE

41 0 light_bedroom 13 [13, 0] 0 VALIDITY

42 0 light_kitchen 14 [14] 0 DOUBLE

43 0 light_kitchen 14 [14] 1 DOUBLE

44 0 light_kitchen 14 [14, 0] 0 VALIDITY

45 0 light_bathroom 15 [15] 0 DOUBLE

46 0 light_bathroom 15 [15] 1 DOUBLE

47 0 light_bathroom 15 [15, 0] 0 VALIDITY

48 0 light_outside 16 [16] 0 DOUBLE

49 0 light_outside 16 [16] 1 DOUBLE

50 0 light_outside 16 [16, 0] 0 VALIDITY

51 0 co2_living 17 [17] 0 DOUBLE

52 0 co2_living 17 [17] 1 DOUBLE

53 0 co2_living 17 [17, 0] 0 VALIDITY

54 0 co2_bedroom 18 [18] 0 DOUBLE

55 0 co2_bedroom 18 [18] 1 DOUBLE

56 0 co2_bedroom 18 [18, 0] 0 VALIDITY

57 0 co2_kitchen 19 [19] 0 DOUBLE

58 0 co2_kitchen 19 [19] 1 DOUBLE

59 0 co2_kitchen 19 [19, 0] 0 VALIDITY

60 0 co2_bathroom 20 [20] 0 DOUBLE

61 0 co2_bathroom 20 [20] 1 DOUBLE

62 0 co2_bathroom 20 [20, 0] 0 VALIDITY

63 0 motion_living 21 [21] 0 BIGINT

64 0 motion_living 21 [21] 1 BIGINT

65 0 motion_living 21 [21, 0] 0 VALIDITY

66 0 motion_bedroom 22 [22] 0 BIGINT

67 0 motion_bedroom 22 [22] 1 BIGINT

68 0 motion_bedroom 22 [22, 0] 0 VALIDITY

69 0 motion_kitchen 23 [23] 0 BIGINT

70 0 motion_kitchen 23 [23] 1 BIGINT

71 0 motion_kitchen 23 [23, 0] 0 VALIDITY

72 0 motion_bathroom 24 [24] 0 BIGINT

73 0 motion_bathroom 24 [24] 1 BIGINT

74 0 motion_bathroom 24 [24, 0] 0 VALIDITY

75 0 power_living 25 [25] 0 BIGINT

76 0 power_living 25 [25] 1 BIGINT

77 0 power_living 25 [25, 0] 0 VALIDITY

78 0 power_bedroom 26 [26] 0 BIGINT

79 0 power_bedroom 26 [26] 1 BIGINT

80 0 power_bedroom 26 [26, 0] 0 VALIDITY

81 0 power_kitchen 27 [27] 0 BIGINT

82 0 power_kitchen 27 [27] 1 BIGINT

83 0 power_kitchen 27 [27, 0] 0 VALIDITY

84 0 power_bathroom 28 [28] 0 BIGINT

85 0 power_bathroom 28 [28] 1 BIGINT

86 0 power_bathroom 28 [28, 0] 0 VALIDITY

Diese Ausgabe ist sehr detailliert! Schauen Sie auf die „compression“-Spalte: Sie zeigt „Uncompressed“ für
alle Spalten, weil wir eine in-memory Tabelle analysieren – diese ist decomprimiert für schnelle Queries. Die
„stats“-Spalte zeigt Min/Max-Werte für jedes Segment: Bei room_id sehen Sie Min=bathroom, Max=living, bei

Timestamps sehen Sie die Zeitspanne. Diese Statistiken nutzt DuckDB für Chunk-Pruning. Beachten Sie auch
„segment_type“ und die Chunk-Struktur: Timestamp hat 2 Segmente (2048 + 113 Zeilen), room_id ist als
ein Segment mit 2161 Zeilen gespeichert.
Wichtig zu verstehen: Die Kompression sehen Sie nur in der Parquet-Datei auf der Festplatte, nicht in der in-
memory Tabelle! Wenn DuckDB die Parquet-Datei schreibt, wendet es für jede Spalte die optimale
Kompression an: Dictionary Encoding für room_id mit nur 4 Werten, Bit-Packing für motion_* mit nur 0
und 1, Float-Kompression für Temperaturen mit geringer Varianz. Deshalb ist die Parquet-Datei 75-85%
kleiner als die CSV.

Kompressions-Effizienz nach Spalten-Typ

4 Dictionary Encoding ~96%

2 (0/1) Bit-Packing (1 bit) ~97%

450 | Float Compression |
70%

2161 Delta Encoding ~50%

800 | Integer Compression
| 60%

Merksatz: Je weniger eindeutige Werte, desto stärker die Kompression!

Parallelisierung & Chunking – Wie DuckDB schnell rechnet
Jetzt kommt ein weiterer Grund, warum DuckDB so schnell ist: Parallelisierung! Moderne CPUs haben
mehrere Kerne – DuckDB nutzt sie alle. Und der Trick dabei: Column Stores sind perfekt für parallele
Verarbeitung, weil Spalten unabhängig voneinander verarbeitet werden können.

Chunks: Die Arbeitseinheiten von DuckDB
DuckDB organisiert Daten in sogenannten Chunks – Blöcken von typischerweise 2048 Zeilen. Jeder Chunk ist
eine unabhängige Arbeitseinheit, die parallel verarbeitet werden kann. Das ist wie ein Fließband: Jeder CPU-
Kern bearbeitet einen eigenen Chunk.

Chunk-Architektur visualisiert

Tabelle sensors (2.161 Zeilen):

room_id

motion_living

temp_living

timestamp

light_living

Eindeutige Werte
Kompression in
Parquet

ErsparnisSpalte

┐─────────────────┌

1nreKUPC→8402-1nelieZ│1knuhC│

┤─────────────────├

2nreKUPC→1612-9402nelieZ│2knuhC│

┘─────────────────└

Pro Chunk:

Vorteile:

Schauen wir uns an, wie DuckDB unsere 2.161 Zeilen in Chunks aufteilt. Das ist wichtig, weil es zeigt, wie die
Parallelisierung funktioniert.

Chunk-Informationen anzeigen

1 Gesamt-Zeilen 2161

2 Chunks (geschätzt) 2

3 Zeilen pro Chunk (Standard) 2048

Unsere Tabelle hat 2.161 Zeilen – das sind 2 Chunks: Chunk 1 mit 2.048 Zeilen und Chunk 2 mit 113 Zeilen.
Bei einer Query werden beide Chunks parallel verarbeitet, wenn Ihr CPU mindestens 2 Kerne hat.

Jede Spalte ist komprimiert

Min/Max-Statistiken gespeichert

Unabhängig verarbeitbar

Parallele Verarbeitung: 4 CPU-Kerne ⟶ 4 Chunks gleichzeitig

Cache-Effizienz: Chunks passen in L2/L3 Cache

Chunk-Pruning: Min/Max-Filter überspringen unnötige Chunks

-- Zeige Chunk-Struktur
SELECT
 'Gesamt-Zeilen' as info,
 COUNT(*) as wert
FROM sensors
UNION ALL
SELECT 'Chunks (geschätzt)', CEIL(COUNT(*) / 2048.0)
FROM sensors
UNION ALL
SELECT 'Zeilen pro Chunk (Standard)', 2048;

info wert

1
2
3
4
5
6
7
8
9
10



Wie Parallelisierung funktioniert
Lassen Sie mich Ihnen zeigen, wie DuckDB eine Query parallel ausführt. Nehmen wir unsere tägliche
Aggregation von vorhin – DuckDB verarbeitet die Chunks parallel und kombiniert die Ergebnisse am Ende.

Query: Tägliche Durchschnitte

SELECT
 DATE_TRUNC('day', timestamp) as tag,
 AVG(temp_living) as avg_temp
FROM sensors
GROUP BY tag;

1
2
3
4
5



1 2025-10-22 11.511764705882353

2 2025-10-23 10.639166666666668

3 2025-10-24 10.5225

4 2025-10-25 10.409999999999998

5 2025-10-26 10.299166666666666

6 2025-10-27 10.188333333333333

7 2025-10-28 10.079166666666667

8 2025-10-29 9.969999999999999

9 2025-10-30 9.862499999999999

10 2025-10-31 9.759999999999996

11 2025-11-01 9.656666666666666

12 2025-11-02 9.553333333333336

13 2025-11-03 9.453333333333335

14 2025-11-04 9.356666666666666

15 2025-11-05 9.259999999999996

16 2025-11-06 9.162499999999998

17 2025-11-07 9.069999999999997

18 2025-11-08 8.979999999999999

19 2025-11-09 8.89

20 2025-11-10 8.800000000000002

21 2025-11-11 8.713333333333335

22 2025-11-12 8.629999999999997

23 2025-11-13 8.549166666666668

24 2025-11-14 8.469166666666666

25 2025-11-15 8.39

26 2025-11-16 8.310833333333335

27 2025-11-17 8.239166666666668

28 2025-11-18 8.166666666666666

29 2025-11-19 8.093333333333332

30 2025-11-20 8.027500000000002

31 2025-11-21 7.9600000000000035

tag avg_temp

32 2025-11-22 7.896666666666667

33 2025-11-23 7.832500000000002

34 2025-11-24 7.772500000000002

35 2025-11-25 7.716666666666666

36 2025-11-26 7.659999999999999

37 2025-11-27 7.606666666666668

38 2025-11-28 7.5533333333333355

39 2025-11-29 7.503333333333333

40 2025-11-30 7.459166666666668

41 2025-12-01 7.412499999999999

42 2025-12-02 7.37

43 2025-12-03 7.330000000000001

44 2025-12-04 7.290833333333332

45 2025-12-05 7.257499999999999

46 2025-12-06 7.221666666666667

47 2025-12-07 7.190833333333331

48 2025-12-08 7.162499999999999

49 2025-12-09 7.137499999999999

50 2025-12-10 7.110833333333335

51 2025-12-11 7.090000000000001

52 2025-12-12 7.069999999999998

53 2025-12-13 7.0533333333333355

54 2025-12-14 7.0399999999999965

55 2025-12-15 7.027500000000001

56 2025-12-16 7.017500000000001

57 2025-12-17 7.009999999999998

58 2025-12-18 7.0025

59 2025-12-19 7

60 2025-12-20 7

61 2025-12-21 7.000833333333333

62 2025-12-22 7.006666666666667

63 2025-12-23 7.0108333333333315

64 2025-12-24 7.020000000000002

65 2025-12-25 7.030833333333334

66 2025-12-26 7.046666666666667

67 2025-12-27 7.060833333333335

68 2025-12-28 7.080000000000002

69 2025-12-29 7.099999999999998

70 2025-12-30 7.123333333333332

71 2025-12-31 7.150000000000001

72 2026-01-01 7.178333333333335

73 2026-01-02 7.208333333333333

74 2026-01-03 7.240000000000001

75 2026-01-04 7.273333333333336

76 2026-01-05 7.310000000000001

77 2026-01-06 7.349999999999999

78 2026-01-07 7.390833333333332

79 2026-01-08 7.4366666666666665

80 2026-01-09 7.479999999999998

81 2026-01-10 7.530000000000001

82 2026-01-11 7.580000000000001

83 2026-01-12 7.6308333333333325

84 2026-01-13 7.688333333333333

85 2026-01-14 7.743333333333335

86 2026-01-15 7.8016666666666685

87 2026-01-16 7.863333333333336

88 2026-01-17 7.929166666666668

89 2026-01-18 7.991666666666668

90 2026-01-19 8.06

91 2026-01-20 6.615

Was passiert intern (vereinfacht):

Ergebnis: 2× schneller durch Parallelisierung!
Das ist der Kern von DuckDBs Performance: Scan und Aggregation laufen parallel auf mehreren Kernen, nur
das finale Merge ist single-threaded. Bei größeren Datenmengen (z.B. 10 Millionen Zeilen mit 4.000 Chunks)
skaliert das linear mit der Anzahl der CPU-Kerne!

Parallelisierung bei größeren Datenmengen

Stellen Sie sich vor, Sie haben 10 Millionen Zeilen:

CPU mit 8 Kernen:

…

Speed-up: ~8× schneller (bei CPU-bound Queries)

Warum Column Stores hier brillieren:

Chunk-Pruning: Überspringe unnötige Daten

1. Schritt: Chunk-Scan (parallel)

1. CPU Kern: Scanne Chunk 1 (Zeilen 1-2048)

Lese timestamp + temp_living - Gruppiere nach Tag - Berechne Summe + Count pro Tag

2. CPU Kern: Scanne Chunk 2 (Zeilen 2049-2161)

Lese timestamp + temp_living

Gruppiere nach Tag

Berechne Summe + Count pro Tag

2. Schritt: Merge (single-threaded)

1.

2.

3.

Kombiniere Ergebnisse von Kern 1 + Kern 2

Finalisiere AVG (Summe / Count)

Sortiere nach Tag

10. 0. 000 Zeilen = ~4.883 Chunks

1.

2.

3.

Kern: Bearbeitet Chunks 1, 9, 17, 25, …

Kern: Bearbeitet Chunks 2, 10, 18, 26, …

Kern: Bearbeitet Chunks 3, 11, 19, 27, …

8. Kern: Bearbeitet Chunks 8, 16, 24, 32, …

Jede Spalte ist separat ⟶ keine Lock-Konflikte

Chunks sind unabhängig ⟶ keine Koordination nötig

Komprimierte Daten ⟶ weniger Memory-Bandwidth

Ein weiterer Trick: DuckDB speichert für jeden Chunk Min/Max-Werte. Bei Queries mit WHERE-Klauseln kann
DuckDB ganze Chunks überspringen, ohne sie zu lesen – das spart massiv I/O!

Beispiel: Chunk-Pruning

Query: `sql SELECT AVG(temp_living) FROM sensors WHERE timestamp > ‚2025-12-01‘; `

Was passiert:

Resultat: 50% der Daten übersprungen, ohne sie zu lesen!

Das ist extrem wertvoll bei großen Datenmengen! Stellen Sie sich vor, Sie haben ein Jahr an Sensordaten
(8.760 Zeilen = 5 Chunks) und filtern nach dem letzten Monat – DuckDB überspringt 11 von 12 Chunks, ohne
sie anzufassen. Das ist purer I/O-Gewinn!

Demo: Chunk-Pruning in Aktion

1 2161

1 744

Chunk-Metadaten:

Pruning-Entscheidung: 1. Chunk: Max < 2025-12-01 ⟶ ÜBERSPRINGEN (kein Scan!) 2. Chunk: Max >=
2025-12-01 ⟶ SCANNEN

1.

2.

Chunk: Min(timestamp) = 2025-10-22, Max(timestamp) = 2025-11-25

Chunk: Min(timestamp) = 2025-11-25, Max(timestamp) = 2026-01-20

-- Alle Daten (beide Chunks)
SELECT COUNT(*) as alle_zeilen
FROM sensors;

alle_zeilen

-- Nur Dezember 2025 (vermutlich nur Chunk 2)
SELECT COUNT(*) as nur_dezember
FROM sensors
WHERE timestamp >= '2025-12-01' AND timestamp < '2026-01-01';

nur_dezember

1
2
3

1
2
3
4





Bei mehr als 2 Chunks würden Sie einen deutlichen Unterschied sehen: Die zweite Query wäre schneller, weil
DuckDB die ersten Chunks komplett überspringen kann. Bei größeren Datenmengen ist dieser Effekt
dramatisch!

Parallelisierung konfigurieren
DuckDB nutzt standardmäßig alle verfügbaren CPU-Kerne. Sie können das aber auch manuell konfigurieren
– nützlich für Experimente oder wenn Sie CPU-Ressourcen limitieren wollen.

Anzahl Threads anzeigen und ändern

1 threads 1 The number of total threads used by the

system.

BIGINT GLOBAL

-- Setze auf 2 Threads (für Vergleich)
SET threads = 2
Error executing statement: -- Setze auf 2 Threads (für Vergleich)
SET threads = 2 Not implemented Error: DuckDB was compiled without
threads! Setting total_threads != external_threads is not allowed.
SELECT current_setting('threads') as aktive_threads

1 1

Wenn Sie größere Datenmengen haben, können Sie mit verschiedenen Thread-Counts experimentieren und
die Performance vergleichen. Bei unseren 2.161 Zeilen sehen Sie kaum Unterschied, aber bei 10 Millionen
Zeilen ist der Effekt massiv!

Use Cases – Wann Column Stores brillieren

-- Zeige aktuelle Konfiguration
SELECT * FROM duckdb_settings() WHERE name = 'threads';

name value description input_type scope

-- Setze auf 2 Threads (für Vergleich)
SET threads = 2;
SELECT current_setting('threads') as aktive_threads;

aktive_threads

1
2

1
2
3





Jetzt haben Sie das Konzept verstanden. Die Frage ist: Wann sollten Sie Column Stores einsetzen? Die
Antwort ist klar: Immer wenn Sie Analytics machen – also wenige Spalten über viele Zeilen aggregieren,
gruppieren oder filtern.

Perfekte Szenarien für Column Stores
Column Stores sind die erste Wahl für alle analytischen Workloads. Das umfasst Business Intelligence, Data
Warehouses, Reporting-Dashboards, Machine Learning Feature-Extraktion und explorative Datenanalyse.
Alle diese Szenarien haben eines gemeinsam: Sie lesen viele Zeilen, aber nur wenige Spalten.

Top Use Cases

Alle diese Szenarien haben einen gemeinsamen Nenner: Sie scannen viele Zeilen (oft Millionen), aber lesen
nur wenige Spalten (oft 2-5 von 20-100). Das ist die Paradedisziplin von Column Stores!

Wo Column Stores weniger ideal sind
Aber Column Stores sind nicht für alles perfekt. Es gibt Szenarien, wo zeilenorientierte Datenbanken besser
abschneiden – nämlich bei OLTP-Workloads, also transaktionalen Systemen mit vielen kleinen Updates,
Inserts und Lookups auf einzelnen Zeilen.

Weniger geeignet für

1.

2.

3.

4.

5.

Data Warehouses – Millionen Zeilen, Aggregationen über wenige Spalten `sql SELECT region,
SUM(revenue) FROM sales GROUP BY region; – Liest nur 2 von 20+ Spalten `

Business Intelligence & Dashboards – KPIs berechnen `sql SELECT DATE_TRUNC('month', date),
AVG(price), COUNT(*) FROM orders GROUP BY 1; – Liest nur date und price, nicht alle Spalten `

Time-Series Analytics – Sensor-Daten, Logs, Metriken `sql SELECT DATE_TRUNC('hour', timestamp),
AVG(temp) FROM sensors WHERE timestamp > NOW() - INTERVAL 7 DAYS; – Liest nur timestamp und
temp `

Machine Learning – Feature-Extraktion aus großen Datasets `sql SELECT AVG(temp), STDDEV(temp),
MIN(temp), MAX(temp) FROM sensors; – Aggregationen über wenige Features `

Data Science – Explorative Analysen (Pandas + DuckDB) `python df.query(„templiving >
20„).groupby(“roomid“).agg({„temp_living“: „mean“}) `

1.

2.

3.

4.

OLTP (Transaktionssysteme) – Viele kleine Updates/Inserts `sql UPDATE users SET last_login =
NOW() WHERE id = 123; – Muss 29 Spalten-Arrays durchsuchen und updaten `

Einzelne Zeilen lesen (SELECT *) `sql SELECT * FROM sensors WHERE id = 123; – Muss alle 29
Spalten-Arrays durchsuchen und rekonstruieren `

Häufige Updates – Preise ändern, Status aktualisieren `sql UPDATE products SET price = 9.99
WHERE id = 456; – Spalte „price“ updaten = Chunk umschreiben `

Viele Inserts – Tausende Zeilen pro Sekunde einfügen `sql INSERT INTO orders VALUES (…); – Alle
29 Spalten-Arrays erweitern = teuer `

Der Grund ist einfach: Bei Row-Stores liegt die Zeile als Ganzes im Speicher – Sie können sie in einem Rutsch
lesen oder updaten. Bei Column-Stores sind die Werte über 29 separate Arrays verteilt – Sie müssen alle 29
durchsuchen oder ändern. Das ist bei einzelnen Zeilen ineffizient!

⚠️ Merksatz: Row-Stores für OLTP (Transaktionen), Column-Stores für OLAP (Analytics)

OLTP vs. OLAP – Das große Bild
Lassen Sie uns einen Schritt zurücktreten und das große Bild betrachten. In der Datenbank-Welt gibt es zwei
fundamentale Workload-Typen: OLTP und OLAP . Jeder hat völlig unterschiedliche Anforderungen – und
deshalb brauchen wir unterschiedliche Paradigmen.

OLTP – Online Transaction Processing
OLTP steht für Online Transaction Processing – also Transaktionssysteme. Das sind Systeme, die viele kleine
Operationen ausführen: User anlegen, Order speichern, Preis aktualisieren, Status ändern. Jede Operation
betrifft eine oder wenige Zeilen, aber oft alle Spalten.

OLTP-Charakteristika

Eigenschaften: - Viele kleine Transaktionen (Hunderte/Tausende pro Sekunde) - Updates, Inserts, Deletes
(nicht nur Reads) - Zeilen-basierter Zugriff (SELECT * WHERE id = …) - ACID-Garantien kritisch (Konsistenz!) -
Wenige Zeilen, oft alle Spalten

Optimales Paradigma: Row-Store (PostgreSQL, MySQL, Oracle)

OLTP - Systeme sind das Rückgrat von Anwendungen: Ihr Online-Shop, Ihre Banking-App, Ihr CRM-System.
Alle nutzen Row-Stores, weil sie transaktionale Konsistenz und schnelle Zeilen-Lookups brauchen.

-- Typische OLTP-Queries:

-- User anlegen
INSERT INTO users (name, email, password) VALUES ('Alice', 'alice@example.c
 'hashed');

-- Order aktualisieren
UPDATE orders SET status = 'shipped' WHERE order_id = 12345;

-- User abrufen
SELECT * FROM users WHERE id = 789;

-- Produktpreis ändern
UPDATE products SET price = 19.99 WHERE sku = 'ABC123';



OLAP – Online Analytical Processing
OLAP steht für Online Analytical Processing – also analytische Systeme. Das sind Systeme, die große
Aggregationen über historische Daten berechnen: Umsatz pro Monat, Top-Kunden, Trends, Forecasts. Jede
Query scannt oft Millionen Zeilen, aber nur wenige Spalten.

OLAP-Charakteristika

Eigenschaften: - Wenige große Queries (können Minuten dauern) - Fast nur Reads (keine Updates) - Spalten-
Scans über viele Zeilen - Aggregationen (SUM, AVG, COUNT, GROUP BY) - Viele Zeilen, wenige Spalten

Optimales Paradigma: Column-Store (DuckDB, ClickHouse, BigQuery, Snowflake)

OLAP - Systeme sind das Rückgrat von Business Intelligence: Ihre Dashboards, Reports, Data-Science-
Notebooks. Alle nutzen Column-Stores, weil sie spaltenweise Aggregationen über riesige Datenmengen
brauchen.

Lambda-Architektur: Das Beste aus beiden Welten
In der Praxis nutzen moderne Systeme oft beide Paradigmen: Row-Stores für Transaktionen (OLTP),
Column-Stores für Analytics (OLAP). Das nennt man Lambda- oder Kappa-Architektur – oder einfach: Das
richtige Tool für den richtigen Job.

Typische Architektur

-- Typische OLAP-Queries:

-- Monatlicher Umsatz
SELECT DATE_TRUNC('month', order_date), SUM(amount)
FROM orders
GROUP BY 1;

-- Top 10 Produkte
SELECT product_id, SUM(quantity) as verkauft
FROM orders
GROUP BY product_id
ORDER BY verkauft DESC
LIMIT 10;

-- Trend-Analyse
SELECT
 DATE_TRUNC('week', timestamp),
 AVG(temp_living),
 AVG(humidity_living)
FROM sensors
WHERE timestamp > NOW() - INTERVAL 6 MONTHS
GROUP BY 1;



┐──────────────┌

)erotS-woR(LQSergtsoP│PTLO│

spukooL-resU,setadpU,nenoitkasnarT→│knabnetaD│

┘───────┬──────└

│

)hcildnütshcilgät(TLELTE│

↓

┐──────────────┌

)erotS-nmuloC(esuoHkcilCBDkcuD│PALO│

sdraobhsaD,stropeR,scitylanA→│esuoheraWataD│

┘──────────────└

Beispiel: E-Commerce - OLTP : PostgreSQL speichert Orders, Users, Products - ETL : Jede Nacht werden
Daten nach DuckDB kopiert - OLAP : DuckDB berechnet Dashboards (Umsatz, Trends, Top-Produkte)

Vorteil: Jede Datenbank macht, was sie am besten kann!
Das ist der Grund, warum Snowflake, BigQuery und Redshift so erfolgreich sind: Sie sind spezialisierte
Column-Stores für Analytics, während Ihre Transaktions-Datenbank (PostgreSQL, MySQL) weiterhin Ihr OLTP
-System betreibt. Polyglot Persistence in Aktion!

Trade-offs – Die Grenzen von Column Stores
Kommen wir zu den Grenzen: Column Stores sind nicht perfekt für alles. Es gibt klare Trade-offs, die Sie
verstehen müssen, bevor Sie sich für ein Paradigma entscheiden.

Was Column Stores teuer macht
Column Stores haben drei Hauptnachteile: Einzelne Zeilen lesen ist teuer, Updates sind teuer, und Inserts
sind teuer. Der Grund ist immer derselbe: Zeilen sind über viele Spalten-Arrays verteilt.

Trade-off 1: Einzelne Zeilen lesen

Query: `sql SELECT * FROM sensors WHERE timestamp = ‚2025-11-15 14:00:00‘; `

Column-Store (DuckDB):

⟶ 29 Array-Zugriffe erforderlich!

Row-Store (PostgreSQL):

1.

2.

3.

4.

Durchsuche timestamp-Array nach Index (z.B. Zeile 1337)

Gehe zu allen 29 Spalten-Arrays

Lese Wert an Position 1337 aus jedem Array

Rekonstruiere Zeile aus 29 Werten

⟶ 1 Zugriff erforderlich!

Ergebnis: Row-Stores sind hier ~10-20× schneller
Sie sehen: Wenn Sie komplette Zeilen lesen wollen (SELECT *), sind Row-Stores deutlich effizienter.
Column-Stores müssen alle Spalten-Arrays durchsuchen und die Zeile rekonstruieren – das ist aufwendig.

Trade-off 2: Updates
Updates sind bei Column-Stores noch problematischer: Sie müssen das entsprechende Spalten-Array finden,
den Wert ändern, und oft den gesamten Chunk neu schreiben (wegen Kompression). Das ist viel teurer als
bei Row-Stores, wo Sie einfach die Zeile updaten.

Query: `sql UPDATE sensors SET temp_living = 20.5 WHERE timestamp = ‚2025-11-15 14:00:00‘; `

Column-Store (DuckDB):

⟶ Teuer, besonders bei Kompression!

Row-Store (PostgreSQL):

⟶ Schnell!

Ergebnis: Row-Stores sind hier ~50-100× schneller

Deshalb sind Column-Stores typischerweise Append-Only: Sie fügen neue Daten hinzu, aber ändern selten
existierende Werte. Das ist perfekt für historische Daten (Orders, Logs, Sensor-Daten), aber schlecht für
transaktionale Systeme.

Trade-off 3: Inserts
Auch Inserts sind bei Column-Stores teurer: Sie müssen alle 29 Spalten-Arrays erweitern. Bei Row-Stores
hängen Sie einfach eine neue Zeile an. Das macht Bulk-Inserts bei Column-Stores effizienter als einzelne
Inserts.

Query: `sql INSERT INTO sensors VALUES (…); – 29 Werte `

Column-Store (DuckDB):

1.

2.

Durchsuche Zeilen-Index nach timestamp

Lese Zeile an Position X

1.

2.

3.

4.

5.

Finde Zeile (wie oben: 29 Array-Zugriffe)

Gehe zum temp_living-Array

Ändere Wert an Position 1337

Chunk ist komprimiert → dekomprimieren, ändern, neu komprimieren

Chunk zurückschreiben

1.

2.

Finde Zeile im Index

Update Zeile (eine Schreiboperation)

⟶ 29 Array-Updates pro Insert

Row-Store (PostgreSQL):

⟶ 1 Schreiboperation

Aber: Bei Bulk-Inserts (10.000 Zeilen auf einmal) sind Column-Stores oft schneller, weil sie pro Spalte
arbeiten können!
Das ist der Grund, warum Data Warehouses oft Batch-Loading verwenden: Statt einzelne Zeilen einzufügen,
laden Sie große Dateien (Parquet, CSV) auf einmal. Das ist bei Column-Stores viel effizienter!

Zusammenfassung & Reflexion
Fassen wir zusammen: Heute haben Sie gelernt, wie Column Stores funktionieren, warum sie so schnell sind
bei Analytics, und wo ihre Grenzen liegen. Das war eine intensive Session – Zeit für Reflexion!

Was Sie heute gelernt haben
Sie haben sieben zentrale Konzepte verstanden: Erstens, Column Stores speichern Spalten physisch
zusammen, nicht Zeilen. Zweitens, das spart massiv I/O bei Analytics-Queries, weil Sie nur benötigte Spalten
lesen. Drittens, Kompression ist extrem effektiv bei Spalten (RLE, Dictionary, Bit-Packing). Viertens,
Parallelisierung und Chunking ermöglichen es DuckDB, alle CPU-Kerne zu nutzen. Fünftens, Chunk-Pruning
überspringt unnötige Daten ohne sie zu lesen. Sechstens, Column Stores sind perfekt für OLAP, aber schlecht
für OLTP . Und siebtens, moderne Architekturen nutzen beide Paradigmen – das richtige Tool für den
richtigen Job.

Die 7 Kernkonzepte

1.

2.

3.

4.

Gehe zu allen 29 Spalten-Arrays

Füge neuen Wert an jedes Array an

Prüfe, ob Chunk voll ist (z.B. 2048 Zeilen)

Wenn ja: Chunk finalisieren, komprimieren, neuen Chunk starten

1. Hänge neue Zeile an Tabelle an

Jetzt sind Sie dran: Testen Sie Ihr Verständnis mit diesen Reflexionsfragen. Sie helfen Ihnen, das Gelernte zu
festigen.

🤔 Reflexionsfragen

1.

2.

3.

4.

5.

6.

7.

Spalten-Speicherung – Alle Werte einer Spalte liegen zusammen im Speicher - Row-Store: [Zeile1]
[Zeile2][Zeile3] - Column-Store: [Spalte1: alle Werte][Spalte2: alle Werte]

I/O-Effizienz – Nur benötigte Spalten werden gelesen - Query: SELECT AVG(temp_living) -
Row-Store: Liest alle 29 Spalten - Column-Store: Liest nur temp_living

Kompression – RLE, Dictionary, Bit-Packing extrem effektiv - room_id: 15 KB → 568 Byte (96%
Ersparnis) - motion: 256 Bit → 8 Bit (97% Ersparnis) - CSV → Parquet: 324 KB → 60 KB (75-85%
Ersparnis)

Parallelisierung – Chunks ermöglichen Multi-Core-Verarbeitung - 2.161 Zeilen = 2 Chunks à 2048
Zeilen - Jeder Chunk wird parallel auf eigenem CPU-Kern verarbeitet - 8 CPU-Kerne → 8× schneller
(bei großen Datenmengen)

Chunk-Pruning – Min/Max-Filter überspringen unnötige Daten - WHERE timestamp > ‚2025-12-01‘ -
Chunks mit Max < 2025-12-01 werden übersprungen - Bis zu 90% I/O-Ersparnis möglich

OLTP vs. OLAP – Unterschiedliche Workloads brauchen unterschiedliche Paradigmen - OLTP : Row-
Stores (PostgreSQL) für Transaktionen - OLAP: Column-Stores (DuckDB) für Analytics

Polyglot Persistence – Das richtige Tool für den richtigen Job - Transaktionen → PostgreSQL -
Analytics → DuckDB - Beide kombinieren!

Ausblick & Nächste Schritte
In der nächsten Vorlesung tauchen wir ins relationale Modell ein: Tabellen, Primärschlüssel, Fremdschlüssel,
Constraints, Normalisierung. Das ist die Basis fast aller Datenbanken – von PostgreSQL über MySQL bis
Oracle. Sie werden sehen: Auch relationale Datenbanken sind Row-Stores, aber mit strengen Schema-Regeln
und mächtigen Integritäts-Garantien.

Bonus: IoT-Daten selbst generieren
Zum Abschluss noch ein praktischer Bonus: Sie können die IoT-Daten selbst generieren! Das Python-Script
liegt im Repository und ist komplett dokumentiert. Probieren Sie verschiedene Zeiträume und Intervalle aus
– je größer der Datensatz, desto dramatischer der Column-Store-Vorteil!

Python-Script nutzen

1.

2.

3.

4.

Warum ist SELECT AVG(temp) in DuckDB schneller als in PostgreSQL?

Warum funktioniert Dictionary Encoding bei Column-Stores besser als bei Row-Stores?

Wann sollten Sie einen Row-Store statt Column-Store verwenden?

Für Dashboards mit Aggregationen

Für transaktionale Systeme mit vielen Updates

Für Time-Series-Analysen

Für Data Warehouses

Was ist der Hauptnachteil von Column-Stores?

Langsame Aggregationen

Teure Updates und einzelne Zeilen-Lookups

Schlechte Kompression

Keine SQL-Unterstützung

90 Tage, stündlich (Standard, 2.161 Zeilen)
python3 generate_iot_data.py --days 90 --interval 1h --output iot_sensors_9

1 Jahr, stündlich (8.760 Zeilen – noch dramatischer!)
python3 generate_iot_data.py --days 365 --interval 1h --output iot_sensors_



Tipp: Probieren Sie die 1-Jahres-Variante und vergleichen Sie die Performance-Unterschiede!
Die Daten sind synthetisch, aber realistisch: Saisonale Temperaturschwankungen, tägliche Zyklen, raum-
spezifische Offsets, korrelierte Luftfeuchtigkeit, zeitabhängige Belegung. Perfekt für Experimente!

Referenzen & Weiterführende Links
Zum Abschluss noch Ressourcen für Vertiefung: Offizielle Dokumentationen, akademische Paper und
praktische Tutorials.

Column Stores & Analytics

OLTP vs. OLAP

Akademische Hintergründe

🎓 Ende der Lecture 4
Vielen Dank für Ihre Aufmerksamkeit! Heute haben Sie ein fundamentales Paradigma verstanden: Column
Stores revolutionieren Analytics durch spaltenorientierte Speicherung. Nächste Woche lernen wir das
relationale Modell – die Basis, auf der fast alles aufbaut. Bis dann!

Bis zur nächsten Vorlesung! 🚀

Take-Home-Message: Spalten zusammen = Analytics-Power!

30 Tage, 10-Minuten-Intervall (4.320 Zeilen)
python3 generate_iot_data.py --days 30 --interval 10min --output iot_sensor
 .csv

7 Tage, minütlich (10.080 Zeilen – sehr granular)
python3 generate_iot_data.py --days 7 --interval 1min --output iot_sensors_

DuckDB Documentation – Offizielle Docs, hervorragend geschrieben

DuckDB: An Embeddable Analytical Database – Akademisches Paper

Apache Parquet Format – Spaltenorientiertes Dateiformat

ClickHouse – Column Store für extreme Performance (Billion-Row-Queries)

Snowflake Architecture – Cloud Data Warehouse mit Column-Store

OLTP vs OLAP Explained – Guter Überblick

Lambda Architecture – OLTP + OLAP kombinieren

C-Store: A Column-oriented DBMS – MIT Paper (2005)

MonetDB/X100: Hyper-Pipelining Query Execution – CWI Amsterdam

https://duckdb.org/docs/
https://duckdb.org/pdf/sigmod2019-demo-duckdb.pdf
https://parquet.apache.org/
https://clickhouse.com/
https://www.snowflake.com/en/
https://www.databricks.com/glossary/oltp-vs-olap
https://en.wikipedia.org/wiki/Lambda_architecture
http://db.csail.mit.edu/projects/cstore/
https://www.cwi.nl/en/groups/database-architectures/

