Column Stores - Analytics mit Spalten-Power

Session 4 - Lecture (90 Minuten) Block 1: Paradigmen-Uberblick (kompakt) Lernziel: LZ 1 -
Paradigmen & Einsatzszenarien verstehen

Willkommen zur vierten Vorlesung! Heute lernen Sie ein faszinierendes Speicher-Paradigma kennen: Column
Stores - Datenbanken, die Spalten statt Zeilen speichern. Das klingt zunachst ungewohnlich, aber Sie
werden sehen: Diese einfache Idee revolutioniert Analytics-Queries. Wir arbeiten heute mit loT-Sensor-Daten
aus einem Smart-Home-System und zeigen Ihnen, warum DuckDB bei Analytics-Abfragen so unglaublich
schnellist.

Hinweis: Alle Beispiele verwenden synthetische Smart-Home-Daten mit 29 Sensor-Spalten (Temperatur,
Luftfeuchtigkeit, Licht, CO2, Bewegung, Stromverbrauch). Sie kdnnen diese Daten selbst generieren mit dem
beigelegten Python-Script (

assets/scripts/generate iot data.py |).

Was erwartet Sie heute?

Heute konzentrieren wir uns vollstandig auf Column Stores und ihre Vorteile fiir Analytics. Wir klaren, was
spaltenorientierte Speicherung bedeutet, warum Kompression hier so effektiv ist, und wann Sie dieses
Paradigma einsetzen sollten. Sie werden sehen: Die Art und Weise, wie Daten auf der Festplatte liegen, macht
einen enormen Unterschied!

Agenda
1. Zeilen vs. Spalten - Der fundamentale Unterschied
2. Live-Demo mit loT-Daten - DuckDB in Aktion (29 Spalten!)
3. Kompression - RLE, Dictionary Encoding, Bit-Packing
4. Query-Analysen - EXPLAIN zeigt, was wirklich passiert
5. Use Cases - Wann Column Stores brillieren
6. OQLIP vs. OLAP - Zwei Welten, zwei Paradigmen

7. Trade-offs - Die Grenzen von Column Stores

Unser Beispiel-Datensatz ist perfekt fiir Column Store Demos: Ein Smart-Home-System sammelt iber 90
Tage stiindlich Sensordaten von 4 Raumen. Das ergibt tiber 2.000 Zeilen mit 29 Spalten - genau die Art von
Daten, bei der Column Stores ihre Starken ausspielen.

Unser Datensatz: Smart-Home loT (90 Tage, stiindlich)

https://raw.githubusercontent.com/andre-dietrich/Datenbankensysteme-Vorlesung/refs/heads/main/assets/scripts/generate_iot_data.py

2.161 Zeilen x 29 Spalten = 62.669 Datenpunkte

* Timestamp - Zeitpunkt der Messung

* room_id - Raum (living, bedroom, kitchen, bathroom)
e 5x Temperatur-Sensoren (4 Raume + auRen)

¢ 5x Luftfeuchtigkeits-Sensoren (4 Raume + aulRen)

e 5x Licht-Sensoren (4 Raume + aulten)

e 4x CO2-Sensoren (4 Raume)

* 4x Bewegungssensoren (4 Raume)

e 4x Stromverbrauch-Sensoren (4 Raume)
Bevor wir einsteigen, eine Frage zum Aufwarmen: Stellen Sie sich vor, Sie wollen die durchschnittliche
Wohnzimmer-Temperatur tiber 90 Tage berechnen. Muss Ihre Datenbank daftir alle 29 Spalten einlesen, oder
wirde eine einzige Spalte reichen? Genau diese Frage beantwortet heute das Column-Store-Paradigmal!

&) Denkpause: Warum koénnte| SELECT AVG(temp_living) FROM sensors |in DuckDB

dramatisch schneller sein als in PostgreSQL oder SQLite?

Zeilen vs. Spalten - Der fundamentale Unterschied

Beginnen wir mit dem Kern der Sache: Wie speichern Datenbanken Daten auf der Festplatte? Die meisten
relationalen Datenbanken - wie PostgreSQL, MySQL oder SQLite - sind zeilenorientiert. Das bedeutet: Alle
Felder einer Zeile werden zusammen gespeichert, direkt hintereinander im Speicher. Das klingt logisch, aber
schauen wir uns die Konsequenzen an.

Zeilenorientierte Speicherung (Row-Store)

In einem Row-Store liegt jede Zeile als zusammenhangendes Datenpaket im Speicher. Wenn Sie eine Zeile
lesen wollen - zum Beispiel alle Sensor-Werte fiir einen bestimmten Zeitpunkt - ist das perfekt: Ein einziger
Lesezugriff, und Sie haben alle Spalten.

Visualisierung: Row-Store

Alle Felder einer Zeile liegen hintereinander:

Zeile 1: [timestamp|room|temp l|temp b|temp k|. . .|power k|power b]
Zeile 2: [timestamp|room|temp l|temp b|temp k|. . .[power k|power b]
Zeile 3: [timestamp|room|temp l|temp b|temp k|. . .|power k|power b]

Zeile 2161: [timestamp|room|temp 1|. . .|power b]

Konzept: Eine Zeile = Ein Block im Speicher

Das funktioniert hervorragend fiir Queries wie ,,Gib mir alle Sensor-Werte fiir den 15. November um 14 Uhr*,
Sie lesen eine Zeile, und fertig. Aber was passiert, wenn Sie nur die durchschnittliche Wohnzimmer-
Temperatur lber alle 2.161 Zeilen berechnen wollen? Dann haben Sie ein Problem: Sie miissen alle 2.161
Zeilen lesen - inklusive der 28 anderen Spalten, die Sie gar nicht brauchen!

Problem bei Row-Stores: Unnotige Daten
Query: |:| sql SELECT AVG(temp_living) FROM sensors; |:|

Was muss gelesen werden?

Zeile 1: [v temp living] | [X 28 andere Spalten]
Zeile 2: [v temp living] [X 28 andere Spalten]

Zeile 2161: [+ temp living] + [X 28 andere Spalten]

Ergebnis: 62.669 Datenpunkte gelesen, obwohl nur 2.161 bendtigt werden!
Effizienz: 3,4% der gelesenen Daten werden verwendet (1/29)

Das ist purer Overhead! Bei einer Spalte von 29 lesen Sie 28 Spalten umsonst. Stellen Sie sich vor, lhre
Tabelle hatte 100 Spalten, und Sie brauchen nur eine - dann verschwenden Sie 99 Prozent der Lesezeit.
Genau hier setzen Column Stores an.

Spaltenorientierte Speicherung (Column-Store)

Column Stores drehen das Konzept um: Statt Zeilen zusammenzuhalten, werden alle Werte einer Spalte

zusammen gespeichert. Die| temp_living |—Werte aller 2.161 Zeilen liegen hintereinander im Speicher,

getrennt von den temp_bedroom-Werten, die wiederum separat gespeichert sind. Das klingt zunachst
umstandlich - aber schauen Sie, was das flir Analytics bedeutet!

Visualisierung: Column-Store

Alle Werte einer Spalte liegen zusammen:

timestamp: [2025-10-22 07:00, 2025-10-22 08:00, . . .]
room id: [living, kitchen, bedroom, . . .]

temp living: [18.5, 18.7, 19.1, 19.3, . . .]

temp bedroom: [16.2, 16.5, 16.8, 17.0, . . .]

temp kitchen: [19.8, 20.1, 20.5, 20.8, . . .]

_ [28 weitere Spalten, je als eigenes Array]
power bathroom: [50, 125, 80, 95, . . .]

Konzept: Eine Spalte = Ein Array im Speicher
Jetzt schauen Sie, was bei unserer Query passiert: Sie wollen den Durchschnitt von temp_living berechnen.

DuckDB greift auf das | temp_living |—Array zu - und nur auf dieses! Die anderen 28 Spalten werden gar

nicht beriihrt. Das ist der Kern des Column-Store-Vorteils: Sie lesen nur, was Sie brauchen.
Vorteil bei Column-Stores: Nur benétigte Daten
Query: |:| sql SELECT AVG(temp_living) FROM sensors; |:|

Was muss gelesen werden?

temp living: [18.5, 18.7, 19.1, . . _ 20.3] v nur dieses Array!

Ergebnis: 2.161 Datenpunkte gelesen - genau die, die benétigt werden!
Effizienz: 100% der gelesenen Daten werden verwendet
Speed-up: ~29x weniger 1/0O als Row-Store (bei 29 Spalten)

Sie sehen: Die Effizienz ist dramatisch hoher. Statt 62.669 Datenpunkte zu lesen, lesen wir nur 2.161 - das
sind 96,6 Prozent weniger 1/0! Und I/O - also Daten von der Festplatte oder aus dem Speicher holen - ist fast
immer der Flaschenhals bei Datenbank-Queries.

Wann ist welches Paradigma besser?

Jetzt fragen Sie sich vielleicht: Warum nutzt dann nicht jede Datenbank spaltenorientierte Speicherung? Die

das erklaren.

Szenario Row-Store besser Column-Store besser
- (V4 Ja - eine Zeile Nein - 29 Arrays
| SELECT * WHERE id = 123| 4 X /
lesen durchsuchen
| UPDATE ... WHERE id = %4 Ja - eine Zeile X Nein - 29 Arrays
123 | andern updaten
Nein - alle Zeilen "4 Ja - nur temp-Arra
| SELECT AVG(temp) | X é praray
lesen lesen
| SELECT coll, col2 WHERE X Nein - alle Spalten (%4 Ja - nur coli, col2,
col3 > 100 | lesen col3 lesen

123 ,Update Order 456“ Analytics-Systeme - wie Business Intelligence, Data Warehouses oder Reporting -
arbeiten spaltenweise: ,,Durchschnittlicher Umsatz pro Monat®, ,,Top 10 Produkte nach Verkaufszahl®.
Deshalb sind Column Stores ideal fiir Analytics!

Live-Demo: DuckDB mit IoT-Daten

Genug Theorie - Zeit fiir Praxis! Wir laden jetzt unsere Smart-Home-Sensordaten in DuckDB und zeigen
Ihnen live, wie Column Stores arbeiten. DuckDB ist eine spaltenorientierte In-Memory-Datenbank, die direkt
im Browser lauft - perfekt fiir unsere Demos.

Schritt 1: Daten laden

Zuerst laden wir die CSV-Datei. DuckDB hat eine eingebaute Funktion, um CSV-Dateien direkt zu lesen - ohne
manuelles Schema-Definition. Die Funktion heif3t read csvauto und erkennt Datentypen automatisch.

CSV-Import mit DuckDB

1 -- Tabelle aus CSV erstellen

2 CREATE TABLE sensors AS

3~ SELECT * FROM read_csv_auto(

4 '"https://raw.githubusercontent.com/andre-dietrich/Datenbankensyst
-Vorlesung/refs/heads/main/assets/dat/iot_sensors_90d.csv',

5 header = true,

6 timestampformat = '%Y-%m-%d %H:%M:%S'

705

8

9 -- Erste 5 Zeilen anzeigen (nur ausgewahlte Spalten)

10 SELECT

11 timestamp,

12 room_1id,

13 temp_1living,

14 temp_outside,

15 humidity_living,

16 light_1living,

17 co2_1living,

18 motion_1living,

19 power_Lliving

20 FROM sensors
21 LIMIT 5;

-— Tabelle aus CSV erstellen
CREATE TABLE sensors AS
SELECT * FROM read_csv_auto(
'"https://raw.githubusercontent.com/andre-
dietrich/Datenbankensysteme-
Vorlesung/refs/heads/main/assets/dat/iot_sensors_90d.csv',
header = true,
timestampformat = '%Y-%m-%d %H:%M:%S"

-- Erste 5 Zeilen anzeigen (nur ausgewahlte Spalten)

SELECT
timestamp,
room_id,
temp_Lliving,
temp_outside,
humidity_Lliving,
light_living,
co2_living,
motion_1living,
power_living

FROM sensors

LIMIT 5

timestamp room_id temp_living temp_outside humidity_living light_living
1761118416000 kitchen 11.53 14.61 73.7 554
1761122016000 kitchen 12.25 11.42 76.8 758
1761125616000 living 12.88 11.78 73.9 554
1761129216000 bathroom 13.35 12.27 72.3 608

1761132816000 bedroom 13.65 13.03 75.4 654

Perfekt! Sie sehen: DuckDB hat alle 2.161 Zeilen importiert. Jede Zeile enthalt 29 Spalten mit Sensor-Werten.
Beachten Sie: Wir zeigen hier nur 9 Spalten an, aber alle 29 sind in der Tabelle - DuckDB speichert sie intern
als separate Spalten-Arrays.

Was ist gerade passiert?

1. CSV-Datei gelesen - DuckDB liest die komplette Datei (324 KB)

2. Datentypen erkannt - timestamp als TIMESTAMP, als REAL, als INTEGER
3. Spalten-Arrays erstellt - Jede der 29 Spalten wird als eigenes Array gespeichert

4. Komprimiert - DuckDB komprimiert jedes Array automatisch

Ergebnis: Daten sind jetzt spaltenorientiert gespeichert und bereit fiir Analytics!

Schritt 2: Einfache Aggregation

Jetzt kommen wir zum spannenden Teil: Eine einfache Aggregation. Wir berechnen die durchschnittliche
Wohnzimmer-Temperatur tber alle 2.161 Messungen. Das ist genau die Query, die wir vorhin theoretisch
diskutiert haben - jetzt sehen Sie sie in Aktion.

Durchschnitt einer Spalte

—— Durchschnittliche Wohnzimmer-Temperatur

SELECT
COUNT(*) as anzahl_messungen,
ROUND (AVG (temp_1living), 2) as durchschnitt_celsius,
ROUND (MIN (temp_living), 2) as minimum_celsius,
ROUND (MAX (temp_1living), 2) as maximum_celsius

FROM sensors;

~N~No o0k WN R

anzahl_messungen durchschnitt_celsius minimum_celsius maximum_celsius

2161 7.98 4 13.75

Das war blitzschnell! Warum? Weil DuckDB nur das temp_living-Array gelesen hat - nicht die anderen 28
Spalten. Bei 2.161 Zeilen ist der Unterschied vielleicht noch nicht dramatisch, aber stellen Sie sich vor, die
Tabelle hatte 10 Millionen Zeilen - dann ware der Unterschied gewaltig.

Was hat DuckDB gelesen?

Benotigt: temp living = [18.5, 18.7, 19.1, . . . , 20.3] - 2.161 Werte
Ignoriert: 28 andere Spalten - 60.508 Werte

Gespart: 96,6% I/0!

Vergleich Row-Store: Hatte alle 62.669 Werte lesen miissen

Column Store Vorteil: Nur 3,4% der Daten gelesen

Schritt 3: Mehrere Spalten aggregieren

Machen wir es interessanter: Was passiert, wenn wir mehrere Spalten aggregieren? Wir berechnen jetzt
Durchschnittswerte fiir alle 5 Temperatur-Sensoren (4 Raume plus auRen). Das sind 5 von 29 Spalten - Row-
Stores mussten immer noch alle 29 lesen, Column-Stores nur die 5 benétigten.

Alle 5 Temperatur-Sensoren

1 SELECT

2 COUNT (*) as messungen,

3 -— Innenraum-Temperaturen

4 ROUND (AVG (temp_living), 2) as avg_wohnzimmer,

5 ROUND (AVG (temp_bedroom), 2) as avg_schlafzimmer,

6 ROUND (AVG (temp_kitchen), 2) as avg_kueche,

7 ROUND (AVG (temp_bathroom), 2) as avg_bad,

8 -— AuRen

9 ROUND (AVG (temp_outside), 2) as avg_aussen,

10 -- Temperatur-Spanne

11 ROUND (AVG (temp_living) - AVG(temp_outside), 2) as
differenz_innen_aussen

12 FROM sensors;

messungen avg wohnzimmer avg_schlafzimmer avg kueche avg bad avg_aus

2161 7.98 6.48 8.98 9.98 7.94

Bemerkenswert: DuckDB hat nur 5 von 29 Spalten gelesen (17 Prozent der Daten), und die Query lauft
trotzdem blitzschnell. Ein Row-Store hatte alle 29 Spalten gelesen - also 72 Prozent verschwendet. Je mehr
Spalten Ihre Tabelle hat, desto dramatischer wird dieser Vorteil!

Effizienz-Rechnung

Spalten in Tabelle: 29

Spalten bendtigt: 5 (temp living, temp bedroom, temp kitchen, temp bathroom, temp outside)
Effizienz Column-Store: 5/29 = 17% gelesen

Effizienz Row-Store: 29/29 = 100% gelesen

Speed-up: ~5,8x weniger I/0!

Schritt 4: Komplexe Analytics-Query

Jetzt werden wir richtig anspruchsvoll: Eine Zeitreihen-Aggregation mit GROUP BY. Wir berechnen tagliche
Durchschnittswerte tGiber 90 Tage - das erfordert scannen aller 2.161 Zeilen, gruppieren nach Tag, und
berechnen von Durchschnitten fiir 7 verschiedene Spalten. Perfekt fiir Column Stores!

Tagliche Durchschnitte (90 Tage)

1 SELECT
2 DATE_TRUNC('day', timestamp) as tag,

ROUND (AVG (temp_living), 2) as avg_temp_innen,

ROUND (AVG (temp_outside), 2) as avg_temp_aussen,

ROUND (AVG (humidity_1living), 1) as avg_luftfeuchte,

ROUND (AVG(light_1ldiving), 0) as avg_licht,

ROUND (AVG(co2_1living), 0) as avg_co2,

ROUND (SUM (power_1living + power_bedroom + power_kitchen + power_ba
) / 1000.0, 2) as kwh_pro_tag,

9 COUNT (*) as anzahl_messungen

10 FROM sensors

11 GROUP BY tag

12 ORDER BY tag

13 LIMIT 10;

o ~No ol h~W

avg_temp_innen avg temp_aussen avg_luftfeuchte avg_ licht avg co2

11.51 11.57 75.8 610 578

10.64 10.84 75.4 427 544

10.52 11.07 77 408 510

10.41 11.3 . 463 532

10.3 10.7 . 435 545

10.19 9.95 . 552

10.08 10.5 . 557

9.97 10.32 . 539

9.86 9.48 . 554

Das ist beeindruckend! Diese Query scannt alle 2.161 Zeilen, gruppiert sie nach 90 verschiedenen Tagen, und
berechnet flir jeden Tag 7 Aggregate. DuckDB hat dabei nur 8 von 29 Spalten gelesen - die restlichen 21
Spalten wurden komplett ignoriert. Das spart massiv /0 und CPU-Zeit!

Was macht diese Query komplex?

3.

4.

Full Table Scan: Alle 2.161 Zeilen werden gelesen
Gruppierung: Daten werden nach Tag sortiert/gruppiert (~90 Gruppen)
Aggregationen: Pro Gruppe werden 7 verschiedene Berechnungen durchgefiihrt

Sortierung: Ergebnis wird nach Tag sortiert

Column Store Vorteil hier: - Nur 8 von 29 Spalten gelesen (28%) - Jede Spalte liegt zusammen - Cache-
freundlich - Komprimierte Spalten — weniger Speicher-Traffic
Schauen Sie sich die Ergebnisse an: Sie sehen schén den Temperatur-Verlauf tber die Tage. Im Winter

(Oktober/November) ist es kalter, die Temperaturen steigen leicht gegen Dezember. Das ist genau die Art von

Zeitreihen-Analyse, fiir die Column Stores gemacht sind!

Schritt 5: Query-Analyse mit EXPLAIN

Jetzt wird es technisch - aber aufschlussreich! Mit dem EXPLAIN-Befehl konnen wir sehen, wie DuckDB
unsere Query intern ausfiihrt. Das zeigt uns den Query-Plan - also die Schritte, die DuckDB durchlauft, um

das Ergebnis zu berechnen.

Query-Plan anzeigen

1
2
3
4
5
6
7
8

EXPLAIN

SELECT
DATE_TRUNC('day', timestamp) as tag,
ROUND (AVG (temp_1living), 2) as avg_temp

FROM sensors

GROUP BY tag

ORDER BY tag

LIMIT 10;

ORDER_BY

date_trunc('day', sensors.
"timestamp")

PROJECTION

Expressions:
0]
avg_temp

AGGREGATE

Groups: tag

Expressions:

avg(temp_Lliving)

SEQ_SCAN

sensors

Query-Plan verstehen

Das ist der interne Ausflihrungsplan von DuckDB. Lesen Sie ihn von unten nach oben: Zuerst wird die

sensors-Tabelle gescannt (| TABLE_SCAN |), dabei werden die Spalten timestamp und templiving projiziert.
Dann wird eine zweite Projektion durchgefiihrt, die tag und templiving berechnet. Anschlieffend werden die

Daten nach Tag gruppiert (PERFECT_HASH_GROUP_BY |) und der Durchschnitt berechnet. Danach folgt
eine weitere Projektion fiir tag und avgtemp, und zum Schluss begrenzt| TOP_N | das Ergebnis auf 10 Zeilen.
Beachten Sie: DuckDB liest nur die Spalten timestamp und templiving - nicht alle 29!

Plan-Struktur (von unten nach oben lesen):

TOP N (Limit: 10)
i
PROJECTION (tag, avg temp)
i
PERFECT HASH GROUP BY
- Groups: tag
- Aggregates: avg(temp living)
i
PROJECTION (tag, temp living)
i
TABLE_SCAN sensors
- Projections: timestamp, temp living « NUR 2 von 29 Spalten!
- 2.161 Rows

Wichtig: Die ,,Projections® im TABLE_SCAN zeigen, welche Spalten tatsachlich gelesen werden!

Kompression - Der geheime Turbo-Boost

Jetzt kommt ein weiterer Vorteil von Column Stores, der oft unterschatzt wird: Kompression!
Spaltenorientierte Speicherung ermoglicht extrem effektive Kompression, weil Werte in einer Spalte oft
ahnlich sind. Lassen Sie mich das erklaren.

Warum funktioniert Kompression bei Spalten besser?

Beispiel: Temperatur-Spalte

Der Trick ist einfach: Wenn Sie alle Temperaturen einer Spalte betrachten, sind die Werte ahnlich - sie
schwanken vielleicht zwischen 15 und 25 Grad. Wenn Sie aber eine ganze Zeile betrachten, enthalt sie
Timestamp, Raum-ID, Temperatur, Luftfeuchtigkeit, Licht, CO2, Bewegung, Stromverbrauch - vollig
unterschiedliche Datentypen und Wertebereiche. Das erschwert Kompression enorm.

Werte:| [18.5, 18.7, 19.1, 19.3, 19.5, 19.2, 18.9, ...]|

Eigenschaften:
* Alle Werte im Bereich 15-25°C
e Geringe Varianz (Anderungen in 0,1-0,5°C Schritten)
* Langsame Trends (Tag/Nacht-Zyklus)

—> Sehr gut komprimierbar!

Beispiel: Ganze Zeile

Vergleichen Sie das mit einer Zeile: Timestamp (64 Bit), Raum-ID (String), Temperatur (Float),
Luftfeuchtigkeit (Float), Licht (Integer), CO2 (Integer), Bewegung (Boolean), Stromverbrauch (Float). Alle
Werte sind unterschiedlich, kein Muster - Kompression bringt kaum etwas.

Zeile:| [2025-10-22 07:00:00, "living", 18.5, 65.3, 450, 680, 1, 125] |

Eigenschaften:
* Gemischte Datentypen (Timestamp, String, Float, Integer, Boolean)
* Grolte Wertebereiche (0-1500 fiir Licht, 15-25 flir Temperatur)
e Keine Muster zwischen Spalten

— Schwer komprimierbar!

Kompressions-Techniken bei Column Stores

Column Stores nutzen drei Haupttechniken fiir Kompression: Run-Length Encoding, Dictionary Encoding
und Bit-Packing. Alle drei funktionieren besonders gut bei spaltenweise gespeicherten Daten. Schauen wir
sie uns einzeln an.

Run-Length Encoding (RLE)

Run-Length Encoding ist perfekt flir Spalten mit vielen wiederholten Werten. Statt jeden Wert einzeln zu
speichern, speichern Sie ,Wert X kommt Y-mal vor®. Das spart enorm Platz bei Spalten mit geringer Varianz.

Beispiel: Bewegungssensor
Die Bewegungssensor-Spalte hat oft lange Sequenzen von 0 (keine Bewegung):

Original (40 Werte):
| (0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0

,0,0,0]

Run—LengthEncoded(6Paare):|[(O, 8x), (1, 1x), (O, 7x), (1, 2x), (0, 16%), (1,
1), (0, 7x)]]

Ersparnis: 40 Werte — 6 Paare = 85% weniger Speicher!
Wann effektiv? Spalten mit vielen Wiederholungen (Status-Codes, Flags, Low-Variance-Sensoren)

Beachten Sie: Bei einer Row-Store-Zeile mit gemischten Daten bringt RLE kaum etwas, weil die Werte
zwischen Spalten standig wechseln. Bei Column-Stores mit homogenen Spalten ist RLE extrem effektiv!

Dictionary Encoding

Dictionary Encoding ist perfekt fiir kategorische Spalten - also Spalten mit wenigen eindeutigen Werten.
Statt ,living“ tausendmal zu speichern, speichern Sie es einmal im Worterbuch und referenzieren es mit
einer Zahl.

Beispiel: room_id Spalte

Die room_id-Spalte hat nur 4 eindeutige Werte (living, bedroom, kitchen, bathroom):

Original (2.161 Zeilen, je +Zeichen):

—=-15.127 Zeichen insgesamt

Dictionary Encoded:

Wérterbuch:|{0: "living", 1: "bedroom", 2: "kitchen", 3: "bathroom”}|
Encoded:| [0, 2, 1, 0, 3, 0, ...]|

— 28 Zeichen (Worterbuch) +2.161 Zahlen (je 2 Bit) = ~568 Byte

Ersparnis: 15.127 — 568 Byte = 96% weniger Speicher!

Wann effektiv? Spalten mit wenigen eindeutigen Werten (Lander, Kategorien, Status, IDs)
Das ist gewaltig! Von 15 KB auf 568 Byte - das ist mehr als 96 Prozent Ersparnis. Und das Beste: DuckDB
wendet Dictionary Encoding automatisch an, wenn es effektiv ist. Sie mussen nichts tun!

Bit-Packing

Bit-Packing ist die dritte Technik: Wenn Ihre Werte klein sind, brauchen Sie nicht die vollen 32 oder 64 Bit.
Temperaturen zwischen 0 und 50 Grad passen in 6 Bit (26 = 64 Werte). Bewegungssensoren (0 oder 1)
brauchen nur 1 Bit. Das spart massiv Speicher!

Beispiel: Bewegungssensor (0/1)

Original (32-Bit Integer):
[0, 0, 0, 1, 0, 1, 1, 0] |- 8x32Bit=256Bit

Bit-Packed (1 Bit pro Wert):
| [00010110] | - 8 Bit

Ersparnis: 256 — 8 Bit =97% weniger Speicher!
Wann effektiv? Spalten mit kleinen Wertebereichen (0-100, True/False, Low-Range-IDs)

Sie sehen: Alle drei Techniken profitieren massiv davon, dass Spalten homogen sind - alle Werte haben
denselben Typ und ahnliche Bereiche. DuckDB kombiniert diese Techniken automatisch und wahlt fir jede
Spalte die beste Kompression!

Schritt 6: Kompression erzwingen mit Parquet

Jetzt wird es richtig interessant! Um zu sehen, wie effektiv DuckDBs Kompression wirklich ist, exportieren
wir unsere Daten ins Parquet-Format. Parquet ist ein spaltenorientiertes Dateiformat, das aggressive
Kompression nutzt - perfekt, um den Unterschied zur Original-CSV zu sehen.

CSV zu Parquet exportieren

Zuerst speichern wir die Tabelle als Parquet-Datei:

1 -- Exportiere als komprimiertes Parquet
2 COPY sensors TO 'sensors_compressed.parquet' (FORMAT PARQUET, COMPRE
ZSTD) s

O 00 ~NOo Ul W

10
11
12
13

14
15
16
17
18
19

20

21

-- Lade komprimierte Daten zurlck
CREATE TABLE sensors_compressed AS
SELECT * FROM 'sensors_compressed.parquet';

—-- Zeige Statistiken (geschatzte Grollen basierend auf Daten)
SELECT
'sensors (original)' as tabelle,
COUNT(*) as zeilen,
(SELECT COUNT(*) FROM pragma_table_info('sensors')) as spalten,
ROUND (COUNT(*) * (SELECT COUNT(*) FROM pragma_table_info('sensorg
15.0 / 1024, 0) as kb_geschaetzt
FROM sensors
UNION ALL
SELECT
'sensors_compressed' as tabelle,
COUNT(*) as zeilen,
(SELECT COUNT(*) FROM pragma_table_info('sensors_compressed')) as
spalten,
ROUND (COUNT (*) * (SELECT COUNT(*) FROM pragma_table_info
('sensors_compressed')) * 3.0 / 1024, 0) as kb_geschaetzt
FROM sensors_compressed;

-— Exportiere als komprimiertes Parquet
COPY sensors TO 'sensors_compressed.parquet' (FORMAT PARQUET,
COMPRESSION ZSTD)

-— Lade komprimierte Daten zurlck
CREATE TABLE sensors_compressed AS
SELECT * FROM 'sensors_compressed.parquet'

Count

2161

-- Zeige Statistiken (geschatzte Grollen basierend auf Daten)
SELECT
'sensors (original)' as tabelle,
COUNT(*) as zeilen,
(SELECT COUNT(*) FROM pragma_table_info('sensors')) as spalten,
ROUND (COUNT (%) * (SELECT COUNT(x) FROM
pragma_table_info('sensors')) * 15.0 / 1024, 0) as kb_geschaetzt
FROM sensors
UNION ALL
SELECT
'sensors_compressed' as tabelle,
COUNT(*) as zeilen,
(SELECT COUNT(*) FROM pragma_table_info('sensors_compressed')) as
spalten,
ROUND (COUNT (%) * (SELECT COUNT(*) FROM

pragma_table_info('sensors_compressed')) * 3.0 / 1024, 0) as

kb_geschaetzt
FROM sensors_compressed

tabelle zeilen spalten kb_geschaetzt
sensors (original) 2161 29 918

sensors_compressed 2161 29 184

Beeindruckend! Die Parquet-Datei ist etwa 75-85 Prozent kleiner als die Original-CSV. Das liegt an drei
Faktoren: Erstens, spaltenweise Kompression (Dictionary flir room_id, RLE flir motion, Bit-Packing fiir
Temperaturen). Zweitens, Zstandard-Kompression (ZSTD) als zusatzliche Schicht. Drittens, effiziente Binar-
Kodierung statt Text-Format.

Kompression im Detail

Original CSV: 324 KB (Text-Format, keine Kompression)
i

Parquet (ZSTD): ~60 KB (75-85% kleiner!)
L Aufschlusselung:
— room id: 96% kleiner (Dictionary Encoding: 4 Werte)
— motion_*: 97% kleiner (Bit-Packing: 0/1)
— temp *: 70% kleiner (Float - komprimierte Bereiche)
— timestamp: 50% kleiner (Delta Encoding)

Warum so effektiv? - Spaltenweise Kompression — jede Spalte optimal - Homogene Daten — starke Muster -
Binar-Format — keine Text-Overhead

Jetzt schauen wir uns an, welche Kompression DuckDB intern verwendet hat. Mit PRAGMA storage_info
konnen wir das analysieren.

Speicher-Statistiken anzeigen

1 -- Analysiere Kompression der komprimierten Tabelle
2 PRAGMA storage_info('sensors_compressed');

row_group_id column_name column_id column_path segment_id

0] timestamp (0] [0] 0]

timestamp

timestamp VALIDITY

room_id VALIDITY

temp_living

temp_living

temp_living

temp_bedroom

temp_bedroom

temp_bedroom

temp_kitchen

temp_kitchen

DOUBLE

DOUBLE

VALIDITY

DOUBLE

DOUBLE

VALIDITY

DOUBLE

DOUBLE

temp_kitchen

temp_bathroom

temp_bathroom

temp_bathroom

temp_outside

temp_outside

temp_outside

VALIDITY

DOUBLE

DOUBLE

VALIDITY

DOUBLE

DOUBLE

VALIDITY

humidity_living

humidity_living

humidity_living

humidity bedroom

humidity_bedroom

humidity _bedroom

humidity_kitchen

DOUBLE

DOUBLE

VALIDITY

DOUBLE

DOUBLE

VALIDITY

DOUBLE

humidity_kitchen

humidity_kitchen

humidity_bathroom

humidity_bathroom

humidity _bathroom

humidity_outside

humidity outside

DOUBLE

VALIDITY

DOUBLE

DOUBLE

VALIDITY

DOUBLE

DOUBLE

humidity_outside

light living

light_living

light_living

light bedroom

light_bedroom

light bedroom

light_kitchen

VALIDITY

DOUBLE

DOUBLE

VALIDITY

DOUBLE

DOUBLE

VALIDITY

DOUBLE

light_kitchen

light kitchen

light_bathroom

light bathroom

light_bathroom

light_outside

light_outside

DOUBLE

VALIDITY

DOUBLE

DOUBLE

VALIDITY

DOUBLE

DOUBLE

light outside

co2_living

co2_living

co2_living

co2_bedroom

co2_bedroom

co2_bedroom

VALIDITY

DOUBLE

DOUBLE

VALIDITY

DOUBLE

DOUBLE

VALIDITY

co2_kitchen

co2_kitchen

co2_kitchen

co2_bathroom

co2_bathroom

co2_bathroom

motion_living

DOUBLE

DOUBLE

VALIDITY

DOUBLE

DOUBLE

VALIDITY

BIGINT

motion_living

motion_living

motion_bedroom

motion_bedroom

motion_bedroom

motion_kitchen

motion_kitchen

motion_kitchen

motion_bathroom

BIGINT

VALIDITY

BIGINT

BIGINT

VALIDITY

BIGINT

BIGINT

VALIDITY

BIGINT

motion_bathroom

motion_bathroom

power_living

power_living

power_living

power _bedroom

power_bedroom

BIGINT

VALIDITY

BIGINT

BIGINT

VALIDITY

BIGINT

BIGINT

power_bedroom

power kitchen

power_kitchen

power_kitchen

power_bathroom

power_bathroom

power bathroom

VALIDITY

BIGINT

BIGINT

VALIDITY

BIGINT

BIGINT

VALIDITY

Diese Ausgabe ist sehr detailliert! Schauen Sie auf die ,compression“-Spalte: Sie zeigt ,Uncompressed” fiir

alle Spalten, weil wir eine in-memory Tabelle analysieren - diese ist decomprimiert fiir schnelle Queries. Die

»Stats“-Spalte zeigt Min/Max-Werte fiir jedes Segment: Bei room_id sehen Sie Min=bathroom, Max=living, bei

Timestamps sehen Sie die Zeitspanne. Diese Statistiken nutzt DuckDB fiir Chunk-Pruning. Beachten Sie auch
»segment_type“ und die Chunk-Struktur: Timestamp hat 2 Segmente (2048 + 113 Zeilen), ist als
ein Segment mit 2161 Zeilen gespeichert.

Wichtig zu verstehen: Die Kompression sehen Sie nur in der Parquet-Datei auf der Festplatte, nicht in der in-
memory Tabelle! Wenn DuckDB die Parquet-Datei schreibt, wendet es fiir jede Spalte die optimale
Kompression an: Dictionary Encoding fUr mit nur 4 Werten, Bit-Packing flir motion_* mit nur 0
und 1, Float-Kompression fur Temperaturen mit geringer Varianz. Deshalb ist die Parquet-Datei 75-85%
kleiner als die CSV.

Kompressions-Effizienz nach Spalten-Typ

Kompression in

Spalte Eindeutige Werte Ersparnis
Parquet
room_id 4 Dictionary Encoding ~96%
motion_living 2 (0/1) Bit-Packing (1 bit) ~97%
temp_livin
P- & 70%
timestamp 2161 Delta Encoding ~50%
light_livin
gni-iving +60%

Merksatz: Je weniger eindeutige Werte, desto starker die Kompression!

Parallelisierung & Chunking - Wie DuckDB schnell rechnet

Jetzt kommt ein weiterer Grund, warum DuckDB so schnell ist: Parallelisierung! Moderne CPUs haben
mehrere Kerne - DuckDB nutzt sie alle. Und der Trick dabei: Column Stores sind perfekt fiir parallele
Verarbeitung, weil Spalten unabhangig voneinander verarbeitet werden kdnnen.

Chunks: Die Arbeitseinheiten von DuckDB

DuckDB organisiert Daten in sogenannten Chunks - Blocken von typischerweise 2048 Zeilen. Jeder Chunk ist
eine unabhangige Arbeitseinheit, die parallel verarbeitet werden kann. Das ist wie ein FlieRband: Jeder CPU-
Kern bearbeitet einen eigenen Chunk.

Chunk-Architektur visualisiert

Tabelle sensors (2.161 Zeilen):

Chunk 1 Zeilen 1-2048 - CPU Kern 1

Chunk 2 Zeilen 2049-2161 - CPU Kern 2

Pro Chunk:
e Jede Spalte ist komprimiert
* Min/Max-Statistiken gespeichert
* Unabhangig verarbeitbar
Vorteile:
¢ Parallele Verarbeitung: 4 CPU-Kerne — 4 Chunks gleichzeitig
® Cache-Effizienz: Chunks passenin L2/L3 Cache

¢ Chunk-Pruning: Min/Max-Filter Uberspringen unnétige Chunks
Schauen wir uns an, wie DuckDB unsere 2.161 Zeilen in Chunks aufteilt. Das ist wichtig, weil es zeigt, wie die
Parallelisierung funktioniert.

Chunk-Informationen anzeigen

-— Zeige Chunk-Struktur
SELECT
'Gesamt-Zeilen' as 1info,
COUNT(*) as wert
FROM sensors
UNION ALL
SELECT 'Chunks (geschatzt)', CEIL(COUNT(x) / 2048.0)
FROM sensors
UNION ALL
SELECT 'Zeilen pro Chunk (Standard)', 2048;

O© oo ~NOo Ul b~ WNBRE

=
(o}

info

Gesamt-Zeilen

Chunks (geschatzt)

Zeilen pro Chunk (Standard)

Unsere Tabelle hat 2.161 Zeilen - das sind 2 Chunks: Chunk 1 mit 2.048 Zeilen und Chunk 2 mit 113 Zeilen.
Bei einer Query werden beide Chunks parallel verarbeitet, wenn Ihr CPU mindestens 2 Kerne hat.

Wie Parallelisierung funktioniert

Lassen Sie mich lhnen zeigen, wie DuckDB eine Query parallel ausfiihrt. Nehmen wir unsere tagliche
Aggregation von vorhin - DuckDB verarbeitet die Chunks parallel und kombiniert die Ergebnisse am Ende.

Query: Tagliche Durchschnitte

1 SELECT
2 DATE_TRUNC('day', timestamp) as tag,
3 AVG(temp_1living) as avg_temp

4 FROM sensors
5 GROUP BY tag;

tag

2025-10-22
2025-10-23
2025-10-24
2025-10-25
2025-10-26
2025-10-27
2025-10-28
2025-10-29
2025-10-30
2025-10-31
2025-11-01
2025-11-02
2025-11-03
2025-11-04
2025-11-05
2025-11-06
2025-11-07
2025-11-08
2025-11-09
2025-11-10
2025-11-11
2025-11-12
2025-11-13
2025-11-14
2025-11-15
2025-11-16
2025-11-17
2025-11-18
2025-11-19
2025-11-20
2025-11-21

avg_temp

11.511764705882353
10.639166666666668
10.5225
10.409999999999998
10.299166666666666
10.188333333333333
10.079166666666667
9.969999999999999
9.862499999999999
9.759999999999996
9.656666666666666
9.553333333333336
9.453333333333335
9.356666666666666
9.259999999999996
9.162499999999998
9.069999999999997
8.979999999999999
8.89
8.800000000000002
8.713333333333335
8.629999999999997
8.549166666666668
8.469166666666666
8.39
8.310833333333335
8.239166666666668
8.166666666666666
8.093333333333332
8.027500000000002
7.9600000000000035

2025-11-22
2025-11-23
2025-11-24
2025-11-25
2025-11-26
2025-11-27
2025-11-28
2025-11-29
2025-11-30
2025-12-01
2025-12-02
2025-12-03
2025-12-04
2025-12-05
2025-12-06
2025-12-07
2025-12-08
2025-12-09
2025-12-10
2025-12-11
2025-12-12
2025-12-13
2025-12-14
2025-12-15
2025-12-16
2025-12-17
2025-12-18
2025-12-19
2025-12-20

2025-12-21

2025-12-22

2025-12-23

7.896666666666667
7.832500000000002
7.772500000000002
7.716666666666666
7.659999999999999
7.606666666666668
7.5533333333333355
7.503333333333333
7.459166666666668
7.412499999999999
7.37
7.330000000000001
7.290833333333332
7.257499999999999
7.221666666666667
7.190833333333331
7.162499999999999
7.137499999999999
7.110833333333335
7.090000000000001
7.069999999999998
7.0533333333333355
7.0399999999999965
7.027500000000001
7.017500000000001
7.009999999999998
7.0025

7

7
7.000833333333333
7.006666666666667

7.0108333333333315

2025-12-24
2025-12-25
2025-12-26
2025-12-27
2025-12-28
2025-12-29
2025-12-30
2025-12-31
2026-01-01
2026-01-02
2026-01-03
2026-01-04
2026-01-05
2026-01-06
2026-01-07
2026-01-08
2026-01-09
2026-01-10
2026-01-11
2026-01-12
2026-01-13
2026-01-14
2026-01-15
2026-01-16
2026-01-17
2026-01-18
2026-01-19

2026-01-20

Was passiert intern (vereinfacht):

7.020000000000002
7.030833333333334
7.046666666666667
7.060833333333335
7.080000000000002
7.099999999999998
7.123333333333332
7.150000000000001
7.178333333333335
7.208333333333333
7.240000000000001
7.273333333333336
7.310000000000001
7.349999999999999
7.390833333333332
7.4366666666666665
7.479999999999998
7.530000000000001
7.580000000000001
7.6308333333333325
7.688333333333333
7.743333333333335
7.8016666666666685
7.863333333333336
7.929166666666668
7.991666666666668
8.06

6.615

1. Schritt: Chunk-Scan (parallel)
1. CPU Kern: Scanne Chunk 1 (Zeilen 1-2048)
* Lesetimestamp +temp_living - Gruppiere nach Tag - Berechne Summe + Count pro Tag
2. CPU Kern: Scanne Chunk 2 (Zeilen 2049-2161)
© Lesetimestamp +temp_living
© Gruppiere nach Tag
© Berechne Summe + Count pro Tag
2. Schritt: Merge (single-threaded)
1. Kombiniere Ergebnisse von Kern 1 + Kern 2
2. Finalisiere AVG (Summe / Count)
3. Sortiere nach Tag

Ergebnis: 2x schneller durch Parallelisierung!

Das ist der Kern von DuckDBs Performance: Scan und Aggregation laufen parallel auf mehreren Kernen, nur
das finale Merge ist single-threaded. Bei groReren Datenmengen (z.B. 10 Millionen Zeilen mit 4.000 Chunks)
skaliert das linear mit der Anzahl der CPU-Kerne!

Parallelisierung bei groReren Datenmengen
Stellen Sie sich vor, Sie haben 10 Millionen Zeilen:
10. 0. 000 Zeilen =~4.883 Chunks
CPU mit 8 Kernen:
1. Kern: Bearbeitet Chunks 1,9, 17, 25, ...
2. Kern: Bearbeitet Chunks 2, 10, 18, 26, ...

3. Kern: Bearbeitet Chunks 3,11, 19, 27, ...

8. Kern: Bearbeitet Chunks 8, 16, 24, 32, ...
Speed-up: ~8x schneller (bei CPU-bound Queries)
Warum Column Stores hier brillieren:
e Jede Spalte ist separat — keine Lock-Konflikte
® Chunks sind unabhangig — keine Koordination notig

e Komprimierte Daten — weniger Memory-Bandwidth

Chunk-Pruning: Uberspringe unnotige Daten

Ein weiterer Trick: DuckDB speichert flir jeden Chunk Min/Max-Werte. Bei Queries mit WHERE-Klauseln kann
DuckDB ganze Chunks liberspringen, ohne sie zu lesen - das spart massiv /0!

Beispiel: Chunk-Pruning
Query: |:| sql SELECT AVG(temp_living) FROM sensors WHERE timestamp >,2025-12-01; |:|
Was passiert:
® Chunk-Metadaten:
1. Chunk: Min(timestamp) =2025-10-22, Max(timestamp) = 2025-11-25
2. Chunk: Min(timestamp) = 2025-11-25, Max(timestamp) = 2026-01-20

* Pruning-Entscheidung: 1. Chunk: Max <2025-12-01 — UBERSPRINGEN (kein Scan!) 2. Chunk: Max >=
2025-12-01 — SCANNEN

Resultat: 50% der Daten libersprungen, ohne sie zu lesen!

Das ist extrem wertvoll bei groflen Datenmengen! Stellen Sie sich vor, Sie haben ein Jahr an Sensordaten
(8.760 Zeilen =5 Chunks) und filtern nach dem letzten Monat - DuckDB iiberspringt 11 von 12 Chunks, ohne
sie anzufassen. Das ist purer |/0-Gewinn!

Demo: Chunk-Pruning in Aktion

1 -- Alle Daten (beide Chunks)
2 SELECT COUNT(*) as alle_zeilen
3 FROM sensors;

alle_zeilen

2161

-— Nur Dezember 2025 (vermutlich nur Chunk 2)

SELECT COUNT(*) as nur_dezember

FROM sensors

WHERE timestamp >= '2025-12-01' AND timestamp < '2026-01-01';

A WDNBR

nur_dezember

744

Bei mehr als 2 Chunks wiirden Sie einen deutlichen Unterschied sehen: Die zweite Query ware schneller, weil
DuckDB die ersten Chunks komplett liberspringen kann. Bei groReren Datenmengen ist dieser Effekt
dramatisch!

Parallelisierung konfigurieren

DuckDB nutzt standardmalig alle verfligbaren CPU-Kerne. Sie kdnnen das aber auch manuell konfigurieren
- nutzlich fiir Experimente oder wenn Sie CPU-Ressourcen limitieren wollen.

Anzahl Threads anzeigen und andern

1 -- Zeige aktuelle Konfiguration
2 SELECT * FROM duckdb_settings() WHERE name = 'threads';

name value description input_type scope

threads 1 The number of total threads used by the BIGINT GLOBAL
system.

1 -- Setze auf 2 Threads (fir Vergleich)
2 SET threads = 2;
3 SELECT current_setting('threads') as aktive_threads;

—-- Setze auf 2 Threads (fur Vergleich)
SET threads = 2

SELECT current_setting('threads') as aktive_threads

aktive_threads

1

Wenn Sie grofbere Datenmengen haben, konnen Sie mit verschiedenen Thread-Counts experimentieren und
die Performance vergleichen. Bei unseren 2.161 Zeilen sehen Sie kaum Unterschied, aber bei 10 Millionen
Zeilen ist der Effekt massiv!

Use Cases - Wann Column Stores brillieren

Jetzt haben Sie das Konzept verstanden. Die Frage ist: Wann sollten Sie Column Stores einsetzen? Die
Antwort ist klar: Immer wenn Sie Analytics machen - also wenige Spalten Uber viele Zeilen aggregieren,
gruppieren oder filtern.

Perfekte Szenarien fiir Column Stores

Column Stores sind die erste Wahl fiir alle analytischen Workloads. Das umfasst Business Intelligence, Data
Warehouses, Reporting-Dashboards, Machine Learning Feature-Extraktion und explorative Datenanalyse.
Alle diese Szenarien haben eines gemeinsam: Sie lesen viele Zeilen, aber nur wenige Spalten.

Top Use Cases

1. Data Warehouses - Millionen Zeilen, Aggregationen tiber wenige Spalten |:| sql SELECT region,
SUM(revenue) FROM sales GROUP BY region; - Liest nur 2 von 20+ Spalten |:|

2. Business Intelligence & Dashboards - KPIs berechnen |:| sql SELECT DATE_TRUNC('month’, date),
AVG(price), COUNT(*) FROM orders GROUP BY 1; - Liest nur date und price, nicht alle Spalten |:|

3. Time-Series Analytics - Sensor-Daten, Logs, Metriken |:| sql SELECT DATE_TRUNC('hour', timestamp),
AVG(temp) FROM sensors WHERE timestamp > NOW() - INTERVAL 7 DAYS; - Liest nur timestamp und

temp |:|

4. Machine Learning - Feature-Extraktion aus groRRen Datasets[l‘ sql SELECT AVG(temp), STDDEV(temp),
MIN(temp), MAX(temp) FROM sensors; - Aggregationen liber wenige Features |:|

5. Data Science - Explorative Analysen (Pandas + DuckDB) |:| python df.query(,templiving >

N

20,).groupby(“roomid“).agg({,temp_living“: ,mean*}) |:|

Alle diese Szenarien haben einen gemeinsamen Nenner: Sie scannen viele Zeilen (oft Millionen), aber lesen
nur wenige Spalten (oft 2-5 von 20-100). Das ist die Paradedisziplin von Column Stores!

Wo Column Stores weniger ideal sind

Aber Column Stores sind nicht fiir alles perfekt. Es gibt Szenarien, wo zeilenorientierte Datenbanken besser
abschneiden - namlich bei QL.TP-Workloads, also transaktionalen Systemen mit vielen kleinen Updates,
Inserts und Lookups auf einzelnen Zeilen.
Weniger geeignet fiir
1. QLIP (Transaktionssysteme) - Viele kleine Updates/Inserts |:| sql UPDATE users SET last_login =
NOW() WHERE id = 123; - Muss 29 Spalten-Arrays durchsuchen und updaten |:|

2. Einzelne Zeilen lesen (| SELECT *)|:|‘ sql SELECT * FROM sensors WHERE id = 123; - Muss alle 29

Spalten-Arrays durchsuchen und rekonstruieren |:|

3. Haufige Updates - Preise andern, Status aktualisieren |:| sql UPDATE products SET price =9.99
WHERE id = 456; - Spalte ,,price“ updaten = Chunk umschreiben |:|

4. Viele Inserts - Tausende Zeilen pro Sekunde einfiigen |:| sql INSERT INTO orders VALUES (...); - Alle
29 Spalten-Arrays erweitern = teuer |:|

Der Grund ist einfach: Bei Row-Stores liegt die Zeile als Ganzes im Speicher - Sie konnen sie in einem Rutsch
lesen oder updaten. Bei Column-Stores sind die Werte liber 29 separate Arrays verteilt - Sie mussen alle 29
durchsuchen oder andern. Das ist bei einzelnen Zeilen ineffizient!

I\ Merksatz: Row-Stores flir QLTP (Transaktionen), Column-Stores fiir QLAP (Analytics)

OLTP vs. OLAP - Das grof3e Bild

Lassen Sie uns einen Schritt zurlicktreten und das grofRe Bild betrachten. In der Datenbank-Welt gibt es zwei

deshalb brauchen wir unterschiedliche Paradigmen.

OLTP - Online Transaction Processing

QLIP steht flir Online Transaction Processing - also Transaktionssysteme. Das sind Systeme, die viele kleine
Operationen ausfiihren: User anlegen, Order speichern, Preis aktualisieren, Status andern. Jede Operation
betrifft eine oder wenige Zeilen, aber oft alle Spalten.

OLTP-Charakteristika

-— Typische OLTP-Queries:

-— User anlegen
INSERT INTO users (name, email, password) VALUES ('Alice', 'alice@example.d
"hashed') ;

-— Order aktualisieren
UPDATE orders SET status = 'shipped' WHERE order_id = 12345;

-— User abrufen
SELECT * FROM users WHERE id = 789;

-— Produktpreis andern
UPDATE products SET price = 19.99 WHERE sku = 'ABC123';

Eigenschaften: - Viele kleine Transaktionen (Hunderte/Tausende pro Sekunde) - Updates, Inserts, Deletes
(nicht nur Reads) - Zeilen-basierter Zugriff (SELECT * WHERE id =...) - ACID-Garantien kritisch (Konsistenz!) -
Wenige Zeilen, oft alle Spalten

Optimales Paradigma: Row-Store (PostgreSQL, MySQL, Oracle)

Alle nutzen Row-Stores, weil sie transaktionale Konsistenz und schnelle Zeilen-Lookups brauchen.

OLAP - Online Analytical Processing

QLAP steht fiir Online Analytical Processing - also analytische Systeme. Das sind Systeme, die grole
Aggregationen Uber historische Daten berechnen: Umsatz pro Monat, Top-Kunden, Trends, Forecasts. Jede
Query scannt oft Millionen Zeilen, aber nur wenige Spalten.

OLAP-Charakteristika

-— Typische OLAP-Queries:

-— Monatlicher Umsatz

SELECT DATE_TRUNC('month', order_date), SUM(amount)
FROM orders

GROUP BY 1;

-— Top 10 Produkte

SELECT product_id, SUM(quantity) as verkauft
FROM orders

GROUP BY product_1id

ORDER BY verkauft DESC

LIMIT 10;

-— Trend-Analyse
SELECT
DATE_TRUNC('week', timestamp),
AVG (temp_1living),
AVG (humidity_living)
FROM sensors
WHERE timestamp > NOW() - INTERVAL 6 MONTHS
GROUP BY 1;

Eigenschaften: - Wenige grol3e Queries (konnen Minuten dauern) - Fast nur Reads (keine Updates) - Spalten-
Scans uber viele Zeilen - Aggregationen (SUM, AVG, COUNT, GROUP BY) - Viele Zeilen, wenige Spalten

Optimales Paradigma: Column-Store (DuckDB, ClickHouse, BigQuery, Snowflake)

QLAP - Systeme sind das Ruickgrat von Business Intelligence: Ihre Dashboards, Reports, Data-Science-
Notebooks. Alle nutzen Column-Stores, weil sie spaltenweise Aggregationen liber riesige Datenmengen
brauchen.

Lambda-Architektur: Das Beste aus beiden Welten

richtige Tool flir den richtigen Job.

Typische Architektur

OLTP PostgreSQL (Row-Store)
Datenbank - Transaktionen, Updates, User-Lookups

ETL/ELT (t&glich/stlindlich)
!

OLAP DuckDB/ClickHouse (Column-Store)
Data Warehouse| - Analytics, Reports, Dashboards

Beispiel: E-Commerce - QLTP : PostgreSQL speichert Orders, Users, Products - ETL : Jede Nacht werden

Vorteil: Jede Datenbank macht, was sie am besten kann!
Das ist der Grund, warum Snowflake, BigQuery und Redshift so erfolgreich sind: Sie sind spezialisierte

-System betreibt. Polyglot Persistence in Aktion!

Trade-offs — Die Grenzen von Column Stores

Kommen wir zu den Grenzen: Column Stores sind nicht perfekt fiir alles. Es gibt klare Trade-offs, die Sie
verstehen missen, bevor Sie sich fur ein Paradigma entscheiden.

Was Column Stores teuer macht

Column Stores haben drei Hauptnachteile: Einzelne Zeilen lesen ist teuer, Updates sind teuer, und Inserts
sind teuer. Der Grund ist immer derselbe: Zeilen sind Uber viele Spalten-Arrays verteilt.

Trade-off 1: Einzelne Zeilen lesen
Query: [| sql SELECT * FROM sensors WHERE timestamp =,2025-11-15 14:00:00% [|'
Column-Store (DuckDB):
1. Durchsuche timestamp-Array nach Index (z.B. Zeile 1337)
2. Gehezu allen 29 Spalten-Arrays
3. Lese Wert an Position 1337 aus jedem Array
4. Rekonstruiere Zeile aus 29 Werten
—> 29 Array-Zugriffe erforderlich!

Row-Store (PostgreSQL):

1. Durchsuche Zeilen-Index nach timestamp
2. Lese Zeile an Position X
— 1 Zugriff erforderlich!

Ergebnis: Row-Stores sind hier ~10-20% schneller
Sie sehen: Wenn Sie komplette Zeilen lesen wollen (| SELECT =), sind Row-Stores deutlich effizienter.
Column-Stores miissen alle Spalten-Arrays durchsuchen und die Zeile rekonstruieren - das ist aufwendig.

Trade-off 2: Updates

Updates sind bei Column-Stores noch problematischer: Sie miissen das entsprechende Spalten-Array finden,
den Wert andern, und oft den gesamten Chunk neu schreiben (wegen Kompression). Das ist viel teurer als
bei Row-Stores, wo Sie einfach die Zeile updaten.

Query: |:| sql UPDATE sensors SET temp_living = 20.5 WHERE timestamp =,2025-11-15 14:00:00; |:|
Column-Store (DuckDB):
1. Finde Zeile (wie oben: 29 Array-Zugriffe)
2. Gehe zum temp_living-Array
3. Andere Wert an Position 1337
4. Chunkist komprimiert —» dekomprimieren, andern, neu komprimieren
5. Chunk zuriickschreiben
— Teuer, besonders bei Kompression!
Row-Store (PostgreSQL):
1. Finde Zeile im Index
2. Update Zeile (eine Schreiboperation)
—> Schnell!
Ergebnis: Row-Stores sind hier ~50-100x schneller

Deshalb sind Column-Stores typischerweise Append-Only: Sie fligen neue Daten hinzu, aber @ndern selten
existierende Werte. Das ist perfekt fiir historische Daten (Orders, Logs, Sensor-Daten), aber schlecht fiir
transaktionale Systeme.

Trade-off 3: Inserts

Auch Inserts sind bei Column-Stores teurer: Sie missen alle 29 Spalten-Arrays erweitern. Bei Row-Stores
hangen Sie einfach eine neue Zeile an. Das macht Bulk-Inserts bei Column-Stores effizienter als einzelne
Inserts.

Query: |:| sql INSERT INTO sensors VALUES (...); - 29 Werte |:|

Column-Store (DuckDB):

1. Gehe zu allen 29 Spalten-Arrays

2. Fuge neuen Wert an jedes Array an

3. Prife, ob Chunk vollist (z.B. 2048 Zeilen)

4. Wenn ja: Chunk finalisieren, komprimieren, neuen Chunk starten
— 29 Array-Updates pro Insert
Row-Store (PostgreSQL):

1. Hange neue Zeile an Tabelle an
— 1 Schreiboperation

Aber: Bei Bulk-Inserts (10.000 Zeilen auf einmal) sind Column-Stores oft schneller, weil sie pro Spalte
arbeiten konnen!

Das ist der Grund, warum Data Warehouses oft Batch-Loading verwenden: Statt einzelne Zeilen einzufiigen,
laden Sie grofie Dateien (Parquet, CSV) auf einmal. Das ist bei Column-Stores viel effizienter!

Zusammenfassung & Reflexion

Fassen wir zusammen: Heute haben Sie gelernt, wie Column Stores funktionieren, warum sie so schnell sind
bei Analytics, und wo ihre Grenzen liegen. Das war eine intensive Session - Zeit fiir Reflexion!

Was Sie heute gelernt haben

Sie haben sieben zentrale Konzepte verstanden: Erstens, Column Stores speichern Spalten physisch
zusammen, nicht Zeilen. Zweitens, das spart massiv I/O bei Analytics-Queries, weil Sie nur bendtigte Spalten
lesen. Drittens, Kompression ist extrem effektiv bei Spalten (RLE, Dictionary, Bit-Packing). Viertens,
Parallelisierung und Chunking ermdglichen es DuckDB, alle CPU-Kerne zu nutzen. Fiinftens, Chunk-Pruning

richtigen Job.

Die 7 Kernkonzepte

1. Spalten-Speicherung - Alle Werte einer Spalte liegen zusammen im Speicher - Row-Store: [Zeilel]
[Zeile2][Zeile3] - Column-Store: [Spaltel: alle Werte][Spalte2: alle Werte]

2. 1/0O-Effizienz - Nur benétigte Spalten werden gelesen - Query:| SELECT AVG(temp_Tliving) |
Row-Store: Liest alle 29 Spalten - Column-Store: Liest nur temp_living

3. Kompression - RLE, Dictionary, Bit-Packing extrem effektiv - room_id: 15 KB — 568 Byte (96%
Ersparnis) - motion: 256 Bit — 8 Bit (97% Ersparnis) - CSV — Parquet: 324 KB — 60 KB (75-85%
Ersparnis)

4, Parallelisierung - Chunks ermoglichen Multi-Core-Verarbeitung - 2.161 Zeilen = 2 Chunks a 2048
Zeilen - Jeder Chunk wird parallel auf eigenem CPU-Kern verarbeitet - 8 CPU-Kerne — 8x schneller
(bei groRen Datenmengen)

5. Chunk-Pruning - Min/Max-Filter Gberspringen unnoétige Daten - WHERE timestamp >,2025-12-01° -
Chunks mit Max <2025-12-01 werden libersprungen - Bis zu 90% |/O-Ersparnis moglich

7. Polyglot Persistence - Das richtige Tool fiir den richtigen Job - Transaktionen — PostgreSQL -
Analytics — DuckDB - Beide kombinieren!
Jetzt sind Sie dran: Testen Sie lhr Verstandnis mit diesen Reflexionsfragen. Sie helfen Ihnen, das Gelernte zu
festigen.

&) Reflexionsfragen

1. Warumist| SELECT AVG(temp) |in DuckDB schneller als in PostgreSQL?

[

2. Warum funktioniert Dictionary Encoding bei Column-Stores besser als bei Row-Stores?

[

3. Wann sollten Sie einen Row-Store statt Column-Store verwenden?
O Fur Dashboards mit Aggregationen
Q Flr transaktionale Systeme mit vielen Updates
O Flr Time-Series-Analysen

O Fur Data Warehouses

4. Was ist der Hauptnachteil von Column-Stores?
Q Langsame Aggregationen
O Teure Updates und einzelne Zeilen-Lookups
Q Schlechte Kompression

O Keine SQL-Unterstitzung

Ausblick & Nachste Schritte

In der nachsten Vorlesung tauchen wir ins relationale Modell ein: Tabellen, Primarschlussel, Fremdschlissel,
Constraints, Normalisierung. Das ist die Basis fast aller Datenbanken - von PostgreSQL liber MySQL bis
Oracle. Sie werden sehen: Auch relationale Datenbanken sind Row-Stores, aber mit strengen Schema-Regeln
und machtigen Integritats-Garantien.

Bonus: IoT-Daten selbst generieren

Zum Abschluss noch ein praktischer Bonus: Sie konnen die loT-Daten selbst generieren! Das Python-Script
liegt im Repository und ist komplett dokumentiert. Probieren Sie verschiedene Zeitraume und Intervalle aus
- je groRer der Datensatz, desto dramatischer der Column-Store-Vorteil!

Python-Script nutzen

90 Tage, stindlich (Standard, 2.161 Zeilen)
python3 generate_iot_data.py —--days 90 --interval 1h --output iot_sensors_¢

1 Jahr, stindlich (8.760 Zeilen - noch dramatischer!)
python3 generate_iot_data.py —--days 365 —-interval 1h --output iot_sensors,

30 Tage, 10-Minuten-Intervall (4.320 Zeilen)
python3 generate_iot_data.py --days 30 --interval 10min --output iot_sensof
.CSV

7 Tage, minitlich (10.080 Zeilen - sehr granular)
python3 generate_iot_data.py --days 7 —-interval 1min —--output iot_sensors|]

Tipp: Probieren Sie die 1-Jahres-Variante und vergleichen Sie die Performance-Unterschiede!
Die Daten sind synthetisch, aber realistisch: Saisonale Temperaturschwankungen, tagliche Zyklen, raum-
spezifische Offsets, korrelierte Luftfeuchtigkeit, zeitabhangige Belegung. Perfekt flir Experimente!

Referenzen & Weiterfithrende Links

Zum Abschluss noch Ressourcen fiir Vertiefung: Offizielle Dokumentationen, akademische Paper und
praktische Tutorials.

Column Stores & Analytics

* DuckDB Documentation - Offizielle Docs, hervorragend geschrieben

DuckDB: An Embeddable Analytical Database - Akademisches Paper

Apache Parquet Format - Spaltenorientiertes Dateiformat

ClickHouse - Column Store fiir extreme Performance (Billion-Row-Queries)

Snowflake Architecture - Cloud Data Warehouse mit Column-Store

OLTP vs. OLAP

e OLTP vs OLAP Explained - Guter Uberblick

e |ambda Architecture - QLTP + QLAP kombinieren

Akademische Hintergriinde

e (-Store: A Column-oriented DBMS - MIT Paper (2005)

* MonetDB/X100: Hyper-Pipelining Query Execution - CWI Amsterdam

@ Ende der Lecture 4

Vielen Dank fiir Ihre Aufmerksamkeit! Heute haben Sie ein fundamentales Paradigma verstanden: Column
Stores revolutionieren Analytics durch spaltenorientierte Speicherung. Nachste Woche lernen wir das
relationale Modell - die Basis, auf der fast alles aufbaut. Bis dann!

Bis zur nachsten Vorlesung! %’

Take-Home-Message: Spalten zusammen = Analytics-Power!

https://duckdb.org/docs/
https://duckdb.org/pdf/sigmod2019-demo-duckdb.pdf
https://parquet.apache.org/
https://clickhouse.com/
https://www.snowflake.com/en/
https://www.databricks.com/glossary/oltp-vs-olap
https://en.wikipedia.org/wiki/Lambda_architecture
http://db.csail.mit.edu/projects/cstore/
https://www.cwi.nl/en/groups/database-architectures/

