Session 9 — Database Normalization & Schema Design

Session-Typ: Lecture Dauer: 90 Minuten Lernziele: LZ 2 (SQL-Praxis, Schema-Design)

Intro: Von Tabellen zu guten Tabellen

Willkommen zurtick! In Session 8 haben Sie gelernt, wie man Tabellen erstellt - CREATE TABLE, Constraints,
INSERT, UPDATE, DELETE. Sie haben die Werkzeuge. Heute lernen Sie, wie man diese Werkzeuge RICHTIG
einsetzt. Nicht irgendwelche Tabellen bauen, sondern GUTE Tabellen bauen. Tabellen, die keine Redundanz
haben, keine Inkonsistenzen produzieren, keine Anomalien auslosen.

Riickblick Session 8:
. CREATE TABLE - Tabellen erstellen
o PRIMARY KEY, FOREIGN KEY - Beziehungen definieren
° INSERT, UPDATE, DELETE - Daten manipulieren
o Constraints - Datenintegritat sichern

Aber eine Frage blieb offen: Wann erstelle ich EINE grof3e Tabelle mit allen Daten? Wann mehrere kleine
Tabellen? Wie vermeide ich Redundanz? Wie verhindere ich, dass Daten inkonsistent werden? Die Antwort
heilt: Normalisierung.

Heute lernen Sie:
* Anomalien: Update, Delete, Insert - was kann schiefgehen?
* Normalisierung: 1NF, 2NF, 3NF - der Weg zu sauberen Schemas
* ER-Diagramme: Schemas visuell planen und verstehen
* Praxis: Bibliothek, Movie Reviews, Online-Shop - drei Beispiele, steigende Komplexitat

* Trade-offs: Wann Normalisierung, wann Denormalisierung?

Datenbank vorbereiten

Wir starten mit einer Sandbox. Heute bauen wir gemeinsam drei Beispiele - von simpel zu komplex. Von der
Bibliothek Giber Movie Reviews bis zum vollstandigen Online-Shop. Jedes Beispiel zeigt neue Aspekte der
Normalisierung.

-- Sandbox initialisieren

CREATE TABLE IF NOT EXISTS demo_test (id INTEGER, name TEXT);
INSERT INTO demo_test VALUES (1, 'Normalisierung rockt!');
SELECT 'Datenbank bereit!' AS status;

A WNRE

-- Sandbox initialisieren
CREATE TABLE IF NOT EXISTS demo_test (id INTEGER, name TEXT)

ok

INSERT INTO demo_test VALUES (1, 'Normalisierung rockt!')

ok

SELECT 'Datenbank bereit!' AS status

status

Datenbank bereit!

1 -- Interaktives Terminal
2 SELECT * FROM demo_test;

-- Interaktives Terminal
SELECT * FROM demo_test

id name

1 Normalisierung rockt!

Beispiel 1: Bibliothek - Der einfachste Fall

Starten wir mit dem simpelsten denkbaren Beispiel: Eine Bibliothek mit Blichern und Autoren. Nur zwei
Entities, eine klare Beziehung. Perfekt, um die Grundprinzipien zu verstehen. Stellen Sie sich vor, Sie bauen
eine Datenbank fiir eine kleine Bibliothek. Einfacher Ansatz: Eine Tabelle fiir alles!

Die ,,Alles-in-Einer* Tabelle

Schauen wir uns an, was passiert, wenn wir alle Informationen in einer einzigen Tabelle speichern. Biicher
haben Titel und ISBN, Autoren haben Namen, Geburtsjahr und Nationalitat. Alles zusammen in einer Tabelle
- klingt simpel, oder?

Naive Version:

1~ CREATE TABLE library_chaos (

o] hAaAl, 2aAd TNTECED

rvuuuuNn_ 1u J.I\III_UI_I\,
title TEXT,
isbn TEXT,

author_name TEXT,
author_birth_year INTEGER,
author_nationality TEXT

)5

0 ~No o1~ WD

CREATE TABLE library_chaos (
book_id INTEGER,
title TEXT,
isbn TEXT,
author_name TEXT,
author_birth_year INTEGER,

author_nationality TEXT

Jetzt fligen wir Daten ein. Beachten Sie: George Orwell hat zwei Blicher geschrieben. Was bedeutet das fiir
unsere Tabelle?

Daten einfiigen:

1 INSERT INTO library_chaos VALUES

2 (1, '1984', '978-0-452-28423-4', 'George Orwell', 1903, 'British'),

3 (2, '"Animal Farm', '978-0-452-28424-1', 'George Orwell', 1903, 'Brit

4 (3, 'Brave New World', '978-0-06-085052-4', 'Aldous Huxley', 1894,
'"British');

5

6 SELECT * FROM library_chaos;

INSERT INTO library_chaos VALUES
(1, '1984', '978-0-452-28423-4', 'George Orwell', 1903, 'British'),
(2, 'Animal Farm', '978-0-452-28424-1', 'George Orwell', 1903, 'British’),
(3, 'Brave New World', '978-0-06-085052-4"', 'Aldous Huxley', 1894, 'British’)

ok

SELECT * FROM library_chaos

| book_ id title isbn author_name author_birth_year author_nationality

1 1984 978-0- George Orwell 1903 British
452-
28423-4

Animal 978-0- George Orwell British
Farm 452-
28424-1

Brave 978-0- Aldous Huxley British
New 06-
World 085052-

4

Sehen Sie das Problem? George Orwell steht zweimal in der Datenbank - mit allen seinen Informationen.
Geburtsjahr, Nationalitat, alles dupliziert. Das ist Redundanz. Und Redundanz fiihrt zu Problemen. Schauen
wir uns die Anomalien an.

Anomalie 1: Update-Anomalie

Nehmen wir an, wir entdecken einen Fehler: George Orwell wurde nicht neunzehnhundertdrei, sondern
neunzehnhundertdrei geboren. Klingt gleich? Nein - die Datenbank hat neunzehnhundertdrei statt
neunzehnhundertdrei. Wir mussen das korrigieren. Wie viele Zeilen muissen wir updaten?

George Orwell's Geburtsjahr korrigieren:

-— Versuchen wir, nur EINE Zeile zu andern
UPDATE library_chaos

SET author_birth_year = 1903

WHERE book_id = 1;

-— Was dist jetzt passiert?

SELECT book_id, title, author_name, author_birth_year
FROM library_chaos

WHERE author_name = 'George Orwell';

O 00 ~NO U b~ WN R

-- Versuchen wir, nur EINE Zeile zu andern
UPDATE library_chaos

SET author_birth_year = 1903

WHERE book _id =1

ok

-- Was ist jetzt passiert?

SELECT book_id, title, author_name, author_birth_year
FROM library_chaos

WHERE author_name = 'George Orwell’

book_id title author_name author_birth_year

2 Animal Farm George Orwell 1903

1 1984 George Orwell 1903

Sehen Sie das Problem? Wir haben nur Zeile eins geandert. Zeile zwei hat immer noch das alte Geburtsjahr!
Jetzt hat George Orwell zwei verschiedene Geburtsjahre in der Datenbank. Das ist eine Update-Anomalie.
Redundante Daten fiihren zu Inkonsistenzen, wenn Sie nicht ALLE Vorkommen aktualisieren. In einer groRen
Datenbank mit Tausenden von Eintragen ist das eine Katastrophe.

£ Problem: Update-Anomalie
* George Orwell hat 2 Biicher (2 Zeilen)
e Wir haben nur Zeile 1 geandert
e Jetzt hat Orwell 2 verschiedene Geburtsjahre!

* Inkonsistenz: Welches ist das richtige Geburtsjahr?
Es wird noch schlimmer. Was passiert, wenn wir Daten l0schen?

Anomalie 2: Delete-Anomalie

Nehmen wir an, ,,Brave New World“ wird aus der Bibliothek entfernt. Das Buch wird ausgemustert, wir
[6schen die Zeile. Einfach, oder?

,Brave New World“ aus der Bibliothek entfernen:

-— Buch 106schen
DELETE FROM library_chaos WHERE book_id = 3;

-— Was dist mit Aldous Huxley passiert?

SELECT DISTINCT author_name, author_birth_year, author_nationality
FROM library_chaos

WHERE author_name = 'Aldous Huxley';

~No o b~ wWwN B

-- Buch léschen
DELETE FROM library_chaos WHERE book_id = 3

ok

-- Was ist mit Aldous Huxley passiert?

SELECT DISTINCT author_name, author_birth_year, author_nationality
FROM library_chaos

WHERE author_name = 'Aldous Huxley'

author_name author_birth_year author_nationality

Aldous Huxley ist verschwunden! Wir wollten nur das Buch l6schen, aber wir haben den gesamten Autor mit
geldscht. Alle Informationen tiber Huxley sind weg. Das ist eine Delete-Anomalie. Wenn Sie eine Zeile
loschen, verlieren Sie mehr Daten als gewollt. Huxley existiert nicht mehr in der Datenbank, obwohl er ein
wichtiger Autor ist.

£3 Problem: Delete-Anomalie
e Brave New World“ war Huxleys einziges Buch in der Datenbank
* Buch geléscht — Huxley-Informationen sind WEG!
® Wir haben nicht nur das Buch geldscht, sondern auch den Autor

e Datenverlust: Autor kann nicht mehr referenziert werden
Und es gibt noch eine dritte Anomalie.

Anomalie 3: Insert-Anomalie

Jetzt wollen wir einen neuen Autor in die Datenbank aufnehmen: Jane Austen. GroRartige Autorin! Aber sie
hat noch kein Buch in unserer Bibliothek. Kbnnen wir sie trotzdem speichern?

Neuen Autor ohne Buch hinzufiigen:

1 -- Versuch: Jane Austen hinzufligen (ohne Buch)

INSERT INTO library_chaos (author_name, author_birth_year,
author_nationality)

VALUES ('3Jane Austen', 1775, 'British');

N

-- Was passiert mit den Buch-Spalten?
SELECT * FROM library_chaos WHERE author_name = 'Jane Austen';

o U bW

-- Versuch: Jane Austen hinzufiigen (ohne Buch)
INSERT INTO library_chaos (author_name, author_birth_year, author_nationality)
VALUES ('Jane Austen', 1775, 'British')

ok

-- Was passiert mit den Buch-Spalten?
SELECT * FROM library_chaos WHERE author_name = 'Jane Austen'

book id title isbn author name author birth_year author_nationality

null null null Jane Austen 1775 British

Das hat technisch funktioniert, aber schauen Sie sich das Ergebnis an: book underscore id ist NULL, title ist
NULL, isbn ist NULL. Wir haben eine Zeile mit einem Autor, aber ohne Buch. Das ist semantisch falsch - diese
Tabelle heifdt ,library underscore chaos®, nicht ,,authors®. Auflerdem: Was, wenn book underscore id ein
Primary Key ist? Dann konnen wir gar keinen Autor ohne Buch einfligen! Das ist eine Insert-Anomalie. Sie
konnen bestimmte Daten nicht einfligen, ohne andere, unabhangige Daten ebenfalls einzufligen.

£ Problem: Insert-Anomalie
e Wir konnen keinen Autor ohne Buch speichern (ohne NULL-Werte)

* Wenn PRIMARY KEY ist — Insert unmdglich!

* Unmogliche Operationen: Autor-Katalog kann nicht unabhangig existieren
Diese drei Anomalien sind der Grund, warum wir Normalisierung brauchen. Redundanz ist der Feind. Jetzt
schauen wir uns an, wie man das Problem [6st.

Die Losung: Normalisierung

Die Losung ist einfach: Trennen Sie die Daten in zwei Tabellen. Eine Tabelle fir Autoren, eine Tabelle fir
Blicher. Autoren-Informationen stehen nur einmal in der authors-Tabelle. Blicher referenzieren Autoren liber
einen Foreign Key. Keine Redundanz mehr.

Erste Normalform (1NF): Atomare Werte
e Jede Spalte enthalt nur atomare (unteilbare) Werte
® Keine Listen, keine Wiederholgruppen
* Inunserem Beispiel: Bereits erfiillt (keine Listen)

Zweite Normalform (2NF): Keine partiellen Abhangigkeiten

e Jedes Attribut hangt vom GESAMTEN Primarschlussel ab

N HDanu|author_nameL|author_birth_year
|author_name|ab,nkhtvon book_1id |

* Losung: Autoren-Tabelle auslagern

author_nationality [hangen nurvon

)

Dritte Normalform (3NF): Keine transitiven Abhangigkeiten
* Nicht-Schlissel-Attribute diirfen nur vom Primarschliissel abhangen, nicht voneinander
® Inunserem Beispiel: Nach 2NF bereits erfiillt

Schauen wir uns das normalisierte Schema an. Zwei Tabellen, eine klare Beziehung.

Normalisiertes Schema:

1 -- Autoren-Tabelle

2 CREATE TABLE authors (

3 author_id INTEGER PRIMARY KEY,
4 name TEXT NOT NULL,

5 birth_year INTEGER,

6 nationality TEXT

705

8

9 -- Blcher-Tabelle

10 - CREATE TABLE books (

11 book_id INTEGER PRIMARY KEY,
12 title TEXT NOT NULL,

13 isbn TEXT UNIQUE,

14 author_id INTEGER NOT NULL,

15 FOREIGN KEY (author_id) REFERENCES authors(author_-1id)
16);

-- Autoren-Tabelle

CREATE TABLE authors (
author_id INTEGER PRIMARY KEY,
name TEXT NOT NULL,
birth_year INTEGER,
nationality TEXT

)

ok

-- Blicher-Tabelle
CREATE TABLE books (
book_id INTEGER PRIMARY KEY,
title TEXT NOT NULL,
isbn TEXT UNIQUE,
author_id INTEGER NOT NULL,
FOREIGN KEY (author_id) REFERENCES authors(author_id)

Jetzt fligen wir die Daten ein. Beachten Sie: Autoren zuerst, dann Blicher. George Orwell steht nur einmalin
der authors-Tabelle!

Daten einfligen:

1 -- Autoren zuerst

2 INSERT INTO authors VALUES

3 (1, 'George Orwell', 1903, 'British'),

4 (2, 'Aldous Huxley', 1894, 'British');

5

6 -- Blicher referenzieren Autoren

7 INSERT INTO books VALUES

8 (1, '1984', '978-0-452-28423-4', 1),

9 (2, '"Animal Farm', '978-0-452-28424-1', 1),
10 (3, 'Brave New World', '978-0-06-085052-4', 2);
11
12 SELECT * FROM books;

-- Autoren zuerst

INSERT INTO authors VALUES
(1, 'George Orwell', 1903, 'British’),
(2, 'Aldous Huxley', 1894, 'British')

ok

-- Biicher referenzieren Autoren
INSERT INTO books VALUES
(1, '1984', '978-0-452-28423-4', 1),
(2, 'Animal Farm', '978-0-452-28424-1', 1),
(3, 'Brave New World', '978-0-06-085052-4', 2)

ok

SELECT * FROM books

book_id title isbn author_id

1 1984 978-0-452-28423-4 1
2 Animal Farm 978-0-452-28424-1 1

3 Brave New World 978-0-06-085052-4

Jetzt testen wir: Keine Anomalien mehr! Update funktioniert sauber, Delete verliert keine Autoren-Daten,
Insert ist flexibel.

Tests: Keine Anomalien mehr!
Test eins: George Orwell's Geburtsjahr andern. Nur EINE Zeile updaten!

Test 1: Update (kein Problem mehr!)

1 -- Orwell's Geburtsjahr korrigieren (nur EINE Zeile!)
2 UPDATE authors

3 SET birth_year = 1903

4 WHERE author_id = 1;

5

6 -- Alle Bicher haben automatisch die korrekten Daten:
7 SELECT b.title, a.name, a.birth_year

8 FROM books b

9 JOIN authors a ON b.author_id = a.author_1id

10 WHERE a.name = 'George Orwell';

-- Orwell's Geburtsjahr korrigieren (nur EINE Zeile!)
UPDATE authors

SET birth_year = 1903

WHERE author_id = 1

ok

-- Alle Biicher haben automatisch die korrekten Daten:
SELECT b.title, a.name, a.birth_year

FROM books b

JOIN authors a ON b.author_id = a.author_id

WHERE a.name = 'George Orwell'

title name birth_year
1984 George Orwell 1903

Animal Farm George Orwell 1903

Test zwei: Buch loschen. Der Autor bleibt erhalten!

Test 2: Delete (kein Datenverlust!)

-— "Brave New World" 1oschen
DELETE FROM books WHERE book_id = 3;

-— Huxley 1ist noch da:
SELECT * FROM authors WHERE author_id = 2;

-- "Brave New World" loschen
DELETE FROM books WHERE book_id = 3

ok

-- Huxley ist noch da:
SELECT * FROM authors WHERE author _id = 2

author_id name birth_year nationality

2 Aldous Huxley 1894 British

Test drei: Neuen Autor ohne Buch hinzufligen. Kein Problem!

Test 3: Insert (volle Flexibilitat!)

1 -- Jane Austen hinzufligen (ohne Buch)

2 INSERT INTO authors VALUES

3 (3, 'Jane Austen', 1775, 'British');

4

5 SELECT * FROM authors WHERE author_id = 3;

-- Jane Austen hinzufiigen (ohne Buch)
INSERT INTO authors VALUES
(3, 'Jane Austen’, 1775, 'British’)

(0] 4

SELECT * FROM authors WHERE author_id = 3

author_id name birth_year nationality

3 Jane Austen 1775 British

Perfekt! Alle Tests bestanden. Keine Anomalien, keine Redundanz, volle Flexibilitat. Das ist der Kern der
Normalisierung.

{4 Alle Tests bestanden!
e Update: Nur EINE Zeile andern
® Delete: Keine ungewollten Datenverluste

® Insert: Autoren unabhangig von Blichern
Jetzt visualisieren wir das Schema als ER-Diagramm. Das ist das Werkzeug, mit dem Profis Datenbanken
planen.

ER-Diagramm: Visuell verstehen

So sieht unser normalisiertes Schema als Entity-Relationship-Diagramm aus. Zwei Entities: Authors und
Books. Eine Relationship: Authors schreiben Books. Die Linie zeigt die Beziehung, die Symbole zeigen die
Kardinalitat: Ein Autor kann viele Biicher schreiben, aber jedes Buch hat genau einen Autor. Das ist eine eins-
zu-viele Beziehung.

Table authors {
author_id int [pk, increment]
name varchar (100) [not null]
birth_year int
nationality varchar(50)

Note: 'Authors who write books in our library'

}

Table books {
book_id int [pk, increment]
title varchar(200) [not null]
isbn varchar(20) [unique]
author_id int [not null, ref: > authors.author_id]

Note: 'Books 1in our library collection'

= dbdiagram

dbdiagram.io

Schauen Sie sich die Beziehung an: Der Pfeil von books punkt author underscore id zu authors punkt author
underscore id zeigt: Viele Blicher gehdren zu einem Autor. Das ist die eins-zu-viele Kardinalitat. Ein Autor
schreibt viele Blicher, aber jedes Buch hat genau einen Autor. In der DBML-Syntax steht das ref: GroRer
authors punkt author underscore id. Das Grofser-Zeichen bedeutet: many-to-one. Viele Blicher zu einem
Autor.

https://dbdiagram.io/
https://dbdiagram.io/embed?c=QCcw

Beispiel 2: Movie Reviews (IMDb) - Many-to-Many

Jetzt wird es interessanter! Sie haben das Prinzip verstanden: Redundanz vermeiden, Tabellen trennen. Aber
was, wenn die Beziehungen komplexer werden? Willkommen bei Movie Reviews - wie IMDb oder Letterboxd.
Hier gibt es nicht nur eine eins-zu-viele Beziehung, sondern mehrere gleichzeitig. Und am Ende eine
versteckte many-to-many Beziehung. Schauen wir uns das an.

Das Problem: Alles in einer Tabelle

Stellen Sie sich eine Film-Review-Plattform vor. Filme haben Titel, Erscheinungsjahr, Regisseur. Nutzer
schreiben Reviews mit Rating und Text. Naiver Ansatz: Alles in einer Tabelle! Was konnte schiefgehen?

Chaos-Tabelle:

1~ CREATE TABLE reviews_chaos (
2 review_id INTEGER,

3 movie_title TEXT,

4 movie_year INTEGER,

5 movie_director TEXT,

6 reviewer_name TEXT,

7 reviewer_email TEXT,

8 rating INTEGER,

9 review_text TEXT
10)3

CREATE TABLE reviews_chaos (
review_id INTEGER,
movie_title TEXT,
movie_year INTEGER,
movie_director TEXT,
reviewer_name TEXT,

reviewer_email TEXT,
rating INTEGER,
review_text TEXT

Daten einfligen. Beachten Sie: ,Inception“ hat zwei Reviews von verschiedenen Nutzern. ,Alice” hat zwei
Filme reviewt. Alles ist dupliziert.

Daten einfligen:

1 INSERT INTO reviews_chaos VALUES
2 (1, 'Inception', 2010, 'Christopher Nolan', 'Alice', 'alice@example.
5, 'Mind-blowing!'),

] (7. '"Tncention'. 2010. 'Christanher Nolan'. 'Roh'. '"hohRexamnle.com!

- NT2 T T T r= T 7 =T == e Tt T Tt 7 - 7 TTTNT T T T T T T

'Great, but confusing'),

4 (3, 'The Matrix', 1999, 'Wachowski Sisters', 'Alice', 'alice@example
5, 'Revolutionary!'),

5 (4, '"Interstellar', 2014, 'Christopher Nolan', 'Charlie', 'charlie@e
.com', 5, 'Stunning visuals');

7 SELECT * FROM reviews_chaos;

INSERT INTO reviews_chaos VALUES

(1, 'Inception’, 2010, 'Christopher Nolan’, 'Alice’, 'alice@example.com’, 5, 'Mind-
blowing!’),

(2, 'Inception’, 2010, 'Christopher Nolan', 'Bob’, 'bob@example.com’, 4, 'Great, but
confusing'),

(3, 'The Matrix', 1999, 'Wachowski Sisters’, 'Alice’, 'alice@example.com’, 5,
‘Revolutionary!’),

(4, 'Interstellar', 2014, 'Christopher Nolan', 'Charlie', 'charlie@example.com’, 5,
'Stunning visuals')

(0] 4

SELECT * FROM reviews_chaos

review_id movie_title movie_year movie_director reviewer name reviewer e

1 Inception 2010 Christopher Alice alice@examp
Nolan

Inception 2010 Christopher Bob bob@exampld
Nolan

The Matrix 1999 Wachowski Alice alice@examp
SIS EES

Interstellar 2014 Christopher Charlie charlie@exa
Nolan

Sehen Sie die Redundanz? ,Inception® steht zweimal mit allen Film-Infos. ,Alice steht zweimal mit ihrer
Email. Christopher Nolan steht zweimal. Das ist Redundanz auf mehreren Ebenen. Was sind die Anomalien?
Anomalien identifizieren

Anomalie eins: Film-Info andern. Wenn Christopher Nolan's Name korrigiert werden muss - wie viele Zeilen?

Update-Anomalie:

* Film-Info (Titel, Jahr, Regisseur) wird bei jedem Review dupliziert
® Regisseur-Name andern — mehrere Zeilen updaten
® Email-Adresse andern — mehrere Zeilen updaten

Anomalie zwei: Review l6schen. Wenn Bob's Review von ,Inception® geldscht wird, ist ,,Inception“ dann noch
in der Datenbank?

Delete-Anomalie:
* Wenn alle Reviews eines Films geloscht werden — Film-Info weg!
* Wenn letztes Review eines Nutzers geloscht wird — Nutzer-Info weg!

Anomalie drei: Neuer Film ohne Review. Kdnnen wir ,,Tenet” in die Datenbank aufnehmen, bevor jemand ein
Review schreibt?

Insert-Anomalie:
* Neuer Film ohne Review? Unmoglich oder NULL-Werte

* Neuer Nutzer ohne Review? Unmoglich
Die Losung? Drei Tabellen! Movies, Reviewers, Reviews. Schauen wir uns das normalisierte Schema an.

Normalisiertes Schema

Drei Tabellen: Movies fiir Filme, Reviewers fiir Nutzer, Reviews fiir die eigentlichen Bewertungen. Reviews
verbindet Movies und Reviewers. Das ist das klassische Pattern fiir eine viele-zu-viele Beziehung: Ein Film hat
viele Reviews, ein Reviewer schreibt viele Reviews. Movies und Reviewers sind indirekt many-to-many
verbunden - Giber die Reviews-Tabelle.

1 -- Filme

2~ CREATE TABLE movies (

3 movie_id INTEGER PRIMARY KEY,

4 title TEXT NOT NULL,

5 release_year INTEGER,

6 director TEXT

705

8

9 -- Reviewer (Nutzer)

10 - CREATE TABLE reviewers (

11 reviewer_id INTEGER PRIMARY KEY,
12 name TEXT NOT NULL,

13 email TEXT UNIQUE NOT NULL

14)

15

16 -- Reviews (verbindet Movies und Reviewers)
17 -~ CREATE TABLE reviews (

18 review_id INTEGER PRIMARY KEY,
19 movie_id INTEGER NOT NULL,
20 reviewer_id INTEGER NOT NULL,
21 rating INTEGER NOT NULL CHECK (rating BETWEEN 1 AND 5),

22
23
24
25
26

27
28
29

review_text TEXT,

created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,

FOREIGN KEY (movie_id) REFERENCES movies(movie_id),

FOREIGN KEY (reviewer_id) REFERENCES reviewers(reviewer_id),

UNIQUE (movie_id, reviewer_id) -- Ein Reviewer kann einen Film nur
einmal reviewen

)3

ERDIAGRAM;

-- Filme

CREATE TABLE movies (
movie_id INTEGER PRIMARY KEY,
title TEXT NOT NULL,
release_year INTEGER,
director TEXT

)

ok

-- Reviewer (Nutzer)

CREATE TABLE reviewers (
reviewer_id INTEGER PRIMARY KEY,
name TEXT NOT NULL,
email TEXT UNIQUE NOT NULL

)

ok

-- Reviews (verbindet Movies und Reviewers)
CREATE TABLE reviews (
review_id INTEGER PRIMARY KEY,
movie_id INTEGER NOT NULL,
reviewer_id INTEGER NOT NULL,
rating INTEGER NOT NULL CHECK (rating BETWEEN 1 AND 5),
review_text TEXT,
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
FOREIGN KEY (movie_id) REFERENCES movies(movie_id),
FOREIGN KEY (reviewer_id) REFERENCES reviewers(reviewer _id),
UNIQUE (movie_id, reviewer_id) -- Ein Reviewer kann einen Film nur einmal
reviewen

)

ok

movie_id & int NN
title

Felease _year

director

reviewer_id & int MN
name HN
ama NN

library_chaos

beook_id

reviaw _id
title miowie_title
ishn mowie_year

author_name mowie_diractor

author_birth yaar reviewer_namea

author_nationality reviawer_email
rating

review_taxt

review id & int MM
movie id @@ MM
rEviewer_|d P t NN
rating ¢ NM
rEVIEW_LEXT
created_at

Beachten Sie die UNIQUE Constraint auf movie underscore id komma reviewer underscore id. Das

verhindert, dass ein Nutzer denselben Film zweimal bewertet. Das ist eine Business Rule, die wir direkt im

Schema durchsetzen.

Daten einfiigen:

Filme zuerst
INSERT INTO movies VALUES

O ~NO ULbh WNH

(1

'AlAHdr,al

(1, 'Inception', 2010,

(2, 'The Matrix', 1999,

(3, '"Interstellar', 2014,
-— Reviewer

INSERT INTO reviewers VALUES

'aldranavamnla ~Aam!)

'"Christopher Nolan'),
'Wachowski Sisters'),
'"Christopher Nolan');

https://dbdiagram.io/
https://dbdiagram.io/embed?c=VGFibGUgZGVtb190ZXN0IHsKICBpZCBpbnQKICBuYW1lIHRleHQKfQoKVGFibGUgbGlicmFyeV9jaGFvcyB7CiAgYm9va19pZCBpbnQKICB0aXRsZSB0ZXh0CiAgaXNibiB0ZXh0CiAgYXV0aG9yX25hbWUgdGV4dAogIGF1dGhvcl9iaXJ0aF95ZWFyIGludAogIGF1dGhvcl9uYXRpb25hbGl0eSB0ZXh0Cn0KClRhYmxlIG1vdmllcyB7CiAgbW92aWVfaWQgaW50IFtwaywgbm90IG51bGxdCiAgdGl0bGUgdGV4dCBbbm90IG51bGxdCiAgcmVsZWFzZV95ZWFyIGludAogIGRpcmVjdG9yIHRleHQKfQoKVGFibGUgcmV2aWV3ZXJzIHsKICByZXZpZXdlcl9pZCBpbnQgW3BrLCBub3QgbnVsbF0KICBuYW1lIHRleHQgW25vdCBudWxsXQogIGVtYWlsIHRleHQgW25vdCBudWxsLCB1bmlxdWVdCn0KClRhYmxlIHJldmlld3MgewogIHJldmlld19pZCBpbnQgW3BrLCBub3QgbnVsbF0KICBtb3ZpZV9pZCBpbnQgW25vdCBudWxsXQogIHJldmlld2VyX2lkIGludCBbbm90IG51bGxdCiAgcmF0aW5nIGludCBbbm90IG51bGxdCiAgcmV2aWV3X3RleHQgdGV4dAogIGNyZWF0ZWRfYXQgdGltZXN0YW1wCiAgaW5kZXhlcyB7CiAgICAobW92aWVfaWQsIHJldmlld2VyX2lkKSBbdW5pcXVlXQogIH0KfQoKVGFibGUgcmV2aWV3c19jaGFvcyB7CiAgcmV2aWV3X2lkIGludAogIG1vdmllX3RpdGxlIHRleHQKICBtb3ZpZV95ZWFyIGludAogIG1vdmllX2RpcmVjdG9yIHRleHQKICByZXZpZXdlcl9uYW1lIHRleHQKICByZXZpZXdlcl9lbWFpbCB0ZXh0CiAgcmF0aW5nIGludAogIHJldmlld190ZXh0IHRleHQKfQoKUmVmOiByZXZpZXdzLm1vdmllX2lkID4gbW92aWVzLm1vdmllX2lkClJlZjogcmV2aWV3cy5yZXZpZXdlcl9pZCA%2BIHJldmlld2Vycy5yZXZpZXdlcl9pZA%3D%3D

-~

10
11
12
13
14

15
16
17
18
19
20

\+>

A NV L) R e A L e I I A L LI)

(2, 'Bob', 'bob@example.com'),
(3, 'Charlie', 'charlie@example.com');

-— Reviews (verbinden Filme und Reviewer)
INSERT INTO reviews (review_id, movie_id, reviewer_id,

VALUES
(1, 1,
(2, 1
(3, 2
(4, 3

)

-

)

SELECT =

1, 5, '"Mind-blowing!'),

2, 4, 'Great, but confusing'),
1, 5, 'Revolutionary!'),

3, 5, 'Stunning visuals');
FROM reviews;

rating,

review

-- Filme zuerst

INSERT INTO movies VALUES
(1, 'Inception’, 2010, 'Christopher Nolan'),
(2, 'The Matrix', 1999, 'Wachowski Sisters'),
(3, 'Interstellar', 2014, 'Christopher Nolan')

ok

-- Reviewer
INSERT INTO reviewers VALUES
(1, 'Alice’, 'alice@example.com’),
(2, 'Bob’, 'bob@example.com’),
(3, 'Charlie’, 'charlie@example.com')

ok

-- Reviews (verbinden Filme und Reviewer)

INSERT INTO reviews (review_id, movie_id, reviewer_id, rating, review_text) VALUES

(1, 1, 1, 5, 'Mind-blowing!'),

(2, 1, 2, 4, 'Great, but confusing'),
(3, 2, 1, 5, 'Revolutionary!'),

(4, 3, 3, 5, 'Stunning visuals')

ok

SELECT * FROM reviews

review_id movie_id reviewer_id rating

1 1 1 5

review_text

Mind-blowing!

Great, but
confusing

Revolutionary!

Stunning
visuals

created_at

2026-01-
16T08:49:05.956Z

2026-01-
16T08:49:05.956Z

2026-01-
16T08:49:05.956Z

2026-01-
16T08:49:05.956Z

Jetzt schauen wir uns das ER-Diagramm an. Und hier kommt das Spannende: Dieses Diagramm ist

INTERAKTIV! Sie konnen es editieren!

ER-Diagramm: Interaktiv!

So sieht unser Schema als ER-Diagramm aus. Drei Tabellen, zwei eins-zu-viele Beziehungen. Movies eins-zu-
viele Reviews. Reviewers eins-zu-viele Reviews. Und dadurch entsteht indirekt eine viele-zu-viele Beziehung
zwischen Movies und Reviewers. Das ist das klassische Junction-Table-Pattern. Und jetzt das Besondere: Sie
kdnnen dieses Diagramm EDITIEREN! Doppelklicken Sie auf den Rand des Diagramms, andern Sie den Code,
und sehen Sie die Anderungen live!

Aufgabe: Fligen Sie eine Tabelle hinzu! Movies sollten mehrere Genres haben konnen (n:m
Beziehung). Wie wiirden Sie das modellieren?

Unexpected identifier 'now'
Haben Sie es versucht? Die Losung ist eine separate genres-Tabelle und eine Junction Table movie
underscore genres. Das ist das Standard-Pattern fiir n:m Beziehungen. Schauen wir uns die Losung an.

[)

Khkhkhkhkkkkkkkkkkkkkkk

Genres hinzufiigen (n:m mit Movies): |:| dbml Table genres { genre_id int [pk, increment] name varchar(50)
[unique, not null] Note: ,Movie genres like Action, Drama, Sci-Fi‘ } Table movie_genres { movieid int [ref: >
movies.movieid] genreid int [ref: > genres.genreid] indexes { (movieid, genreid) [pk] } Note: ,Junction table
for many-to-many relationship* }|:|‘ Erklarung: - n:m Beziehung braucht Junction Table (movie_genres) -
Ein Film hat viele Genres - Ein Genre gehdrt zu vielen Filmen - Junction Table hat zwei Foreign Keys als
Composite Primary Key SQL: |:| sql CREATE TABLE genres (genre_id INTEGER PRIMARY KEY, name TEXT
UNIQUE NOT NULL); CREATE TABLE movie_genres (movie_id INTEGER, genre_id INTEGER, PRIMARY KEY
(movieid, genreid), FOREIGN KEY (movieid) REFERENCES movies(movieid), FOREIGN KEY (genreid)
REFERENCES genres(genreid)); - Beispiel-Daten: INSERT INTO genres VALUES (1, ,Sci-Fi‘), (2, ,Action), (3,
;Thriller‘); INSERT INTO movie_genres VALUES (1, 1), (1, 2), (1, 3); - Inception: Sci-Fi, Action, Thriller[l‘

khkkkhkkkkkhkkkkkkkkkk

</section>

Die ,,Alles-in-Einer* Tabelle

Naive Version:

1~ CREATE TABLE orders_chaos (
2 order_id INTEGER,

3 order_date DATE,

4 customer_name TEXT,

5 customer_email TEXT,

6 customer_address TEXT,

7 product_name TEXT,

8 product_price DECIMAL(10,2),
9 product_category TEXT,
10 category_description TEXT,
11 quantity INTEGER
12)3

CREATE TABLE orders_chaos (
order_id INTEGER,
order_date DATE,
customer_name TEXT,
customer_email TEXT,
customer_address TEXT,
product_name TEXT,
product_price DECIMAL(10,2),

product_category TEXT,
category_description TEXT,
quantity INTEGER

Daten einfiigen:

1 INSERT INTO orders_chaos VALUES

2 (1, '2025-11-01', 'Alice', 'alice@example.com', 'Hauptstr. 1', 'Lapt
999.99, 'Electronics', 'Devices and gadgets', 1),

3 (2, '2025-11-02', 'Bob', 'bobEexample.com', 'Nebenstr. 5', 'Mouse',
'"Electronics', 'Devices and gadgets', 2),

4 (3, '2025-11-03', 'Alice', 'alice@example.com', 'Hauptstr. 1', 'Desk
.99, 'Furniture', 'Tables and chairs', 1),

5 (4, '2025-11-04', 'Charlie', 'charlie@example.com', 'Querstr. 12',

"Laptop', 999.99, 'Electronics', 'Devices and gadgets', 1),

6 (5, '2025-11-05', 'Alice', 'alice@example.com', 'Hauptstr.
149.99, 'Furniture', 'Tables and chairs', 2);

-

8 SELECT * FROM orders_chaos;

1', 'Chai

INSERT INTO orders_chaos VALUES

(1, '2025-11-01', 'Alice’, 'alice@example.com’, 'Hauptstr. 1', 'Laptop’, 999.99,
'Electronics’, 'Devices and gadgets', 1),

(2, '2025-11-02', 'Bob’, 'bob@example.com’, 'Nebenstr. 5', 'Mouse’, 25.00,
‘Electronics’, '‘Devices and gadgets’, 2),

(3, '2025-11-03’, 'Alice’, 'alice@example.com’, 'Hauptstr. 1', 'Desk’, 299.99,
'Furniture’, 'Tables and chairs’, 1),

(4, '2025-11-04', 'Charlie’, 'charlie@example.com’, '‘Querstr. 12, ‘Laptop’, 999.99,
‘Electronics’, 'Devices and gadgets’, 1),

(5, '2025-11-05', 'Alice’, 'alice@example.com’, 'Hauptstr. 1', 'Chair’, 149.99,
'Furniture’, 'Tables and chairs', 2)

ok

SELECT * FROM orders_chaos

order_id order date customer_name customer_email customer_address

2025-11-01 Alice alice@example.com Hauptstr. 1
2025-11-02 Bob bob@example.com Nebenstr. 5
2025-11-03 Alice alice@example.com Hauptstr. 1
2025-11-04 Charlie charlie@example.com Querstr. 12

2025-11-05 Alice alice@example.com Hauptstr. 1

Sieht doch gar nicht so schlecht aus, oder? Alle Daten sind da, alles auf einen Blick. Aber jetzt passiert etwas:
Alice zieht um. Neue Adresse. Kein Problem, UPDATE ausfiihren, fertig! Aber moment...

Anomalie 1: Update-Anomalie

Alice zieht um - Adresse andern:

-— Naive Losung: Nur EINE Zeile andern
UPDATE orders_chaos

SET customer_address = 'Neue Str. 99'
WHERE order_id = 1;

-— Was 1ist passiert?

SELECT order_id, customer_name, customer_address
FROM orders_chaos

WHERE customer_name = 'Alice';

O oo ~NO b~ WNBE

-- Naive Losung: Nur EINE Zeile andern
UPDATE orders_chaos

SET customer_address = 'Neue Str. 99'
WHERE order_id = 1

ok

-- Was ist passiert?

SELECT order_id, customer_name, customer_address
FROM orders_chaos

WHERE customer_name = 'Alice’

order _id customer_name customer_address

3 Alice Hauptstr. 1
5 Alice Hauptstr. 1

Alice Neue Str. 99

£3 Problem:

Alice hat 3 Bestellungen (order_id 1, 3, 5)

Wir haben nur Zeile 1 geandert

Jetzt hat Alice 2 verschiedene Adressen in der Datenbank!

* Inkonsistenz: Welche ist die richtige Adresse?
Das ist eine Update-Anomalie. Redundante Daten fiihren zu Inkonsistenzen, wenn Sie nicht ALLE
Vorkommen aktualisieren. Aber es wird noch schlimmer.

Anomalie 2: Delete-Anomalie

Charlie will seine Bestellung stornieren:

-- Bestellung l6schen
DELETE FROM orders_chaos WHERE order_id = 4;

-— Was 1ist passiert?

SELECT DISTINCT product_name, product_price
FROM orders_chaos

WHERE product_name = 'Laptop';

~No o WNBE

-- Bestellung l6schen
DELETE FROM orders_chaos WHERE order_id = 4

ok

-- Was ist passiert?

SELECT DISTINCT product_name, product_price
FROM orders_chaos

WHERE product_name = 'Laptop'

product_name product_price

Laptop 999.99

&3 Problem:
* Charlie war der einzige, der einen Laptop bestellt hat
* Bestellung geloscht — Laptop-Informationen sind WEG!
* Wir haben nicht nur die Bestellung geldscht, sondern auch das Produkt

¢ Datenverlust: Produkt kann nicht mehr verkauft werden
Delete-Anomalie: Wenn Sie eine Zeile l6schen, verlieren Sie mehr Daten als gewollt. Und es gibt noch eine

dritte Anomalie.
Anomalie 3: Insert-Anomalie

Neues Produkt in den Shop aufnehmen:

1 -- Versuch: Neues Produkt "Monitor" hinzufigen

2 INSERT INTO orders_chaos (product_name, product_price, product_categor
category_description)

VALUES ('Monitor', 399.99, 'Electronics', 'Devices and gadgets');

H W

5 -- Fehlschlag! Warum?

-- Versuch: Neues Produkt "Monitor" hinzufiigen

INSERT INTO orders_chaos (product_name, product_price, product_category,
category_description)

VALUES ('Monitor’, 399.99, 'Electronics’, 'Devices and gadgets')

ok

-- Fehlschlag! Warum?

ok

£3 Problem:

e Wir konnen kein Produkt ohne Bestellung speichern!

. | order_id |,| customer_name |etc. sind NULL — aber vielleicht NOT NULL?

* Unmogliche Operationen: Produktkatalog kann nicht unabhangig existieren
Insert-Anomalie: Sie konnen bestimmte Daten nicht einfligen, ohne andere, unabhangige Daten ebenfalls
einzuftigen. Diese drei Anomalien sind der Grund, warum wir Normalisierung brauchen.

Normalisierung: Die Losung

Normalisierung ist der systematische Prozess, ein Datenbankschema so zu strukturieren, dass Redundanz
minimiert und Anomalien vermieden werden. Es gibt mehrere Normalformen - wir fokussieren heute auf die
ersten drei: 1INF, 2NF, 3NF.

Was ist Normalisierung?

Definition:

Normalisierung ist die Zerlegung von Tabellen in kleinere, gut strukturierte Tabellen, um Redundanz
zu eliminieren und Datenintegritat zu gewahrleisten.

Ziele:
 [¥4 Redundanz minimieren (Daten nicht mehrfach speichern)
e [¥4 Anomalien vermeiden (Update, Delete, Insert)
o [¥4 Datenintegritat sichern (Konsistenz garantieren)
 [¥4 Flexibilitat erhthen (Schema leichter dnderbar)

Normalformen:

Unnormalisiert

Erste Normalform (1NF)

Die erste Normalform fordert: Jede Zelle enthalt genau EINEN atomaren Wert. Keine Listen, keine
Mehrfacheintrage, keine Wiederholgruppen. Schauen wir uns ein Beispiel an.

Regel: Atomare Werte

Definition 1NF:
e Jede Spalte enthalt nur atomare (unteilbare) Werte
* Keine Wiederholgruppen (z.B. ,Laptop, Mouse, Keyboard“ in einer Zelle)
* Keine Arrays oder verschachtelte Strukturen

Beispiel: Verletzt 1NF

1~ CREATE TABLE orders_not_1nf (
2 order_id INTEGER PRIMARY KEY,
3 customer_name TEXT,

4 products TEXT -- Ei "Laptop, Mouse, Keyboard"

—

5);

6

7 INSERT INTO orders_not_1lnf VALUES

8 (1, 'Alice', 'Laptop, Mouse, Keyboard'),
9 (2, 'Bob', 'Desk, Chair');

10

11 SELECT * FROM orders_not_1nf;

CREATE TABLE orders_not_1nf (
order_id INTEGER PRIMARY KEY,
customer_name TEXT,
products TEXT -- %X "Laptop, Mouse, Keyboard"
)

ok

INSERT INTO orders_not_1nf VALUES
(1, 'Alice’, 'Laptop, Mouse, Keyboard'),
(2, 'Bob’, '‘Desk, Chair’)

ok

SELECT * FROM orders_not_1nf

order_id customer_name products
1 Alice Laptop, Mouse, Keyboard

2 Bob Desk, Chair

Problem:

* Wie finden Sie alle Bestellungen mit ,Mouse“?

. |WHERE products LIKE '%Mouse%' |_> unsauber, fehleranfallig

* Wie zahlen Sie, wie oft jedes Produkt bestellt wurde? Unmoglich!
Die Losung: Jedes Produkt in eine eigene Zeile. Dadurch entstehen mehrere Zeilen pro Bestellung, aber jede
Zelle enthalt nur noch einen atomaren Wert.

Losung: Aufspalten

1NF-konforme Version:

1~ CREATE TABLE orders_1nf (
2 order_id INTEGER,

3 customer_name TEXT,

4 nrodiict name TFXT.

PRIMARY KEY (order_id, product_name) -- Composite Key
)3

INSERT INTO orders_1lnf VALUES
(1, 'Alice', 'Laptop'),

10 (1, 'Alice', 'Mouse'),

11 (1, 'Alice', 'Keyboard'),

12 (2, 'Bob', 'Desk'),

13 (2, 'Bob', 'Chair');

14

15 SELECT * FROM orders_1nf;

CREATE TABLE orders_1nf (

order_id INTEGER,

customer_name TEXT,

product_name TEXT,

PRIMARY KEY (order_id, product_name) -- Composite Key
)

ok

INSERT INTO orders_1nf VALUES
(1, 'Alice’, 'Laptop'),

(1, 'Alice’, 'Mouse'),

(1, 'Alice’, 'Keyboard'),

(2, 'Bob’, 'Desk’),

(2, 'Bob’, ‘Chair')

SELECT * FROM orders_1nf

order_id customer_name product_name

1 Alice Laptop

1 Alice Mouse
Alice Keyboard
Bob Desk

Bob Chair

Jetzt funktioniert:

1 -- Alle Bestellungen mit Mouse:
2 SFIFCT order did. customer name

—_ e -t =t - fm = —— = R

FROM orders_1nf
WHERE product_name = 'Mouse';

-— Wie oft wurde jedes Produkt bestellt?
SELECT product_name, COUNT(*) AS times_ordered
FROM orders_1nf

GROUP BY product_name;

O 00 ~NOo b W

-- Alle Bestellungen mit Mouse:
SELECT order_id, customer_name
FROM orders_1nf

WHERE product_name = '‘Mouse'

order_id customer_name

1 Alice

-- Wie oft wurde jedes Produkt bestelit?

SELECT product_name, COUNT(*) AS times_ordered
FROM orders_1nf

GROUP BY product_name

product_name times_ordered

Mouse 1
Chair 1
Desk

Keyboard

Laptop

(%4 INF erreicht! Jede Zelle = ein Wert.

Zweite Normalform (2NF)

Die zweite Normalform baut auf 1NF auf und fordert: Keine partiellen Abhangigkeiten. Was heifst das? Alle
Nicht-Schllssel-Attribute miissen vom GESAMTEN Primarschliissel abhangen, nicht nur von einem Teil
davon. Das ist nur relevant bei zusammengesetzten Schliisseln.

Regel: Keine partiellen Abhangigkeiten

Definition 2NF:

e Erflllt INF

* Jedes Nicht-Schlussel-Attribut hangt vollstandig vom Primarschliissel ab

* Keine Abhangigkeit von nur einem Teil eines zusammengesetzten Schlussels

Beispiel: Verletzt 2NF

lv
2
3
4
5
6
7
8
9

10
11
12
13

14
15
16

CREATE TABLE orders_not_2nf (

)5

order_id INTEGER,

product_name TEXT,

customer_name TEXT, -— Hangt nur von order_id ab!
product_price DECIMAL(10,2), -- Hangt nur von product_name ab!
quantity INTEGER,

PRIMARY KEY (order_id, product_name)

INSERT INTO orders_not_2nf VALUES

(1, 'Laptop', 'Alice', 999.99, 1),
(1, 'Mouse', 'Alice', 25.00, 2),

(2, 'Laptop', 'Bob', 999.99, 1), -- E Redundanz: Laptop-Preis
dupliziert!
(3, 'Mouse', 'Alice', 25.00, 1); -- Ei Alice-Name dupliziert!

SELECT * FROM orders_not_2nf;

CREATE TABLE orders_not_2nf (
order_id INTEGER,
product_name TEXT,
customer_name TEXT, -- Hangt nur von order_id ab!
product_price DECIMAL(10,2), -- Hangt nur von product_name ab!
quantity INTEGER,
PRIMARY KEY (order_id, product_name)

INSERT INTO orders_not_2nf VALUES
(1, 'Laptop’, 'Alice’, 999.99, 1),
(1, 'Mouse’, 'Alice’, 25.00, 2),
(2, 'Laptop’, 'Bob’, 999.99, 1), -- ¥ Redundanz: Laptop-Preis dupliziert!
(3, 'Mouse’, 'Alice’, 25.00, 1)

ok

-- % Alice-Name dupliziert!

SELECT * FROM orders_not_2nf

order_id product_name customer_name product_price IV ET1414Y
1 Laptop Alice 999.99 1
1 Mouse Alice 25.00 P
Laptop Bob 999.99

Mouse Alice 25.00

Problem:

d | customer_name |héngt nurvonab (nicht von| product_name |)
. | product_price |héngt nurvon| product_name |ab (nicht von)

* Redundanz: Produktpreise und Kundennamen werden dupliziert

e Update-Anomalie: Laptop-Preis andern — mehrere Zeilen updaten!
Die Losung: Tabellen so aufspalten, dass jede Tabelle nur Attribute enthalt, die vom gesamten
Primarschlissel abhangen. Kundendaten in eine separate Tabelle, Produktdaten in eine andere.

Losung: Tabellen aufspalten

2NF-konforme Version:

1 -- Kunden-Tabelle: Kunde hangt nur von order_id ab
2~ CREATE TABLE customers_2nf (

3 customer_id INTEGER PRIMARY KEY,

customer_name TEXT NOT NULL,

customer_email TEXT

)3

-— Produkte-Tabelle: Preis hangt nur von Produkt ab
= CREATE TABLE products_2nf (
10 product_id INTEGER PRIMARY KEY,
11 product_name TEXT NOT NULL,
12 product_price DECIMAL(10,2) NOT NULL
13)3
14
15 -- Bestellungen: Nur Order-Level Daten
16~ CREATE TABLE orders_2nf (
17 order_id INTEGER PRIMARY KEY,
18 customer_id INTEGER NOT NULL,
19 order_date DATE,
20 FOREIGN KEY (customer_id) REFERENCES customers_2nf(customer_1id)
21)
22
23 -- Order Items: Die Many-to-Many Beziehung
24 - CREATE TABLE order_-items_2nf (
25 order_id INTEGER,
26 product_id INTEGER,
27 quantity INTEGER NOT NULL,
28 PRIMARY KEY (order_id, product_id),
29 FOREIGN KEY (order_id) REFERENCES orders_2nf(order_id),
30 FOREIGN KEY (product_id) REFERENCES products_2nf(product_-id)
31)3

4
5
6
7
8
9

-- Kunden-Tabelle: Kunde hangt nur von order_id ab
CREATE TABLE customers_2nf (
customer_id INTEGER PRIMARY KEY,
customer_name TEXT NOT NULL,
customer_email TEXT

)
ok

-- Produkte-Tabelle: Preis hangt nur von Produkt ab
CREATE TABLE products _2nf (

product_id INTEGER PRIMARY KEY,

product_name TEXT NOT NULL,

product_price DECIMAL(10,2) NOT NULL
)

ok

-- Bestellungen: Nur Order-Level Daten
CREATE TABLE orders_2nf (

order_id INTEGER PRIMARY KEY,

customer_id INTEGER NOT NULL,

order_date DATE,

FOREIGN KEY (customer_id) REFERENCES customers_2nf(customer _id)
)

ok

-- Order Items: Die Many-to-Many Beziehung
CREATE TABLE order_items_2nf (
order_id INTEGER,
product_id INTEGER,
quantity INTEGER NOT NULL,
PRIMARY KEY (order_id, product_id),
FOREIGN KEY (order_id) REFERENCES orders_2nf(order_id),
FOREIGN KEY (product_id) REFERENCES products_2nf(product_id)

Daten einfligen:

1 INSERT INTO customers_2nf VALUES (1, 'Alice', 'alice@example.com'), (
'Bob', 'bobexample.com');
INSERT INTO products_2nf VALUES (1, 'Laptop', 999.99), (2, 'Mouse',6 2
INSERT INTO orders_2nf VALUES (1, 1, '2025-11-01'), (2, 2, '2025-11-0
INSERT INTO order_items_2nf VALUES (1, 1, 1), (1, 2, 2), (2, 1, 1);

6 SELECT * FROM order_items_2nf;

INSERT INTO customers_2nf VALUES (1, 'Alice’, 'alice@example.com’), (2, 'Bob’,
'bob@example.com’)

ok

INSERT INTO products_2nf VALUES (1, 'Laptop’, 999.99), (2, ‘Mouse’, 25.00)

ok

INSERT INTO orders_2nf VALUES (1, 1, '2025-11-01'), (2, 2, '2025-11-02")

ok

INSERT INTO order_items_2nf VALUES (1, 1, 1), (1, 2, 2), (2, 1, 1)

(0] 4

SELECT * FROM order_items_2nf

order_id product_id quantity
1 1 1
1 2 2

P

(%4 2NF erreicht! Keine partiellen Abhéngigkeiten mehr.

Test: Preis andern:

-— Laptop-Preis andern (nur EINE Zeile!)
UPDATE products_2nf SET product_price = 899.99 WHERE product_id = 1;

-- Alle Bestellungen haben automatisch den neuen Preis:

SELECT o.order_id, p.product_name, p.product_price, oi.quantity
FROM order_items_2nf oi

JOIN products_2nf p ON oi.product_id = p.product_-id

JOIN orders_2nf o ON oi.order_id = o.order_id;

o ~No b WN B

-- Laptop-Preis andern (nur EINE Zeile!)
UPDATE products_2nf SET product_price = 899.99 WHERE product_id = 1

ok

-- Alle Bestellungen haben automatisch den neuen Preis:
SELECT o.order_id, p.product_name, p.product_price, oi.quantity
FROM order_items_2nf oi

JOIN products_2nf p ON oi.product_id = p.product_id

JOIN orders_2nf o ON oi.order_id = o.order _id

order_id product_name product_price quantity

1 Laptop 899.99 1
1 Mouse 25.00 2

2 Laptop 899.99

Dritte Normalform (3NF)

Die dritte Normalform baut auf 2NF auf und fordert: Keine transitiven Abhangigkeiten. Was heif3t das? Nicht-
Schlissel-Attribute diirfen nicht von anderen Nicht-Schlussel-Attributen abhangen. Nur vom
Primarschlissel.

Regel: Keine transitiven Abhangigkeiten

Definition 3NF:
e Erfillt 2NF
* Keine transitiven Abhangigkeiten: A -~ B - C (wenn A der Schlissel ist, darf B nicht C bestimmen)
* Nicht-Schlissel-Attribute dirfen nur vom Primarschlussel abhangen, nicht voneinander

Beispiel: Verletzt 3NF

1~ CREATE TABLE products_not_3nf (

2 product_id INTEGER PRIMARY KEY,

3 product_name TEXT NOT NULL,

4 product_price DECIMAL(10,2) NOT NULL,

5 category_name TEXT,

6 category_description TEXT -- Ei Hingt von category_name ab, nicht
product_-d!

7)5

8

9 INSERT INTO products_not_3nf VALUES

10 (1, 'Laptop', 999.99, 'Electronics', 'Devices and gadgets'),

11 (2, '"Mouse', 25.00, 'Electronics', 'Devices and gaage’&s'), - a

Redundanz!

12 (3, 'Desk', 299.99, 'Furniture', 'Tables and chairs'),

13 (4, 'Chair', 149.99, 'Furniture', 'Tables and chairs'); -
Redundanz!

14
15 SELECT * FROM products_not_3nf;

CREATE TABLE products_not_3nf (

product_id INTEGER PRIMARY KEY,

product_name TEXT NOT NULL,

product_price DECIMAL(10,2) NOT NULL,

category_name TEXT,

category_description TEXT -- X Hangt von category_name ab, nicht von
product_id!
)

ok

INSERT INTO products_not_3nf VALUES
(1, 'Laptop’, 999.99, 'Electronics’, 'Devices and gadgets'),
(2, 'Mouse’, 25.00, 'Electronics’, 'Devices and gadgets'), -- X Redundanz!
(3, 'Desk’, 299.99, 'Furniture’, 'Tables and chairs'),
(4, 'Chair', 149.99, 'Furniture', 'Tables and chairs')

ok

-- ¥ Redundanz!

SELECT * FROM products_not_3nf

product_id product name product_price category name category description

Laptop 999.99 Electronics Devices and gadgets
Mouse 25.00 Electronics Devices and gadgets
Desk 299.99 Furniture Tables and chairs

Chair 149.99 Furniture Tables and chairs

Problem:

* | category_description |hangtvon|category_name |ab, nichtvon|product_-id

* Transitive Abhangigkeit: productid - categoryname - category_description

Redundanz: Kategorie-Beschreibungen werden dupliziert

* Update-Anomalie: ,Electronics“ umbenennen — mehrere Zeilen!
Die Losung: Kategorie-Informationen in eine separate Tabelle auslagern. Dann gibt es keine transitiven
Abhangigkeiten mehr.

Losung: Kategorien auslagern

3NF-konforme Version:

1 -- Kategorien-Tabelle

2~ CREATE TABLE categories_3nf (

3 category_id INTEGER PRIMARY KEY,

4 category_name TEXT UNIQUE NOT NULL,
5 category_description TEXT
6
7

)3

8 -- Produkte-Tabelle (referenziert Kategorie)

9~ CREATE TABLE products_3nf (

10 product_id INTEGER PRIMARY KEY,

11 product_name TEXT NOT NULL,

12 product_price DECIMAL(10,2) NOT NULL,

13 category_id INTEGER NOT NULL,

14 FOREIGN KEY (category_id) REFERENCES categories_3nf(category_id)
15);

-- Kategorien-Tabelle

CREATE TABLE categories_3nf (
category_id INTEGER PRIMARY KEY,
category_name TEXT UNIQUE NOT NULL,
category_description TEXT

)
ok

-- Produkte-Tabelle (referenziert Kategorie)

CREATE TABLE products_3nf (
product_id INTEGER PRIMARY KEY,
product_name TEXT NOT NULL,
product_price DECIMAL(10,2) NOT NULL,
category_id INTEGER NOT NULL,
FOREIGN KEY (category id) REFERENCES categories_3nf(category_id)

)

ok

Daten einfligen:

1 -- Kategorien zuerst

2 INSERT INTO categories_3nf VALUES

3 (1, 'Electronics', 'Devices and gadgets'),
4 (2, '"Furniture', 'Tables and chairs');
5

6 —- Produkte referenzieren Kategorien

7 INSERT INTO products_3nf VALUES

8 (1, 'Laptop', 999.99, 1),

9 (2, 'Mouse', 25.00, 1),

10 (3, 'Desk', 299.99, 2),

11 (4, 'Chair', 149.99, 2);

12

13 SELECT * FROM products_3nf;

-- Kategorien zuerst

INSERT INTO categories_3nf VALUES
(1, 'Electronics’, 'Devices and gadgets'),
(2, 'Furniture’', 'Tables and chairs')

ok

-- Produkte referenzieren Kategorien
INSERT INTO products_3nf VALUES
(1, 'Laptop’, 999.99, 1),
(2, 'Mouse’, 25.00, 1),
(3, 'Desk’, 299.99, 2),
(4, 'Chair’, 149.99, 2)

ok

SELECT * FROM products_3nf

product_id product_name product_price category _id
1 Laptop 999.99 1
2 Mouse 25.00 1
Desk 299.99

Chair 149.99

{4 3NF erreicht! Keine transitiven Abhangigkeiten mehr.

Test: Kategorie andern:

-- Kategorie-Beschreibung andern (nur EINE Zeile!)

UPDATE categories_3nf

SET category_description = 'Electronic devices and accessories'
WHERE category_id = 1;

-— Alle Produkte haben automatisch die neue Beschreibung:
SELECT p.product_name, c.category_name, c.category_description
FROM products_3nf p

JOIN categories_3nf c ON p.category_id = c.category_id;

O 00 ~NO U b~ WNRE

-- Kategorie-Beschreibung andern (nur EINE Zeile!)

UPDATE categories_3nf

SET category_description = 'Electronic devices and accessories'
WHERE category id =1

ok

-- Alle Produkte haben automatisch die neue Beschreibung:
SELECT p.product_name, c.category_name, c.category_description
FROM products_3nf p

JOIN categories_3nf c ON p.category_id = c.category_id

product_name category_name category_description

Laptop Electronics Electronic devices and accessories
Mouse Electronics Electronic devices and accessories
Desk Furniture Tables and chairs

Chair Furniture Tables and chairs

Finales Schema: Online-Shop komplett

Jetzt haben wir alle Puzzleteile. Lassen Sie uns das finale, vollstandig normalisierte Online-Shop-Schema
zusammenbauen - mit allen Beziehungen, Constraints und Best Practices.

Komplettes normalisiertes Schema

1 -- 1. Kategorien

2~ CREATE TABLE categories (

3 category_id INTEGER PRIMARY KEY,
category_name TEXT UNIQUE NOT NULL,
description TEXT

4
5
6);
7
o

_ 0 DrAadiil -+~

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

36
37
38
39
40
41
42
43
a4

45
46
a7
48
49
50
51
52
53
54

55

L o I1vuunuLc

= CREATE TABLE products (

)5

product_id INTEGER PRIMARY KEY,

product_name TEXT NOT NULL,

price DECIMAL(10,2) NOT NULL CHECK (price >= 0),

stock INTEGER DEFAULT © CHECK (stock >= 0),

category_id INTEGER NOT NULL,

FOREIGN KEY (category_id) REFERENCES categories(category_id)

-- 3. Kunden
= CREATE TABLE customers (

)5

customer_id INTEGER PRIMARY KEY,

customer_name TEXT NOT NULL,

email TEXT UNIQUE NOT NULL,

created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP

-- 4. Adressen (separate Tabelle fir Flexibilitat)
= CREATE TABLE addresses (

)3

address_id INTEGER PRIMARY KEY,

customer_id INTEGER NOT NULL,

street TEXT NOT NULL,

city TEXT NOT NULL,

postal_code TEXT NOT NULL,

country TEXT NOT NULL,

is_default BOOLEAN DEFAULT FALSE,

FOREIGN KEY (customer_id) REFERENCES customers(customer_id) ON DELE
CASCADE

-- 5. Bestellungen
~ CREATE TABLE orders (

)3

order_id INTEGER PRIMARY KEY,

customer_id INTEGER NOT NULL,

address_id INTEGER NOT NULL,

order_date TIMESTAMP DEFAULT CURRENT_TIMESTAMP,

status TEXT CHECK (status IN ('pending', 'shipped', 'delivered',
'cancelled')),

FOREIGN KEY (customer_id) REFERENCES customers(customer_id),

FOREIGN KEY (address_+id) REFERENCES addresses(address_-id)

-- 6. Bestellpositionen (Order Items - Many-to-Many)
= CREATE TABLE order_items (

order_id INTEGER,

product_id INTEGER,

quantity INTEGER NOT NULL CHECK (quantity > 0),

price_at_order DECIMAL(10,2) NOT NULL, -- Preis zum Zeitpunkt der
Bestellung

PRIMARY KEY (order_id, product_id),

56 FOREIGN KEY (order_id) REFERENCES orders(order_id) ON DELETE CASCA
57 FOREIGN KEY (product_id) REFERENCES products(product_1id)
58);

-- 1. Kategorien

CREATE TABLE categories (
category_id INTEGER PRIMARY KEY,
category_ name TEXT UNIQUE NOT NULL,
description TEXT

)

ok

-- 2. Produkte
CREATE TABLE products (
product_id INTEGER PRIMARY KEY,
product_name TEXT NOT NULL,
price DECIMAL(10,2) NOT NULL CHECK (price >= 0),
stock INTEGER DEFAULT 0 CHECK (stock >= 0),
category_id INTEGER NOT NULL,
FOREIGN KEY (category_id) REFERENCES categories(category_id)

-- 3. Kunden
CREATE TABLE customers (

customer _id INTEGER PRIMARY KEY,

customer_name TEXT NOT NULL,

email TEXT UNIQUE NOT NULL,

created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
)

ok

-- 4. Adressen (separate Tabelle fiir Flexibilitat)
CREATE TABLE addresses (

address_id INTEGER PRIMARY KEY,

customer_id INTEGER NOT NULL,

street TEXT NOT NULL,

city TEXT NOT NULL,

postal_code TEXT NOT NULL,

country TEXT NOT NULL,

is_default BOOLEAN DEFAULT FALSE,

FOREIGN KEY (customer_id) REFERENCES customers(customer_id) ON DELETE
CASCADE
)

ok

-- 5. Bestellungen
CREATE TABLE orders (
order_id INTEGER PRIMARY KEY,

customer_id INTEGER NOT NULL,
address_id INTEGER NOT NULL,
order_date TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
status TEXT CHECK (status IN ('pending’, ‘'shipped’, 'delivered’, '‘cancelled')),
FOREIGN KEY (customer_id) REFERENCES customers(customer _id),
FOREIGN KEY (address_id) REFERENCES addresses(address_id)
)

ok

-- 6. Bestellpositionen (Order Items - Many-to-Many)
CREATE TABLE order_items (

order_id INTEGER,

product_id INTEGER,

quantity INTEGER NOT NULL CHECK (quantity > 0),

price_at_order DECIMAL(10,2) NOT NULL, -- Preis zum Zeitpunkt der Bestellung
PRIMARY KEY (order_id, product_id),

FOREIGN KEY (order_id) REFERENCES orders(order_id) ON DELETE CASCADE,
FOREIGN KEY (product_id) REFERENCES products(product_id)

Schauen wir uns die Struktur visuell an. Jede Tabelle hat eine klare Verantwortung, alle Beziehungen sind
explizit definiert, keine Redundanz.

Entity-Relationship Diagramm

CUSTOMERS

int customer_id PK
string customer_name
string email UK
timestamp | created_at

has
ADDRESSES
int address_id | PK
int customer_id | FK CATEGORIES
strin street int category_id PK
places ¢ 9o
string city string | category_name | UK
string postal_code string | description
string country -
boolean | is_default
categorizes
ships to
ORDERS PRODUCTS
int order_id PK int product_id PK
int customer_id | FK string product_name
int address_id | FK decimal | price
timestamp | order_date int stock
string status int category_id FK
contains
\% ordered in
ORDER_ITEMS
int order_id FK
int product_id FK
int quantity
decimal | price_at_order

Jetzt flillen wir den Shop mit Leben. Kategorien, Produkte, Kunden, Adressen, Bestellungen - alles
normalisiert, keine Redundanz.

Daten einfiigen

O 0o ~NOoO Ul WNH

W WWwWwwwwwNNNNMNMNNNNMNNMNMNMNNERRERPERERERERREREREER
O U, WNEHEHFOOOMNOUUDMNWNEOOOWONOUGDMAWNEEO

-- Kategorien

INSERT INTO categories VALUES
(1, 'Electronics', 'Electronic devices and accessories'),
(2, 'Furniture', 'Tables, chairs, and office furniture');

-— Produkte

INSERT INTO products VALUES
(1, 'Laptop', 999.99, 10, 1),
(2, 'Mouse', 25.00, 50, 1),
(3, 'Keyboard', 75.00, 30, 1),
(4, 'Desk', 299.99, 5, 2),
(5, 'Chair', 149.99, 8, 2);

-— Kunden

INSERT INTO customers VALUES
(1, 'Alice', 'alice@example.com', CURRENT_TIMESTAMP),
(2, 'Bob', 'bob@example.com', CURRENT_TIMESTAMP);

-— Adressen

INSERT INTO addresses VALUES
(1, 1, 'Hauptstr. 1', 'Berlin', '10115', 'Germany', TRUE),
(2, 2, 'Nebenstr. 5', 'Munich', '80331', 'Germany', TRUE);

-— Bestellungen

INSERT INTO orders VALUES
(1, 1, 1, CURRENT_TIMESTAMP, 'pending'),
(2, 2, 2, CURRENT_TIMESTAMP, 'shipped');

-— Bestellpositionen
INSERT INTO order_items VALUES

(1, 1, 1, 999.99), -- Alice: 1x Laptop
(1, 2, 2, 25.00), -- Alice: 2x Mouse
(2, 4, 1, 299.99), -- Bob: 1x Desk
(2, 5, 1, 149.99); -- Bob: 1x Chair

SELECT 'Shop erfolgreich aufgebaut!' AS status;

-- Kategorien

INSERT INTO categories VALUES
(1, 'Electronics’, 'Electronic devices and accessories'),
(2, 'Furniture’, 'Tables, chairs, and office furniture')

ok

-- Produkte

INSERT INTO products VALUES
(1, 'Laptop’, 999.99, 10, 1),
(2, 'Mouse', 25.00, 50, 1),
(3, 'Keyboard', 75.00, 30, 1),
(4, 'Desk’, 299.99, 5, 2),
(5, 'Chair’, 149.99, 8, 2)

-- Kunden

INSERT INTO customers VALUES
(1, 'Alice’, 'alice@example.com’, CURRENT_TIMESTAMP),
(2, ‘Bob’, ‘bob@example.com’, CURRENT_TIMESTAMP)

ok

-- Adressen

INSERT INTO addresses VALUES
(1, 1, 'Hauptstr. 1', '‘Berlin’, '10115', 'Germany', TRUE),
(2, 2, 'Nebenstr. 5', 'Munich', '80331', 'Germany', TRUE)

ok

-- Bestellungen

INSERT INTO orders VALUES
(1, 1, 1, CURRENT_TIMESTAMP, 'pending’),
(2, 2, 2, CURRENT _TIMESTAMP, 'shipped')

ok

-- Bestellpositionen

INSERT INTO order_items VALUES
(1, 1, 1, 999.99), -- Alice: 1x Laptop
(1, 2, 2, 25.00), -- Alice: 2x Mouse
(2, 4, 1, 299.99), -- Bob: 1x Desk
(2,5, 1, 149.99)

ok

-- Bob: 1x Chair

SELECT 'Shop erfolgreich aufgebaut!' AS status

status

Shop erfolgreich aufgebaut!

Jetzt testen wir das normalisierte Schema. Keine Anomalien mehr! Adresse andern, Produkt [6schen, neues
Produkt hinzufligen - alles funktioniert sauber.

Tests: Keine Anomalien mehr!

Test 1: Update (Alice zieht um)

1 -- Adresse andern (nur EINE Zeile!)
2 UPDATE addresses
3 SET street = 'Neue Str. 99', city = 'Hamburg', postal_code = '20095'
4 WHERE address_id = 1;
5
6 —- Alle Bestellungen haben automatisch die neue Adresse:
7 SELECT o.order_1id, c.customer_name, a.street, a.city
8 FROM orders o
9 JOIN customers c ON o.customer_id = c.customer_id
10 JOIN addresses a ON o.address_id = a.address_-id
11 WHERE c.customer_name = 'Alice';

-- Adresse andern (nur EINE Zeile!)

UPDATE addresses

SET street = 'Neue Str. 99', city = '"Hamburg', postal_code = '20095'
WHERE address_id = 1

ok

-- Alle Bestellungen haben automatisch die neue Adresse:
SELECT o.order_id, c.customer_name, a.street, a.city
FROM orders o

JOIN customers c ON o.customer_id = c.customer_id
JOIN addresses a ON o.address_id = a.address_id
WHERE c.customer_name = 'Alice'

order_id customer_name street

1 Alice Neue Str. 99

Test 2: Delete (Bob storniert Bestellung)

-- Bestellung lo6schen
DELETE FROM orders WHERE order_id = 2;

-— Produkte sind noch da (kein Datenverlust!):
SELECT product_id, product_name, price

FROM products

WHERE product_id IN (4, 5);

~No bk WN R

-- Bestellung I6schen
DELETE FROM orders WHERE order_id = 2

ok

-- Produkte sind noch da (kein Datenverlust!):
SELECT product_id, product_name, price
FROM products

WHERE product_id IN (4, 5)

product_id product_name

4 Desk

5 Chair

Test 3: Insert (Neues Produkt ohne Bestellung)

1 -- Neues Produkt hinzufligen (kein Problem!)
2 INSERT INTO products VALUES

3 (6, 'Monitor', 399.99, 12, 1);

4

5

SELECT * FROM products WHERE product_id = 6;

-- Neues Produkt hinzufiigen (kein Problem!)
INSERT INTO products VALUES
(6, 'Monitor', 399.99, 12, 1)

ok

SELECT * FROM products WHERE product_id = 6

product_id product_name price stock category _id

6 Monitor 399.99 12 1

{4 Alle Tests bestanden! Keine Anomalien, keine Redundanz, volle Flexibilitat.

Denormalisierung: Wann & Warum?

Normalisierung ist toll - aber es gibt Situationen, wo Sie bewusst dagegen verstoRRen sollten.
Denormalisierung heiRt: Kontrolliert Redundanz einbauen, um Performance zu gewinnen. Wann macht das
Sinn?

Trade-offs: Normalisierung vs. Performance

Wann denormalisieren?

Wann
Szenario Normalisiert Denormalisiert .
Denormalisierung?
Read Mehrere JOINs Daten direkt Read-heavy Systeme (z.B.
eads
notig verflighar Analytics)
. Write-heavy Systeme
. Einfach (nur Komplex (mehrere
Writes) bevorzugen
eine Tabelle) Tabellen synchen) o
Normalisierung
. Minimal (keine .) Speicher ist billig,
Speicher Hoher (Duplikate)
Redundanz) Performance teuer
.) Manuell Kritische Daten: immer
Konsistenz Garantiert . L
sicherstellen normalisieren!

Beispiel: Denormalisierung fiir Performance

-— Normalisiert: 3 JOINs fur Order-Ubersicht
SELECT
o.order_1id,

c.customer_name,
c.email,

a.city,
p.product_name,

oi.quantity,

oi.price_at_order
FROM orders o
JOIN customers c ON o.customer_id = c.customer_id
JOIN addresses a ON o.address_id = a.address_1id
JOIN order_items oi ON o.order_id = oi.order_1id
JOIN products p ON oi.product_id = p.product_id;

-- Denormalisiert: Alles in einer Tabelle (wie am Anfang!)
-— = Schneller, aber Redundanz & Update-Anomalien

Losungsansatze:
* Materialized Views: Automatisch aktualisierte denormalisierte Ansichten
* Caching: Redis/Memcached fiir haufige Queries
¢ Read Replicas: Separate DB fiir Lesezugriffe

* CQRS: Command Query Responsibility Segregation (zwei Datenmodelle)
In der Praxis: Starten Sie normalisiert (3NF), denormalisieren Sie nur gezielt bei gemessenen Performance-
Problemen. Niemals ,,blind“ denormalisieren!

Weitere Normalformen (Ausblick)

3NF ist meist ausreichend. Es gibt hohere Normalformen - BCNF, 4NF, 5NF - aber die brauchen Sie selten.
Kurzer Uberblick, was dariiber hinausgeht.

BCNF, 4NF, 5NF - Braucht man das?
Boyce-Codd Normalform (BCNF):
* Verscharfung von 3NF
¢ Jede Abhangigkeit muss vom Superschliissel ausgehen
¢ Relevant bei komplexen Schliisselstrukturen
* Praxis: Selten notig, 3NF reicht meist

Vierte Normalform (4NF):

® Eliminiert Multi-Valued Dependencies
* Beispiel: Lehrer unterrichtet mehrere Facher UND mehrere Klassen (unabhéngig)
* Praxis: Sehr selten relevant
Fiinfte Normalform (5NF):
® Eliminiert Join Dependencies
® Theoretisch interessant, praktisch kaum relevant
* Praxis: Fast nie notwendig
¢ Empfehlung:
* Ziel: 3NF als Standard
* BCNF: Nurwenn Sie darauf stolsen

® 4NF+: Vergessen Sie es (auler Sie schreiben eine Dissertation)

Weitere Beispiele

Normalisierung ist Uiberall. Schauen wir uns kurz drei weitere Szenarien an: Blog, Bibliothek, Social Network.
Das Prinzip ist immer gleich.

Beispiel 1: Blog-System
Entities:
e Authors (Autoren)
* Posts (Blog-Posts)
e Comments (Kommentare)
* Tags (Schlagworte)
Beziehungen:
e Author 1:n Posts (Ein Autor, viele Posts)
e Post 1:n Comments (Ein Post, viele Kommentare)
* Posts n:m Tags (Ein Post hat mehrere Tags, ein Tag in mehreren Posts)

Schema:

CREATE TABLE authors (
author_id INTEGER PRIMARY KEY,
name TEXT NOT NULL,
email TEXT UNIQUE

)5

CREATE TABLE posts (

post_id INTEGER PRIMARY KEY,

author_id INTEGER NOT NULL,

title TEXT NOT NULL,

content TEXT,

published_at TIMESTAMP,

FOREIGN KEY (author_id) REFERENCES authors(author_id)

)5

CREATE TABLE comments (
comment_id INTEGER PRIMARY KEY,
post_id INTEGER NOT NULL,
author_name TEXT,
content TEXT,
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
FOREIGN KEY (post_id) REFERENCES posts(post_id) ON DELETE CASCADE

)3

CREATE TABLE tags (
tag_id INTEGER PRIMARY KEY,
tag_name TEXT UNIQUE NOT NULL

)3

CREATE TABLE post_tags (
post_id INTEGER,
tag_id INTEGER,
PRIMARY KEY (post_id, tag_id),
FOREIGN KEY (post_id) REFERENCES posts(post_id) ON DELETE CASCADE,
FOREIGN KEY (tag_id) REFERENCES tags(tag_id)

)3

Beispiel 2: Bibliothek
Entities:
e Books (Biicher)
e Authors (Autoren)
e Copies (Exemplare)
e Loans (Ausleihen)
* Members (Mitglieder)
Besonderheiten:
e Books n:m Authors (Co-Autoren)
* Book 1:n Copies (Ein Buch, mehrere physische Exemplare)
* Copy 1:n Loans (Ein Exemplar wird mehrfach ausgeliehen)

Schema:

CREATE TABLE books (
book_id INTEGER PRIMARY KEY,
title TEXT NOT NULL,
isbn TEXT UNIQUE,
published_year INTEGER

)3

CREATE TABLE authors (
author_id INTEGER PRIMARY KEY,
name TEXT NOT NULL

)3

CREATE TABLE book_authors (
book_id INTEGER,
author_id INTEGER,
PRIMARY KEY (book_1id, author_id),
FOREIGN KEY (book_id) REFERENCES books (book_id),
FOREIGN KEY (author_id) REFERENCES authors(author_-id)
)

CREATE TABLE copies (
copy_id INTEGER PRIMARY KEY,
book_id INTEGER NOT NULL,
acquisition_date DATE,
status TEXT CHECK (status IN ('available', 'on_loan', 'damaged')),
FOREIGN KEY (book_id) REFERENCES books(book_-id)
)

CREATE TABLE members (
member_id INTEGER PRIMARY KEY,
name TEXT NOT NULL,
email TEXT UNIQUE,
joined_date DATE

)5

CREATE TABLE loans (

loan_id INTEGER PRIMARY KEY,

copy_id INTEGER NOT NULL,

member_id INTEGER NOT NULL,

loan_date DATE NOT NULL,

due_date DATE NOT NULL,

return_date DATE,

FOREIGN KEY (copy_id) REFERENCES copies(copy_id),

FOREIGN KEY (member_id) REFERENCES members(member_-id)
)

Beispiel 3: Social Network (Self-Referencing)
Entity:

e Users (Nutzer)

Besonderheit:
* Users n:m Users (Freundschaften = Self-Referencing Many-to-Many)

Schema:

CREATE TABLE users (
user_id INTEGER PRIMARY KEY,
username TEXT UNIQUE NOT NULL,
email TEXT UNIQUE NOT NULL,
joined_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP

)3

CREATE TABLE friendships (

user_id_1 INTEGER,

user_id_2 INTEGER,

status TEXT CHECK (status IN ('pending', 'accepted', 'blocked')),

created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,

PRIMARY KEY (user_id_1, user_id_2),

FOREIGN KEY (user_id_1) REFERENCES users(user_id),

FOREIGN KEY (user_id_2) REFERENCES users(user_id),

CHECK (user_id_1 < user_id_2) -- Verhindert Duplikate (A-B und B-A)
)

-- Freundschaften einfligen:
INSERT INTO users VALUES (1, 'alice', 'alice@example.com', CURRENT_TIMESTAN
INSERT INTO users VALUES (2, 'bob', 'bobEexample.com', CURRENT_TIMESTAMP);
INSERT INTO friendships VALUES (1, 2, 'accepted', CURRENT_TIMESTAMP);

-— Alle Freunde von Alice:

SELECT u.username

FROM friendships f

JOIN users u ON (f.user_id_2 = u.user_id OR f.user_id_1 = u.user_id)
WHERE (f.user_id_1 = 1 OR f.user_id_2 = 1) AND u.user_id != 1;

Zusammenfassung

Was haben Sie gelernt? Sie kdnnen jetzt Anomalien erkennen, Normalformen anwenden, Schemas
normalisieren und Trade-offs zwischen Normalisierung und Performance abwagen. Das ist das Fundament
fir gutes Datenbankdesign.

Konzept Beschreibung Ziel

. Redundante Daten fiihren zu) o
Update-Anomalie . Vermeiden durch Normalisierung
Inkonsistenzen

. Ungewollter Datenverlust beim Separate Tabellen flr
Delete-Anomalie . I -,
Loschen unabhangige Entities

. Daten konnen nicht ohne
Insert-Anomalie . . Tabellen trennen
andere eingefugt werden

Atomare Werte (keine Listen in) .
INF Zellen) Wiederholgruppen eliminieren
ellen

Jedes Attribut hangt vom

2NF Kei tiellen Abhangigkeit
eine partiellen angigkeiten GANZEN Schliissel ab
INF Keine transitiven Nicht-Schliissel-Attribute nur vom
Abhangigkeiten Schlissel abhangig

Kontrollierte Redundanz fur

Denormalisierung Nur bei gemessenen Problemen

Performance

Die wichtigsten Takeaways: Starten Sie normalisiert (3NF). Denormalisieren Sie nur gezielt bei Performance-
Problemen. Testen Sie immer: Konnen Sie UPDATE/DELETE/INSERT ohne Anomalien ausfiihren? Wenn ja, ist
Ilhr Schema gut.

Checkliste: Ist mein Schema normalisiert?

Nutzen Sie diese Checkliste, um lhre eigenen Schemas zu tuberpriifen. Jede Frage sollte mit ,,Ja“ beantwortet
werden konnen.

Normalisierungs-Check

Erste Normalform (1NF):

O Jede Zelle enthalt genau einen atomaren Wert?

O Keine Arrays oder Listen in Spalten?

O Keine Wiederholgruppen (z.B. ,,productl®, ,product2“, ,product3“)?

O Jede Zeile ist eindeutig identifizierbar (PRIMARY KEY)?

Zweite Normalform (2NF):

O Schema erfillt INF?

O Bei zusammengesetzten Schliisseln: Hangt jedes Nicht-Schlussel-Attribut vom GESAMTEN Schlussel
ab?

O Keine Redundanz durch partielle Abhangigkeiten?

Dritte Normalform (3NF):
O Schema erfillt 2NF?
O Keine transitiven Abhangigkeiten (A - B - C)?

O Nicht-Schlissel-Attribute hangen nur vom Primarschlissel ab, nicht voneinander?

Best Practices:

O Jede Tabelle hat einen klaren Zweck (Single Responsibility)?
O FOREIGN KEYs sind definiert fiir alle Beziehungen?

O Constraints (CHECK, NOT NULL, UNIQUE) sind sinnvoll gesetzt?

() Tests durchgefiihrt: UPDATE/DELETE/INSERT ohne Anomalien?

Quiz: Testen Sie Ihr Wissen

Frage 1: Was ist eine Update-Anomalie?

O Daten konnen nicht eingefiigt werden

O Redundante Daten fiihren zu Inkonsistenzen beim Update
O Daten gehen beim Loschen verloren

O Performance-Problem bei groften Tabellen

Frage 2: Welche Normalform fordert atomare Werte?

Frage 3: Was eliminiert die 2NF?

O Wiederholgruppen

O Partielle Abhangigkeiten
O Transitive Abhangigkeiten

O Multi-Valued Dependencies

Frage 4: Wann sollten Sie denormalisieren?

O Immer, Normalisierung ist uberbewertet

O Nie, 3NF ist heilig

O Bei gemessenen Performance-Problemen in Read-heavy Systemen

O Bei allen Write-heavy Systemen

Frage 5: Was ist ein Self-Referencing Foreign Key?

O Ein Fehlerim Schema

O Ein Foreign Key ohne Referenced Table

O Ein Foreign Key, der auf die eigene Tabelle verweist (z.B. Freundschaften, Hierarchien)

O Ein Primary Key, der sich selbst referenziert

Ubungsaufgaben

Zeit fiir Praxis! Probieren Sie diese Aufgaben selbst aus.
Aufgabe 1: Schema normalisieren

Gegeben ist diese denormalisierte Tabelle:

employees_denormalized:

| emp_id | name | dept_name | dept_manager | dept_location |
e | ~===- e e R |
1	Alice	IT	Bob	Berlin
2	Charlie	IT	Bob	Berlin
3	Diana	HR	Eve	Munich

Normalisieren Sie auf 3NF!

[

hhkhkkhkkkkkkkkkkkkkkk

Analyse: | dept_manager |und| dept_location |héngen von ab (transitive

Abhangigkeit) - LOsung: Separate | departments |Tabelle |:| sql CREATE TABLE departments (dept_id
INTEGER PRIMARY KEY, dept_name TEXT UNIQUE NOT NULL, dept_manager TEXT, dept_location TEXT);
CREATE TABLE employees (emp_id INTEGER PRIMARY KEY, name TEXT NOT NULL, dept_id INTEGER NOT
NULL, FOREIGN KEY (deptid) REFERENCES departments(deptid)); INSERT INTO departments VALUES (1, ,IT,
,Bob, ,Berlin), (2, ,HRY, ,Eve‘, ,Munich’); INSERT INTO employees VALUES (1, ,Alice’, 1), (2, ,Charlie’, 1), (3,
Diana’ 2);D\ LIA: termingl ******+eeeeeereees

Aufgabe 2: Anomalie identifizieren

Welche Anomalie tritt hier auf?

CREATE TABLE courses_denormalized (

student_id INTEGER,

course_id INTEGER,

student_name TEXT,

student_email TEXT,

course_name TEXT,

instructor TEXT,

PRIMARY KEY (student_id, course_-id)

)3

Wenn Student ,,Alice“ ihren Namen andert, miissen Sie...?

[

|:|‘ sql CREATE TABLE movies (movie_id INTEGER PRIMARY KEY, title TEXT NOT NULL, duration_minutes
INTEGER, genre TEXT); CREATE TABLE screenings (screening_id INTEGER PRIMARY KEY, movie_id INTEGER
NOT NULL, screening_time TIMESTAMP NOT NULL, room TEXT, FOREIGN KEY (movieid) REFERENCES
movies(movieid)); CREATE TABLE customers (customer_id INTEGER PRIMARY KEY, name TEXT NOT NULL,
email TEXT UNIQUE); CREATE TABLE bookings (booking_id INTEGER PRIMARY KEY, customer_id INTEGER
NOT NULL, screening_id INTEGER NOT NULL, seatsbooked INTEGER NOT NULL CHECK (seatsbooked > 0),
bookingtime TIMESTAMP DEFAULT CURRENTTIMESTAMP, FOREIGN KEY (customerid) REFERENCES
customers(customerid), FOREIGN KEY (screeningid) REFERENCES screenings(screeningid)); |:|

LIA: terminal ERD:- CUSTOMERS 1:n BOOKINGS - SCREENINGS 1:n BOOKINGS - MOVIES 1:n SCREENINGS

khkkkhkkhkkkhkkkkkhkkkkk

Ausblick: Was kommt als Nachstes?

Sie konnen jetzt normalisierte Schemas entwerfen. Mehrere Tabellen, klare Beziehungen, keine Redundanz.

Aber wie nutzen Sie diese Tabellen gemeinsam? Wie kombinieren Sie Daten aus| customers || orders |

und in einer einzigen Abfrage? Das sind Joins - unser nachstes grofies Thema.

)

Kommende Sessions:

* Session 10: SQL Joins & Combining Data (INNER, LEFT, RIGHT, FULL, CROSS)
* Session 11: Row-Level Functions (String, Number, Date, CASE)

* Session 12: Aggregation & Window Functions

* Session 13: Advanced SQL Techniques (Subqueries, CTEs, Views)

¢ Session 14: Relationale Algebra (formale Grundlagen)

&7 Gliickwunsch! Sie beherrschen jetzt Normalisierung - das Fundament fiir professionelles
Datenbankdesign!

Anhang: DBML-Syntax-Referenz

Fur Interessierte: Eine komplette Referenz der DBML-Syntax, die Sie in den ER-Diagrammen gesehen haben.
DBML ist die Sprache hinter dbdiagram punkt io. Wenn Sie eigene Diagramme erstellen mochten, ist dies lhre
Cheat-Sheet.

Tabellen definieren

Table table_name {
column_name column_type [settings]

}
Column Types:
d |int, integer|
o |varchar(n)L|char(n), text|
o |decima1(p,s), numeric(p,s)|
° |timestamp, datetime || date |, time|
. |boolean, bool|

Column Settings:

o — Primary Key
[not null]- Nicht NULL
— Eindeutig
—Auto—lncrement

| default: value |— Default-Wert

° |note: 'text' |—Spalten-Kommentar

Beispiel:

‘Table users {

user_id int [pk, dincrement]

username varchar(50) [not null, unique]

email varchar(100) [not null, unique]

created_at timestamp [default: “now()]

status varchar(20) [default: 'active', note: 'active, inactive, banned']

Note: 'User accounts in the system'

}

Beziehungen (Relationships)
Beziehungen sind das Herzstiick von ER-Diagrammen. DBML hat eine elegante Syntax daftr.

Inline (empfohlen):

Table orders {
user_id int [ref: > users.id] // many-to-one

}

Separat:

Ref: orders.user_id > users.id

Relationship Types:
o — many-to-one (viele Orders — ein User)
o — one-to-many (ein User — viele Orders)
o []—mm%&mm@mU%raeumma
o - many-to-many (viele Students - viele Courses)

WICHTIG: Bei n:m verwenden Sie Junction Tables!

Table student_courses {
student_id int [ref: > students.id]
course_1id int [ref: > courses.id]

indexes {
(student_id, course_id) [pk]
+
+

Benannte Beziehungen:

Ref name_of_relationship: products.category_id > categories.id

Indexes

Indexes sind wichtig fiir Performance. DBML lasst Sie diese direkt im Schema definieren.

Table users {
email varchar(100)
username varchar (50)

indexes {
email [unique]
(email, username) [unique, name: 'email_username_idx']
username [type: btree, note: 'Speed up username lookups']
ks
+

Index Settings:

o —Uniquelndex
. —PrimaryKeyIndex

. |type: btree|—IndexTyp(bUeeJumh,gn,gBﬂ

° |name: 'index_name'|—ExMhheHndewName

d |note: 'text'|—|ndewKonnnenwr

Notes (Dokumentation)
Dokumentation direkt im Schema - fiir Sie und Ihre Kollegen!

Tabellen-Notes:

Table users {
id int [pk]

Note: 'This table stores all user accounts in the system'

Spalten-Notes:

Table users {
id int [pk, note: 'Unique identifier for each user']
status varchar(20) [note: 'Possible values: active, inactive, banned']

}

Multi-line Notes:

Table users {
Note: ''"!
This table stores user accounts.

Business Rules:
- Email must be unique
- Username must be at least 3 characters

- Status defaults to 'active'

}

Table Groups

Gruppieren Sie zusammengehérige Tabellen fiir bessere Ubersicht.

TableGroup ecommerce {
customers
orders
order_items
products

}

TableGroup auth {
users
sessions
permissions

}

Enums

Definieren Sie Enums fiir eingeschrankte Wertebereiche.

enum order_status {
pending
processing
shipped
delivered
cancelled

}

Table orders {

order_id int [pk]

status order_status [default: 'pending']
+

Vollstandiges Beispiel

// E-Commerce Schema

enum order_status {
pending
processing
shipped
delivered
cancelled

T - —_— e e m oo r

IdpLe cusLoiners 4

customer_id 1int [pk, increment]

name varchar(100) [not null]

email varchar(100) [unique, not null]
created_at timestamp [default: “now()]

indexes {
email [unique]
created_at [type: btree]
ks

Note: 'Customer accounts'

Table products {

}

product_id int [pk, increment]

name varchar(200) [not null]

price decimal(10,2) [not null, note: 'Price in EUR']
stock int [default: 0]

category_id int [ref: > categories.category_id]

indexes {
category_id
(name, category_id) [note: 'Speed up product searches']

}

Note: 'Product catalog'

Table categories {

}

category_id int [pk, increment]
name varchar(100) [unique, not null]
description text

Note: 'Product categories'

Table orders {

order_id 1int [pk, increment]

customer_id int [not null, ref: > customers.customer_id]
order_date timestamp [default: “now()]

status order_status [default: 'pending']

total_amount decimal(10,2)

indexes {
customer_id
order_date
(customer_id, order_date) [name: 'customer_orders_idx']

}

Note: 'Customer orders'

}

Table order_items {
order_id int [pk, ref: > orders.order_1id]
product_id 1int [pk, ref: > products.product_id]
quantity int [not null]
price_at_order decimal(10,2) [not null, note: 'Price at time of purchase

Note: 'Junction table for orders and products'

}

// Gruppierung

TableGroup core {
customers
orders
order_items

}

TableGroup catalog {
products
categories

}

Niitzliche Links

¢ dbdiagram.io: https://dbdiagram.io/

e DBML Documentation: https://dbml.dbdiagram.io/docs/

¢ Live Editor: https://dbdiagram.io/d (zum Experimentieren)

e dbdiagram CLI: https://github.com/holistics/dbml (fiir Automation)

Ende der Session 9 - Sie sind jetzt ein Normalisierungs-Profi! @

https://dbdiagram.io/
https://dbml.dbdiagram.io/docs/
https://dbdiagram.io/d
https://github.com/holistics/dbml

