
Session 9 – Database Normalization & Schema Design

Session-Typ: Lecture Dauer: 90 Minuten Lernziele: LZ 2 (SQL-Praxis, Schema-Design)

Intro: Von Tabellen zu guten Tabellen
Willkommen zurück! In Session 8 haben Sie gelernt, wie man Tabellen erstellt – CREATE TABLE, Constraints,
INSERT, UPDATE, DELETE. Sie haben die Werkzeuge. Heute lernen Sie, wie man diese Werkzeuge RICHTIG
einsetzt. Nicht irgendwelche Tabellen bauen, sondern GUTE Tabellen bauen. Tabellen, die keine Redundanz
haben, keine Inkonsistenzen produzieren, keine Anomalien auslösen.

Rückblick Session 8:

Aber eine Frage blieb offen: Wann erstelle ich EINE große Tabelle mit allen Daten? Wann mehrere kleine
Tabellen? Wie vermeide ich Redundanz? Wie verhindere ich, dass Daten inkonsistent werden? Die Antwort
heißt: Normalisierung.

Heute lernen Sie:

Datenbank vorbereiten
Wir starten mit einer Sandbox. Heute bauen wir gemeinsam drei Beispiele – von simpel zu komplex. Von der
Bibliothek über Movie Reviews bis zum vollständigen Online-Shop. Jedes Beispiel zeigt neue Aspekte der
Normalisierung.

✅ CREATE TABLE – Tabellen erstellen

✅ PRIMARY KEY, FOREIGN KEY – Beziehungen definieren

✅ INSERT, UPDATE, DELETE – Daten manipulieren

✅ Constraints – Datenintegrität sichern

Anomalien: Update, Delete, Insert – was kann schiefgehen?

Normalisierung: 1NF, 2NF, 3NF – der Weg zu sauberen Schemas

ER-Diagramme: Schemas visuell planen und verstehen

Praxis: Bibliothek, Movie Reviews, Online-Shop – drei Beispiele, steigende Komplexität

Trade-offs: Wann Normalisierung, wann Denormalisierung?

-- Sandbox initialisieren
CREATE TABLE IF NOT EXISTS demo_test (id INTEGER, name TEXT);
INSERT INTO demo_test VALUES (1, 'Normalisierung rockt!');
SELECT 'Datenbank bereit!' AS status;

1
2
3
4



-- Sandbox initialisieren

CREATE TABLE IF NOT EXISTS demo_test (id INTEGER, name TEXT)

ok

INSERT INTO demo_test VALUES (1, 'Normalisierung rockt!')

ok

SELECT 'Datenbank bereit!' AS status

1 rows

-- Interaktives Terminal

SELECT * FROM demo_test

1 rows

Beispiel 1: Bibliothek – Der einfachste Fall
Starten wir mit dem simpelsten denkbaren Beispiel: Eine Bibliothek mit Büchern und Autoren. Nur zwei
Entities, eine klare Beziehung. Perfekt, um die Grundprinzipien zu verstehen. Stellen Sie sich vor, Sie bauen
eine Datenbank für eine kleine Bibliothek. Einfacher Ansatz: Eine Tabelle für alles!

Die „Alles-in-Einer“ Tabelle

Schauen wir uns an, was passiert, wenn wir alle Informationen in einer einzigen Tabelle speichern. Bücher
haben Titel und ISBN, Autoren haben Namen, Geburtsjahr und Nationalität. Alles zusammen in einer Tabelle
– klingt simpel, oder?

Naive Version:

Datenbank bereit!

-- Interaktives Terminal
SELECT * FROM demo_test;

1 Normalisierung rockt!

CREATE TABLE library_chaos (
book id INTEGER

1
2

1
2

1

1

status

id name





CREATE TABLE library_chaos (

 book_id INTEGER,

 title TEXT,

 isbn TEXT,

 author_name TEXT,

 author_birth_year INTEGER,

 author_nationality TEXT

)

ok

Jetzt fügen wir Daten ein. Beachten Sie: George Orwell hat zwei Bücher geschrieben. Was bedeutet das für
unsere Tabelle?

Daten einfügen:

 book_id INTEGER,
 title TEXT,
 isbn TEXT,
 author_name TEXT,
 author_birth_year INTEGER,
 author_nationality TEXT
);

INSERT INTO library_chaos VALUES
 (1, '1984', '978-0-452-28423-4', 'George Orwell', 1903, 'British'),
 (2, 'Animal Farm', '978-0-452-28424-1', 'George Orwell', 1903, 'Brit
 (3, 'Brave New World', '978-0-06-085052-4', 'Aldous Huxley', 1894,
 'British');

SELECT * FROM library_chaos;

2
3
4
5
6
7
8

1
2
3
4

5
6



INSERT INTO library_chaos VALUES

 (1, '1984', '978-0-452-28423-4', 'George Orwell', 1903, 'British'),

 (2, 'Animal Farm', '978-0-452-28424-1', 'George Orwell', 1903, 'British'),

 (3, 'Brave New World', '978-0-06-085052-4', 'Aldous Huxley', 1894, 'British')

ok

SELECT * FROM library_chaos

3 rows

Sehen Sie das Problem? George Orwell steht zweimal in der Datenbank – mit allen seinen Informationen.
Geburtsjahr, Nationalität, alles dupliziert. Das ist Redundanz. Und Redundanz führt zu Problemen. Schauen
wir uns die Anomalien an.

Anomalie 1: Update-Anomalie

Nehmen wir an, wir entdecken einen Fehler: George Orwell wurde nicht neunzehnhundertdrei, sondern
neunzehnhundertdrei geboren. Klingt gleich? Nein – die Datenbank hat neunzehnhundertdrei statt
neunzehnhundertdrei. Wir müssen das korrigieren. Wie viele Zeilen müssen wir updaten?

George Orwell's Geburtsjahr korrigieren:

1 1984 978-0-

452-

28423-4

George Orwell 1903 British

2 Animal

Farm

978-0-

452-

28424-1

George Orwell 1903 British

3 Brave

New

World

978-0-

06-

085052-

4

Aldous Huxley 1894 British

-- Versuchen wir, nur EINE Zeile zu ändern
UPDATE library_chaos
SET author_birth_year = 1903
WHERE book_id = 1;

-- Was ist jetzt passiert?
SELECT book_id, title, author_name, author_birth_year
FROM library_chaos
WHERE author_name = 'George Orwell';

1
2
3
4
5
6
7
8
9

1

2

3

book_id title isbn author_name author_birth_year author_nationality



-- Versuchen wir, nur EINE Zeile zu ändern

UPDATE library_chaos

SET author_birth_year = 1903

WHERE book_id = 1

ok

-- Was ist jetzt passiert?

SELECT book_id, title, author_name, author_birth_year

FROM library_chaos

WHERE author_name = 'George Orwell'

2 rows

Sehen Sie das Problem? Wir haben nur Zeile eins geändert. Zeile zwei hat immer noch das alte Geburtsjahr!
Jetzt hat George Orwell zwei verschiedene Geburtsjahre in der Datenbank. Das ist eine Update-Anomalie.
Redundante Daten führen zu Inkonsistenzen, wenn Sie nicht ALLE Vorkommen aktualisieren. In einer großen
Datenbank mit Tausenden von Einträgen ist das eine Katastrophe.

🚨 Problem: Update-Anomalie

Es wird noch schlimmer. Was passiert, wenn wir Daten löschen?

Anomalie 2: Delete-Anomalie

Nehmen wir an, „Brave New World“ wird aus der Bibliothek entfernt. Das Buch wird ausgemustert, wir
löschen die Zeile. Einfach, oder?

„Brave New World“ aus der Bibliothek entfernen:

2 Animal Farm George Orwell 1903

1 1984 George Orwell 1903

George Orwell hat 2 Bücher (2 Zeilen)

Wir haben nur Zeile 1 geändert

Jetzt hat Orwell 2 verschiedene Geburtsjahre!

Inkonsistenz: Welches ist das richtige Geburtsjahr?

-- Buch löschen
DELETE FROM library_chaos WHERE book_id = 3;

-- Was ist mit Aldous Huxley passiert?
SELECT DISTINCT author_name, author_birth_year, author_nationality
FROM library_chaos
WHERE author_name = 'Aldous Huxley';

1
2
3
4
5
6
7

1

2

book_id title author_name author_birth_year



-- Buch löschen

DELETE FROM library_chaos WHERE book_id = 3

ok

-- Was ist mit Aldous Huxley passiert?

SELECT DISTINCT author_name, author_birth_year, author_nationality

FROM library_chaos

WHERE author_name = 'Aldous Huxley'

0 rows

Aldous Huxley ist verschwunden! Wir wollten nur das Buch löschen, aber wir haben den gesamten Autor mit
gelöscht. Alle Informationen über Huxley sind weg. Das ist eine Delete-Anomalie. Wenn Sie eine Zeile
löschen, verlieren Sie mehr Daten als gewollt. Huxley existiert nicht mehr in der Datenbank, obwohl er ein
wichtiger Autor ist.

🚨 Problem: Delete-Anomalie

Und es gibt noch eine dritte Anomalie.

Anomalie 3: Insert-Anomalie

Jetzt wollen wir einen neuen Autor in die Datenbank aufnehmen: Jane Austen. Großartige Autorin! Aber sie
hat noch kein Buch in unserer Bibliothek. Können wir sie trotzdem speichern?

Neuen Autor ohne Buch hinzufügen:

„Brave New World“ war Huxleys einziges Buch in der Datenbank

Buch gelöscht → Huxley-Informationen sind WEG!

Wir haben nicht nur das Buch gelöscht, sondern auch den Autor

Datenverlust: Autor kann nicht mehr referenziert werden

-- Versuch: Jane Austen hinzufügen (ohne Buch)
INSERT INTO library_chaos (author_name, author_birth_year,
 author_nationality)
VALUES ('Jane Austen', 1775, 'British');

-- Was passiert mit den Buch-Spalten?
SELECT * FROM library_chaos WHERE author_name = 'Jane Austen';

1
2

3
4
5
6

author_name author_birth_year author_nationality



-- Versuch: Jane Austen hinzufügen (ohne Buch)

INSERT INTO library_chaos (author_name, author_birth_year, author_nationality)

VALUES ('Jane Austen', 1775, 'British')

ok

-- Was passiert mit den Buch-Spalten?

SELECT * FROM library_chaos WHERE author_name = 'Jane Austen'

1 rows

Das hat technisch funktioniert, aber schauen Sie sich das Ergebnis an: book underscore id ist NULL, title ist
NULL, isbn ist NULL. Wir haben eine Zeile mit einem Autor, aber ohne Buch. Das ist semantisch falsch – diese
Tabelle heißt „library underscore chaos“, nicht „authors“. Außerdem: Was, wenn book underscore id ein
Primary Key ist? Dann können wir gar keinen Autor ohne Buch einfügen! Das ist eine Insert-Anomalie. Sie
können bestimmte Daten nicht einfügen, ohne andere, unabhängige Daten ebenfalls einzufügen.

🚨 Problem: Insert-Anomalie

Diese drei Anomalien sind der Grund, warum wir Normalisierung brauchen. Redundanz ist der Feind. Jetzt
schauen wir uns an, wie man das Problem löst.

Die Lösung: Normalisierung

Die Lösung ist einfach: Trennen Sie die Daten in zwei Tabellen. Eine Tabelle für Autoren, eine Tabelle für
Bücher. Autoren-Informationen stehen nur einmal in der authors-Tabelle. Bücher referenzieren Autoren über
einen Foreign Key. Keine Redundanz mehr.

Erste Normalform (1NF): Atomare Werte

Zweite Normalform (2NF): Keine partiellen Abhängigkeiten

null null null Jane Austen 1775 British

Wir können keinen Autor ohne Buch speichern (ohne NULL-Werte)

Wenn book_id PRIMARY KEY ist → Insert unmöglich!

Unmögliche Operationen: Autor-Katalog kann nicht unabhängig existieren

Jede Spalte enthält nur atomare (unteilbare) Werte

Keine Listen, keine Wiederholgruppen

In unserem Beispiel: Bereits erfüllt (keine Listen)

1

book_id title isbn author_name author_birth_year author_nationality

Dritte Normalform (3NF): Keine transitiven Abhängigkeiten

Schauen wir uns das normalisierte Schema an. Zwei Tabellen, eine klare Beziehung.

Normalisiertes Schema:

Jedes Attribut hängt vom GESAMTEN Primärschlüssel ab

Problem: author_name , author_birth_year , author_nationality hängen nur von
author_name ab, nicht von book_id !

Lösung: Autoren-Tabelle auslagern

Nicht-Schlüssel-Attribute dürfen nur vom Primärschlüssel abhängen, nicht voneinander

In unserem Beispiel: Nach 2NF bereits erfüllt

-- Autoren-Tabelle
CREATE TABLE authors (
 author_id INTEGER PRIMARY KEY,
 name TEXT NOT NULL,
 birth_year INTEGER,
 nationality TEXT
);

-- Bücher-Tabelle
CREATE TABLE books (
 book_id INTEGER PRIMARY KEY,
 title TEXT NOT NULL,
 isbn TEXT UNIQUE,
 author_id INTEGER NOT NULL,
 FOREIGN KEY (author_id) REFERENCES authors(author_id)
);

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16



-- Autoren-Tabelle

CREATE TABLE authors (

 author_id INTEGER PRIMARY KEY,

 name TEXT NOT NULL,

 birth_year INTEGER,

 nationality TEXT

)

ok

-- Bücher-Tabelle

CREATE TABLE books (

 book_id INTEGER PRIMARY KEY,

 title TEXT NOT NULL,

 isbn TEXT UNIQUE,

 author_id INTEGER NOT NULL,

 FOREIGN KEY (author_id) REFERENCES authors(author_id)

)

ok

Jetzt fügen wir die Daten ein. Beachten Sie: Autoren zuerst, dann Bücher. George Orwell steht nur einmal in
der authors-Tabelle!

Daten einfügen:

-- Autoren zuerst
INSERT INTO authors VALUES
 (1, 'George Orwell', 1903, 'British'),
 (2, 'Aldous Huxley', 1894, 'British');

-- Bücher referenzieren Autoren
INSERT INTO books VALUES
 (1, '1984', '978-0-452-28423-4', 1),
 (2, 'Animal Farm', '978-0-452-28424-1', 1),
 (3, 'Brave New World', '978-0-06-085052-4', 2);

SELECT * FROM books;

1
2
3
4
5
6
7
8
9
10
11
12



-- Autoren zuerst

INSERT INTO authors VALUES

 (1, 'George Orwell', 1903, 'British'),

 (2, 'Aldous Huxley', 1894, 'British')

ok

-- Bücher referenzieren Autoren

INSERT INTO books VALUES

 (1, '1984', '978-0-452-28423-4', 1),

 (2, 'Animal Farm', '978-0-452-28424-1', 1),

 (3, 'Brave New World', '978-0-06-085052-4', 2)

ok

SELECT * FROM books

3 rows

Jetzt testen wir: Keine Anomalien mehr! Update funktioniert sauber, Delete verliert keine Autoren-Daten,
Insert ist flexibel.

Tests: Keine Anomalien mehr!

Test eins: George Orwell's Geburtsjahr ändern. Nur EINE Zeile updaten!

Test 1: Update (kein Problem mehr!)

1 1984 978-0-452-28423-4 1

2 Animal Farm 978-0-452-28424-1 1

3 Brave New World 978-0-06-085052-4 2

-- Orwell's Geburtsjahr korrigieren (nur EINE Zeile!)
UPDATE authors
SET birth_year = 1903
WHERE author_id = 1;

-- Alle Bücher haben automatisch die korrekten Daten:
SELECT b.title, a.name, a.birth_year
FROM books b
JOIN authors a ON b.author_id = a.author_id
WHERE a.name = 'George Orwell';

1
2
3
4
5
6
7
8
9
10

1

2

3

book_id title isbn author_id



-- Orwell's Geburtsjahr korrigieren (nur EINE Zeile!)

UPDATE authors

SET birth_year = 1903

WHERE author_id = 1

ok

-- Alle Bücher haben automatisch die korrekten Daten:

SELECT b.title, a.name, a.birth_year

FROM books b

JOIN authors a ON b.author_id = a.author_id

WHERE a.name = 'George Orwell'

2 rows

Test zwei: Buch löschen. Der Autor bleibt erhalten!

Test 2: Delete (kein Datenverlust!)

-- "Brave New World" löschen

DELETE FROM books WHERE book_id = 3

ok

-- Huxley ist noch da:

SELECT * FROM authors WHERE author_id = 2

1 rows

Test drei: Neuen Autor ohne Buch hinzufügen. Kein Problem!

1984 George Orwell 1903

Animal Farm George Orwell 1903

-- "Brave New World" löschen
DELETE FROM books WHERE book_id = 3;

-- Huxley ist noch da:
SELECT * FROM authors WHERE author_id = 2;

2 Aldous Huxley 1894 British

1
2
3
4
5

1

2

1

title name birth_year

author_id name birth_year nationality



Test 3: Insert (volle Flexibilität!)

-- Jane Austen hinzufügen (ohne Buch)

INSERT INTO authors VALUES

 (3, 'Jane Austen', 1775, 'British')

ok

SELECT * FROM authors WHERE author_id = 3

1 rows

Perfekt! Alle Tests bestanden. Keine Anomalien, keine Redundanz, volle Flexibilität. Das ist der Kern der
Normalisierung.

✅ Alle Tests bestanden!

Jetzt visualisieren wir das Schema als ER-Diagramm. Das ist das Werkzeug, mit dem Profis Datenbanken
planen.

ER-Diagramm: Visuell verstehen

So sieht unser normalisiertes Schema als Entity-Relationship-Diagramm aus. Zwei Entities: Authors und
Books. Eine Relationship: Authors schreiben Books. Die Linie zeigt die Beziehung, die Symbole zeigen die
Kardinalität: Ein Autor kann viele Bücher schreiben, aber jedes Buch hat genau einen Autor. Das ist eine eins-
zu-viele Beziehung.

-- Jane Austen hinzufügen (ohne Buch)
INSERT INTO authors VALUES
 (3, 'Jane Austen', 1775, 'British');

SELECT * FROM authors WHERE author_id = 3;

3 Jane Austen 1775 British

Update: Nur EINE Zeile ändern

Delete: Keine ungewollten Datenverluste

Insert: Autoren unabhängig von Büchern

Table authors {
 author_id int [pk, increment]
 name varchar(100) [not null]
 birth_year int
 nationality varchar(50)

 Note: 'Authors who write books in our library'

1
2
3
4
5

1

author_id name birth_year nationality





dbdiagram.io

Schauen Sie sich die Beziehung an: Der Pfeil von books punkt author underscore id zu authors punkt author
underscore id zeigt: Viele Bücher gehören zu einem Autor. Das ist die eins-zu-viele Kardinalität. Ein Autor
schreibt viele Bücher, aber jedes Buch hat genau einen Autor. In der DBML-Syntax steht das ref: Größer
authors punkt author underscore id. Das Größer-Zeichen bedeutet: many-to-one. Viele Bücher zu einem
Autor.

}

Table books {
 book_id int [pk, increment]
 title varchar(200) [not null]
 isbn varchar(20) [unique]
 author_id int [not null, ref: > authors.author_id]

 Note: 'Books in our library collection'
}

https://dbdiagram.io/
https://dbdiagram.io/embed?c=QCcw

Beispiel 2: Movie Reviews (IMDb) – Many-to-Many
Jetzt wird es interessanter! Sie haben das Prinzip verstanden: Redundanz vermeiden, Tabellen trennen. Aber
was, wenn die Beziehungen komplexer werden? Willkommen bei Movie Reviews – wie IMDb oder Letterboxd.
Hier gibt es nicht nur eine eins-zu-viele Beziehung, sondern mehrere gleichzeitig. Und am Ende eine
versteckte many-to-many Beziehung. Schauen wir uns das an.

Das Problem: Alles in einer Tabelle

Stellen Sie sich eine Film-Review-Plattform vor. Filme haben Titel, Erscheinungsjahr, Regisseur. Nutzer
schreiben Reviews mit Rating und Text. Naiver Ansatz: Alles in einer Tabelle! Was könnte schiefgehen?

Chaos-Tabelle:

CREATE TABLE reviews_chaos (

 review_id INTEGER,

 movie_title TEXT,

 movie_year INTEGER,

 movie_director TEXT,

 reviewer_name TEXT,

 reviewer_email TEXT,

 rating INTEGER,

 review_text TEXT

)

ok

Daten einfügen. Beachten Sie: „Inception“ hat zwei Reviews von verschiedenen Nutzern. „Alice“ hat zwei
Filme reviewt. Alles ist dupliziert.

Daten einfügen:

CREATE TABLE reviews_chaos (
 review_id INTEGER,
 movie_title TEXT,
 movie_year INTEGER,
 movie_director TEXT,
 reviewer_name TEXT,
 reviewer_email TEXT,
 rating INTEGER,
 review_text TEXT
);

INSERT INTO reviews_chaos VALUES
 (1, 'Inception', 2010, 'Christopher Nolan', 'Alice', 'alice@example.
 5, 'Mind-blowing!'),

(2, 'Inception', 2010, 'Christopher Nolan', 'Bob', 'bob@example.com'

1
2
3
4
5
6
7
8
9
10

1
2

3





INSERT INTO reviews_chaos VALUES

 (1, 'Inception', 2010, 'Christopher Nolan', 'Alice', 'alice@example.com', 5, 'Mind-

blowing!'),

 (2, 'Inception', 2010, 'Christopher Nolan', 'Bob', 'bob@example.com', 4, 'Great, but

confusing'),

 (3, 'The Matrix', 1999, 'Wachowski Sisters', 'Alice', 'alice@example.com', 5,

'Revolutionary!'),

 (4, 'Interstellar', 2014, 'Christopher Nolan', 'Charlie', 'charlie@example.com', 5,

'Stunning visuals')

ok

SELECT * FROM reviews_chaos

4 rows

Sehen Sie die Redundanz? „Inception“ steht zweimal mit allen Film-Infos. „Alice“ steht zweimal mit ihrer
Email. Christopher Nolan steht zweimal. Das ist Redundanz auf mehreren Ebenen. Was sind die Anomalien?
Anomalien identifizieren

Anomalie eins: Film-Info ändern. Wenn Christopher Nolan's Name korrigiert werden muss – wie viele Zeilen?

Update-Anomalie:

 (2, Inception , 2010, Christopher Nolan , Bob , bob@example.com
 'Great, but confusing'),
 (3, 'The Matrix', 1999, 'Wachowski Sisters', 'Alice', 'alice@example
 5, 'Revolutionary!'),
 (4, 'Interstellar', 2014, 'Christopher Nolan', 'Charlie', 'charlie@e
 .com', 5, 'Stunning visuals');

SELECT * FROM reviews_chaos;

1 Inception 2010 Christopher

Nolan

Alice alice@exampl

2 Inception 2010 Christopher

Nolan

Bob bob@example

3 The Matrix 1999 Wachowski

Sisters

Alice alice@exampl

4 Interstellar 2014 Christopher

Nolan

Charlie charlie@exam

3

4

5

6
7

1

2

3

4

review_id movie_title movie_year movie_director reviewer_name reviewer_em

Anomalie zwei: Review löschen. Wenn Bob's Review von „Inception“ gelöscht wird, ist „Inception“ dann noch
in der Datenbank?

Delete-Anomalie:

Anomalie drei: Neuer Film ohne Review. Können wir „Tenet“ in die Datenbank aufnehmen, bevor jemand ein
Review schreibt?

Insert-Anomalie:

Die Lösung? Drei Tabellen! Movies, Reviewers, Reviews. Schauen wir uns das normalisierte Schema an.

Normalisiertes Schema

Drei Tabellen: Movies für Filme, Reviewers für Nutzer, Reviews für die eigentlichen Bewertungen. Reviews
verbindet Movies und Reviewers. Das ist das klassische Pattern für eine viele-zu-viele Beziehung: Ein Film hat
viele Reviews, ein Reviewer schreibt viele Reviews. Movies und Reviewers sind indirekt many-to-many
verbunden – über die Reviews-Tabelle.

Film-Info (Titel, Jahr, Regisseur) wird bei jedem Review dupliziert

Regisseur-Name ändern → mehrere Zeilen updaten

Email-Adresse ändern → mehrere Zeilen updaten

Wenn alle Reviews eines Films gelöscht werden → Film-Info weg!

Wenn letztes Review eines Nutzers gelöscht wird → Nutzer-Info weg!

Neuer Film ohne Review? Unmöglich oder NULL-Werte

Neuer Nutzer ohne Review? Unmöglich

-- Filme
CREATE TABLE movies (
 movie_id INTEGER PRIMARY KEY,
 title TEXT NOT NULL,
 release_year INTEGER,
 director TEXT
);

-- Reviewer (Nutzer)
CREATE TABLE reviewers (
 reviewer_id INTEGER PRIMARY KEY,
 name TEXT NOT NULL,
 email TEXT UNIQUE NOT NULL
);

-- Reviews (verbindet Movies und Reviewers)
CREATE TABLE reviews (
 review_id INTEGER PRIMARY KEY,
 movie_id INTEGER NOT NULL,
 reviewer_id INTEGER NOT NULL,
 rating INTEGER NOT NULL CHECK (rating BETWEEN 1 AND 5),

i t t TEXT

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22



 review_text TEXT,
 created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
 FOREIGN KEY (movie_id) REFERENCES movies(movie_id),
 FOREIGN KEY (reviewer_id) REFERENCES reviewers(reviewer_id),
 UNIQUE (movie_id, reviewer_id) -- Ein Reviewer kann einen Film nur
 einmal reviewen
);

ERDIAGRAM;

22
23
24
25
26

27
28
29

-- Filme

CREATE TABLE movies (

 movie_id INTEGER PRIMARY KEY,

 title TEXT NOT NULL,

 release_year INTEGER,

 director TEXT

)

ok

-- Reviewer (Nutzer)

CREATE TABLE reviewers (

 reviewer_id INTEGER PRIMARY KEY,

 name TEXT NOT NULL,

 email TEXT UNIQUE NOT NULL

)

ok

-- Reviews (verbindet Movies und Reviewers)

CREATE TABLE reviews (

 review_id INTEGER PRIMARY KEY,

 movie_id INTEGER NOT NULL,

 reviewer_id INTEGER NOT NULL,

 rating INTEGER NOT NULL CHECK (rating BETWEEN 1 AND 5),

 review_text TEXT,

 created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,

 FOREIGN KEY (movie_id) REFERENCES movies(movie_id),

 FOREIGN KEY (reviewer_id) REFERENCES reviewers(reviewer_id),

 UNIQUE (movie_id, reviewer_id) -- Ein Reviewer kann einen Film nur einmal

reviewen

)

ok

dbdiagram.io

Beachten Sie die UNIQUE Constraint auf movie underscore id komma reviewer underscore id. Das
verhindert, dass ein Nutzer denselben Film zweimal bewertet. Das ist eine Business Rule, die wir direkt im
Schema durchsetzen.

Daten einfügen:

-- Filme zuerst
INSERT INTO movies VALUES
 (1, 'Inception', 2010, 'Christopher Nolan'),
 (2, 'The Matrix', 1999, 'Wachowski Sisters'),
 (3, 'Interstellar', 2014, 'Christopher Nolan');

-- Reviewer
INSERT INTO reviewers VALUES

(1 'Alice' 'alice@example com')

1
2
3
4
5
6
7
8
9



https://dbdiagram.io/
https://dbdiagram.io/embed?c=VGFibGUgZGVtb190ZXN0IHsKICBpZCBpbnQKICBuYW1lIHRleHQKfQoKVGFibGUgbGlicmFyeV9jaGFvcyB7CiAgYm9va19pZCBpbnQKICB0aXRsZSB0ZXh0CiAgaXNibiB0ZXh0CiAgYXV0aG9yX25hbWUgdGV4dAogIGF1dGhvcl9iaXJ0aF95ZWFyIGludAogIGF1dGhvcl9uYXRpb25hbGl0eSB0ZXh0Cn0KClRhYmxlIG1vdmllcyB7CiAgbW92aWVfaWQgaW50IFtwaywgbm90IG51bGxdCiAgdGl0bGUgdGV4dCBbbm90IG51bGxdCiAgcmVsZWFzZV95ZWFyIGludAogIGRpcmVjdG9yIHRleHQKfQoKVGFibGUgcmV2aWV3ZXJzIHsKICByZXZpZXdlcl9pZCBpbnQgW3BrLCBub3QgbnVsbF0KICBuYW1lIHRleHQgW25vdCBudWxsXQogIGVtYWlsIHRleHQgW25vdCBudWxsLCB1bmlxdWVdCn0KClRhYmxlIHJldmlld3MgewogIHJldmlld19pZCBpbnQgW3BrLCBub3QgbnVsbF0KICBtb3ZpZV9pZCBpbnQgW25vdCBudWxsXQogIHJldmlld2VyX2lkIGludCBbbm90IG51bGxdCiAgcmF0aW5nIGludCBbbm90IG51bGxdCiAgcmV2aWV3X3RleHQgdGV4dAogIGNyZWF0ZWRfYXQgdGltZXN0YW1wCiAgaW5kZXhlcyB7CiAgICAobW92aWVfaWQsIHJldmlld2VyX2lkKSBbdW5pcXVlXQogIH0KfQoKVGFibGUgcmV2aWV3c19jaGFvcyB7CiAgcmV2aWV3X2lkIGludAogIG1vdmllX3RpdGxlIHRleHQKICBtb3ZpZV95ZWFyIGludAogIG1vdmllX2RpcmVjdG9yIHRleHQKICByZXZpZXdlcl9uYW1lIHRleHQKICByZXZpZXdlcl9lbWFpbCB0ZXh0CiAgcmF0aW5nIGludAogIHJldmlld190ZXh0IHRleHQKfQoKUmVmOiByZXZpZXdzLm1vdmllX2lkID4gbW92aWVzLm1vdmllX2lkClJlZjogcmV2aWV3cy5yZXZpZXdlcl9pZCA%2BIHJldmlld2Vycy5yZXZpZXdlcl9pZA%3D%3D

 (1, Alice , alice@example.com),
 (2, 'Bob', 'bob@example.com'),
 (3, 'Charlie', 'charlie@example.com');

-- Reviews (verbinden Filme und Reviewer)
INSERT INTO reviews (review_id, movie_id, reviewer_id, rating, review
 VALUES
 (1, 1, 1, 5, 'Mind-blowing!'),
 (2, 1, 2, 4, 'Great, but confusing'),
 (3, 2, 1, 5, 'Revolutionary!'),
 (4, 3, 3, 5, 'Stunning visuals');

SELECT * FROM reviews;

9
10
11
12
13
14

15
16
17
18
19
20

-- Filme zuerst

INSERT INTO movies VALUES

 (1, 'Inception', 2010, 'Christopher Nolan'),

 (2, 'The Matrix', 1999, 'Wachowski Sisters'),

 (3, 'Interstellar', 2014, 'Christopher Nolan')

ok

-- Reviewer

INSERT INTO reviewers VALUES

 (1, 'Alice', 'alice@example.com'),

 (2, 'Bob', 'bob@example.com'),

 (3, 'Charlie', 'charlie@example.com')

ok

-- Reviews (verbinden Filme und Reviewer)

INSERT INTO reviews (review_id, movie_id, reviewer_id, rating, review_text) VALUES

 (1, 1, 1, 5, 'Mind-blowing!'),

 (2, 1, 2, 4, 'Great, but confusing'),

 (3, 2, 1, 5, 'Revolutionary!'),

 (4, 3, 3, 5, 'Stunning visuals')

ok

SELECT * FROM reviews

4 rows

Jetzt schauen wir uns das ER-Diagramm an. Und hier kommt das Spannende: Dieses Diagramm ist
INTERAKTIV! Sie können es editieren!

ER-Diagramm: Interaktiv!

1 1 1 5 Mind-blowing! 2026-01-

16T08:49:05.956Z

2 1 2 4 Great, but

confusing

2026-01-

16T08:49:05.956Z

3 2 1 5 Revolutionary! 2026-01-

16T08:49:05.956Z

4 3 3 5 Stunning

visuals

2026-01-

16T08:49:05.956Z

1

2

3

4

review_id movie_id reviewer_id rating review_text created_at

So sieht unser Schema als ER-Diagramm aus. Drei Tabellen, zwei eins-zu-viele Beziehungen. Movies eins-zu-
viele Reviews. Reviewers eins-zu-viele Reviews. Und dadurch entsteht indirekt eine viele-zu-viele Beziehung
zwischen Movies und Reviewers. Das ist das klassische Junction-Table-Pattern. Und jetzt das Besondere: Sie
können dieses Diagramm EDITIEREN! Doppelklicken Sie auf den Rand des Diagramms, ändern Sie den Code,
und sehen Sie die Änderungen live!

Aufgabe: Fügen Sie eine genres Tabelle hinzu! Movies sollten mehrere Genres haben können (n:m
Beziehung). Wie würden Sie das modellieren?

Unexpected identifier 'now'
Haben Sie es versucht? Die Lösung ist eine separate genres-Tabelle und eine Junction Table movie
underscore genres. Das ist das Standard-Pattern für n:m Beziehungen. Schauen wir uns die Lösung an.

Genres hinzufügen (n:m mit Movies): `dbml Table genres { genre_id int [pk, increment] name varchar(50)
[unique, not null] Note: ‚Movie genres like Action, Drama, Sci-Fi‘ } Table movie_genres { movieid int [ref: >
movies.movieid] genreid int [ref: > genres.genreid] indexes { (movieid, genreid) [pk] } Note: ‚Junction table
for many-to-many relationship‘ } ` Erklärung: - n:m Beziehung braucht Junction Table (movie_genres) -
Ein Film hat viele Genres - Ein Genre gehört zu vielen Filmen - Junction Table hat zwei Foreign Keys als
Composite Primary Key SQL: `sql CREATE TABLE genres (genre_id INTEGER PRIMARY KEY, name TEXT
UNIQUE NOT NULL); CREATE TABLE movie_genres (movie_id INTEGER, genre_id INTEGER, PRIMARY KEY
(movieid, genreid), FOREIGN KEY (movieid) REFERENCES movies(movieid), FOREIGN KEY (genreid)
REFERENCES genres(genreid)); – Beispiel-Daten: INSERT INTO genres VALUES (1, ‚Sci-Fi‘), (2, ‚Action‘), (3,
‚Thriller‘); INSERT INTO movie_genres VALUES (1, 1), (1, 2), (1, 3); – Inception: Sci-Fi, Action, Thriller `

</section>

Die „Alles-in-Einer“ Tabelle

Naive Version:

CREATE TABLE orders_chaos (
 order_id INTEGER,
 order_date DATE,
 customer_name TEXT,
 customer_email TEXT,
 customer_address TEXT,
 product_name TEXT,
 product_price DECIMAL(10,2),
 product_category TEXT,
 category_description TEXT,
 quantity INTEGER
);

1
2
3
4
5
6
7
8
9
10
11
12



CREATE TABLE orders_chaos (

 order_id INTEGER,

 order_date DATE,

 customer_name TEXT,

 customer_email TEXT,

 customer_address TEXT,

 product_name TEXT,

 product_price DECIMAL(10,2),

 product_category TEXT,

 category_description TEXT,

 quantity INTEGER

)

ok

Daten einfügen:

INSERT INTO orders_chaos VALUES
 (1, '2025-11-01', 'Alice', 'alice@example.com', 'Hauptstr. 1', 'Lapt
 999.99, 'Electronics', 'Devices and gadgets', 1),
 (2, '2025-11-02', 'Bob', 'bob@example.com', 'Nebenstr. 5', 'Mouse',
 'Electronics', 'Devices and gadgets', 2),
 (3, '2025-11-03', 'Alice', 'alice@example.com', 'Hauptstr. 1', 'Desk
 .99, 'Furniture', 'Tables and chairs', 1),
 (4, '2025-11-04', 'Charlie', 'charlie@example.com', 'Querstr. 12',
 'Laptop', 999.99, 'Electronics', 'Devices and gadgets', 1),
 (5, '2025-11-05', 'Alice', 'alice@example.com', 'Hauptstr. 1', 'Chai
 149.99, 'Furniture', 'Tables and chairs', 2);

SELECT * FROM orders_chaos;

1
2

3

4

5

6

7
8



INSERT INTO orders_chaos VALUES

 (1, '2025-11-01', 'Alice', 'alice@example.com', 'Hauptstr. 1', 'Laptop', 999.99,

'Electronics', 'Devices and gadgets', 1),

 (2, '2025-11-02', 'Bob', 'bob@example.com', 'Nebenstr. 5', 'Mouse', 25.00,

'Electronics', 'Devices and gadgets', 2),

 (3, '2025-11-03', 'Alice', 'alice@example.com', 'Hauptstr. 1', 'Desk', 299.99,

'Furniture', 'Tables and chairs', 1),

 (4, '2025-11-04', 'Charlie', 'charlie@example.com', 'Querstr. 12', 'Laptop', 999.99,

'Electronics', 'Devices and gadgets', 1),

 (5, '2025-11-05', 'Alice', 'alice@example.com', 'Hauptstr. 1', 'Chair', 149.99,

'Furniture', 'Tables and chairs', 2)

ok

SELECT * FROM orders_chaos

5 rows

Sieht doch gar nicht so schlecht aus, oder? Alle Daten sind da, alles auf einen Blick. Aber jetzt passiert etwas:
Alice zieht um. Neue Adresse. Kein Problem, UPDATE ausführen, fertig! Aber moment...

Anomalie 1: Update-Anomalie

Alice zieht um – Adresse ändern:

1 2025-11-01 Alice alice@example.com Hauptstr. 1 La

2 2025-11-02 Bob bob@example.com Nebenstr. 5 M

3 2025-11-03 Alice alice@example.com Hauptstr. 1 D

4 2025-11-04 Charlie charlie@example.com Querstr. 12 La

5 2025-11-05 Alice alice@example.com Hauptstr. 1 Ch

-- Naive Lösung: Nur EINE Zeile ändern
UPDATE orders_chaos
SET customer_address = 'Neue Str. 99'
WHERE order_id = 1;

-- Was ist passiert?
SELECT order_id, customer_name, customer_address
FROM orders_chaos
WHERE customer_name = 'Alice';

1
2
3
4
5
6
7
8
9

1

2

3

4

5

order_id order_date customer_name customer_email customer_address pr



-- Naive Lösung: Nur EINE Zeile ändern

UPDATE orders_chaos

SET customer_address = 'Neue Str. 99'

WHERE order_id = 1

ok

-- Was ist passiert?

SELECT order_id, customer_name, customer_address

FROM orders_chaos

WHERE customer_name = 'Alice'

3 rows

🚨 Problem:

Das ist eine Update-Anomalie. Redundante Daten führen zu Inkonsistenzen, wenn Sie nicht ALLE
Vorkommen aktualisieren. Aber es wird noch schlimmer.

Anomalie 2: Delete-Anomalie

Charlie will seine Bestellung stornieren:

3 Alice Hauptstr. 1

5 Alice Hauptstr. 1

1 Alice Neue Str. 99

Alice hat 3 Bestellungen (order_id 1, 3, 5)

Wir haben nur Zeile 1 geändert

Jetzt hat Alice 2 verschiedene Adressen in der Datenbank!

Inkonsistenz: Welche ist die richtige Adresse?

-- Bestellung löschen
DELETE FROM orders_chaos WHERE order_id = 4;

-- Was ist passiert?
SELECT DISTINCT product_name, product_price
FROM orders_chaos
WHERE product_name = 'Laptop';

1
2
3
4
5
6
7

1

2

3

order_id customer_name customer_address



-- Bestellung löschen

DELETE FROM orders_chaos WHERE order_id = 4

ok

-- Was ist passiert?

SELECT DISTINCT product_name, product_price

FROM orders_chaos

WHERE product_name = 'Laptop'

1 rows

🚨 Problem:

Delete-Anomalie: Wenn Sie eine Zeile löschen, verlieren Sie mehr Daten als gewollt. Und es gibt noch eine
dritte Anomalie.

Anomalie 3: Insert-Anomalie

Neues Produkt in den Shop aufnehmen:

Laptop 999.99

Charlie war der einzige, der einen Laptop bestellt hat

Bestellung gelöscht → Laptop-Informationen sind WEG!

Wir haben nicht nur die Bestellung gelöscht, sondern auch das Produkt

Datenverlust: Produkt kann nicht mehr verkauft werden

-- Versuch: Neues Produkt "Monitor" hinzufügen
INSERT INTO orders_chaos (product_name, product_price, product_categor
 category_description)
VALUES ('Monitor', 399.99, 'Electronics', 'Devices and gadgets');

-- Fehlschlag! Warum?

1
2

3
4
5

1

product_name product_price



-- Versuch: Neues Produkt "Monitor" hinzufügen

INSERT INTO orders_chaos (product_name, product_price, product_category,

category_description)

VALUES ('Monitor', 399.99, 'Electronics', 'Devices and gadgets')

ok

-- Fehlschlag! Warum?

ok

🚨 Problem:

Insert-Anomalie: Sie können bestimmte Daten nicht einfügen, ohne andere, unabhängige Daten ebenfalls
einzufügen. Diese drei Anomalien sind der Grund, warum wir Normalisierung brauchen.

Normalisierung: Die Lösung
Normalisierung ist der systematische Prozess, ein Datenbankschema so zu strukturieren, dass Redundanz
minimiert und Anomalien vermieden werden. Es gibt mehrere Normalformen – wir fokussieren heute auf die
ersten drei: 1NF, 2NF, 3NF.

Was ist Normalisierung?

Definition:

Normalisierung ist die Zerlegung von Tabellen in kleinere, gut strukturierte Tabellen, um Redundanz
zu eliminieren und Datenintegrität zu gewährleisten.

Ziele:

Normalformen:

Wir können kein Produkt ohne Bestellung speichern!

order_id , customer_name etc. sind NULL → aber vielleicht NOT NULL?

Unmögliche Operationen: Produktkatalog kann nicht unabhängig existieren

✅ Redundanz minimieren (Daten nicht mehrfach speichern)

✅ Anomalien vermeiden (Update, Delete, Insert)

✅ Datenintegrität sichern (Konsistenz garantieren)

✅ Flexibilität erhöhen (Schema leichter änderbar)

Unnormalisiert

1. Normalform
Atomare Werte

2. Normalform
Keine partiellen
Abhängigkeiten

3. Normalform
Keine transitiven
Abhängigkeiten

BCNF
Optional

Erste Normalform (1NF)
Die erste Normalform fordert: Jede Zelle enthält genau EINEN atomaren Wert. Keine Listen, keine
Mehrfacheinträge, keine Wiederholgruppen. Schauen wir uns ein Beispiel an.

Regel: Atomare Werte

Definition 1NF:

Beispiel: Verletzt 1NF

Jede Spalte enthält nur atomare (unteilbare) Werte

Keine Wiederholgruppen (z.B. „Laptop, Mouse, Keyboard“ in einer Zelle)

Keine Arrays oder verschachtelte Strukturen

CREATE TABLE orders_not_1nf (
 order_id INTEGER PRIMARY KEY,
 customer_name TEXT,
 products TEXT -- 🚨 "Laptop, Mouse, Keyboard"

1
2
3
4



CREATE TABLE orders_not_1nf (

 order_id INTEGER PRIMARY KEY,

 customer_name TEXT,

 products TEXT -- 🚨 "Laptop, Mouse, Keyboard"

)

ok

INSERT INTO orders_not_1nf VALUES

 (1, 'Alice', 'Laptop, Mouse, Keyboard'),

 (2, 'Bob', 'Desk, Chair')

ok

SELECT * FROM orders_not_1nf

2 rows

Problem:

Die Lösung: Jedes Produkt in eine eigene Zeile. Dadurch entstehen mehrere Zeilen pro Bestellung, aber jede
Zelle enthält nur noch einen atomaren Wert.

Lösung: Aufspalten

1NF-konforme Version:

);

INSERT INTO orders_not_1nf VALUES
 (1, 'Alice', 'Laptop, Mouse, Keyboard'),
 (2, 'Bob', 'Desk, Chair');

SELECT * FROM orders_not_1nf;

1 Alice Laptop, Mouse, Keyboard

2 Bob Desk, Chair

Wie finden Sie alle Bestellungen mit „Mouse“?

WHERE products LIKE '%Mouse%' → unsauber, fehleranfällig

Wie zählen Sie, wie oft jedes Produkt bestellt wurde? Unmöglich!

CREATE TABLE orders_1nf (
 order_id INTEGER,
 customer_name TEXT,

product name TEXT,

5
6
7
8
9
10
11

1
2
3
4

1

2

order_id customer_name products



CREATE TABLE orders_1nf (

 order_id INTEGER,

 customer_name TEXT,

 product_name TEXT,

 PRIMARY KEY (order_id, product_name) -- Composite Key

)

ok

INSERT INTO orders_1nf VALUES

 (1, 'Alice', 'Laptop'),

 (1, 'Alice', 'Mouse'),

 (1, 'Alice', 'Keyboard'),

 (2, 'Bob', 'Desk'),

 (2, 'Bob', 'Chair')

ok

SELECT * FROM orders_1nf

5 rows

Jetzt funktioniert:

 product_name TEXT,
 PRIMARY KEY (order_id, product_name) -- Composite Key
);

INSERT INTO orders_1nf VALUES
 (1, 'Alice', 'Laptop'),
 (1, 'Alice', 'Mouse'),
 (1, 'Alice', 'Keyboard'),
 (2, 'Bob', 'Desk'),
 (2, 'Bob', 'Chair');

SELECT * FROM orders_1nf;

1 Alice Laptop

1 Alice Mouse

1 Alice Keyboard

2 Bob Desk

2 Bob Chair

-- Alle Bestellungen mit Mouse:
SELECT order id, customer name

4
5
6
7
8
9
10
11
12
13
14
15

1
2

1

2

3

4

5

order_id customer_name product_name



-- Alle Bestellungen mit Mouse:

SELECT order_id, customer_name

FROM orders_1nf

WHERE product_name = 'Mouse'

1 rows

-- Wie oft wurde jedes Produkt bestellt?

SELECT product_name, COUNT(*) AS times_ordered

FROM orders_1nf

GROUP BY product_name

5 rows

✅ 1NF erreicht! Jede Zelle = ein Wert.

Zweite Normalform (2NF)
Die zweite Normalform baut auf 1NF auf und fordert: Keine partiellen Abhängigkeiten. Was heißt das? Alle
Nicht-Schlüssel-Attribute müssen vom GESAMTEN Primärschlüssel abhängen, nicht nur von einem Teil
davon. Das ist nur relevant bei zusammengesetzten Schlüsseln.

Regel: Keine partiellen Abhängigkeiten

Definition 2NF:

SELECT order_id, customer_name
FROM orders_1nf
WHERE product_name = 'Mouse';

-- Wie oft wurde jedes Produkt bestellt?
SELECT product_name, COUNT(*) AS times_ordered
FROM orders_1nf
GROUP BY product_name;

1 Alice

Mouse 1

Chair 1

Desk 1

Keyboard 1

Laptop 1

2
3
4
5
6
7
8
9

1

1

2

3

4

5

order_id customer_name

product_name times_ordered

Beispiel: Verletzt 2NF

Erfüllt 1NF

Jedes Nicht-Schlüssel-Attribut hängt vollständig vom Primärschlüssel ab

Keine Abhängigkeit von nur einem Teil eines zusammengesetzten Schlüssels

CREATE TABLE orders_not_2nf (
 order_id INTEGER,
 product_name TEXT,
 customer_name TEXT, -- Hängt nur von order_id ab!
 product_price DECIMAL(10,2), -- Hängt nur von product_name ab!
 quantity INTEGER,
 PRIMARY KEY (order_id, product_name)
);

INSERT INTO orders_not_2nf VALUES
 (1, 'Laptop', 'Alice', 999.99, 1),
 (1, 'Mouse', 'Alice', 25.00, 2),
 (2, 'Laptop', 'Bob', 999.99, 1), -- 🚨 Redundanz: Laptop-Preis
 dupliziert!
 (3, 'Mouse', 'Alice', 25.00, 1); -- 🚨 Alice-Name dupliziert!

SELECT * FROM orders_not_2nf;

1
2
3
4
5
6
7
8
9
10
11
12
13

14
15
16



CREATE TABLE orders_not_2nf (

 order_id INTEGER,

 product_name TEXT,

 customer_name TEXT, -- Hängt nur von order_id ab!

 product_price DECIMAL(10,2), -- Hängt nur von product_name ab!

 quantity INTEGER,

 PRIMARY KEY (order_id, product_name)

)

ok

INSERT INTO orders_not_2nf VALUES

 (1, 'Laptop', 'Alice', 999.99, 1),

 (1, 'Mouse', 'Alice', 25.00, 2),

 (2, 'Laptop', 'Bob', 999.99, 1), -- 🚨 Redundanz: Laptop-Preis dupliziert!

 (3, 'Mouse', 'Alice', 25.00, 1)

ok

-- 🚨 Alice-Name dupliziert!

SELECT * FROM orders_not_2nf

4 rows

Problem:

Die Lösung: Tabellen so aufspalten, dass jede Tabelle nur Attribute enthält, die vom gesamten
Primärschlüssel abhängen. Kundendaten in eine separate Tabelle, Produktdaten in eine andere.

Lösung: Tabellen aufspalten

2NF-konforme Version:

1 Laptop Alice 999.99 1

1 Mouse Alice 25.00 2

2 Laptop Bob 999.99 1

3 Mouse Alice 25.00 1

customer_name hängt nur von order_id ab (nicht von product_name)

product_price hängt nur von product_name ab (nicht von order_id)

Redundanz: Produktpreise und Kundennamen werden dupliziert

Update-Anomalie: Laptop-Preis ändern → mehrere Zeilen updaten!

1

2

3

4

order_id product_name customer_name product_price quantity



-- Kunden-Tabelle: Kunde hängt nur von order_id ab
CREATE TABLE customers_2nf (
 customer_id INTEGER PRIMARY KEY,
 customer_name TEXT NOT NULL,
 customer_email TEXT
);

-- Produkte-Tabelle: Preis hängt nur von Produkt ab
CREATE TABLE products_2nf (
 product_id INTEGER PRIMARY KEY,
 product_name TEXT NOT NULL,
 product_price DECIMAL(10,2) NOT NULL
);

-- Bestellungen: Nur Order-Level Daten
CREATE TABLE orders_2nf (
 order_id INTEGER PRIMARY KEY,
 customer_id INTEGER NOT NULL,
 order_date DATE,
 FOREIGN KEY (customer_id) REFERENCES customers_2nf(customer_id)
);

-- Order Items: Die Many-to-Many Beziehung
CREATE TABLE order_items_2nf (
 order_id INTEGER,
 product_id INTEGER,
 quantity INTEGER NOT NULL,
 PRIMARY KEY (order_id, product_id),
 FOREIGN KEY (order_id) REFERENCES orders_2nf(order_id),
 FOREIGN KEY (product_id) REFERENCES products_2nf(product_id)
);

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31



-- Kunden-Tabelle: Kunde hängt nur von order_id ab

CREATE TABLE customers_2nf (

 customer_id INTEGER PRIMARY KEY,

 customer_name TEXT NOT NULL,

 customer_email TEXT

)

ok

-- Produkte-Tabelle: Preis hängt nur von Produkt ab

CREATE TABLE products_2nf (

 product_id INTEGER PRIMARY KEY,

 product_name TEXT NOT NULL,

 product_price DECIMAL(10,2) NOT NULL

)

ok

-- Bestellungen: Nur Order-Level Daten

CREATE TABLE orders_2nf (

 order_id INTEGER PRIMARY KEY,

 customer_id INTEGER NOT NULL,

 order_date DATE,

 FOREIGN KEY (customer_id) REFERENCES customers_2nf(customer_id)

)

ok

-- Order Items: Die Many-to-Many Beziehung

CREATE TABLE order_items_2nf (

 order_id INTEGER,

 product_id INTEGER,

 quantity INTEGER NOT NULL,

 PRIMARY KEY (order_id, product_id),

 FOREIGN KEY (order_id) REFERENCES orders_2nf(order_id),

 FOREIGN KEY (product_id) REFERENCES products_2nf(product_id)

)

ok

Daten einfügen:

INSERT INTO customers_2nf VALUES (1, 'Alice', 'alice@example.com'), (2
 'Bob', 'bob@example.com');
INSERT INTO products_2nf VALUES (1, 'Laptop', 999.99), (2, 'Mouse', 25
INSERT INTO orders_2nf VALUES (1, 1, '2025-11-01'), (2, 2, '2025-11-02
INSERT INTO order_items_2nf VALUES (1, 1, 1), (1, 2, 2), (2, 1, 1);

1

2
3
4
5



INSERT INTO customers_2nf VALUES (1, 'Alice', 'alice@example.com'), (2, 'Bob',

'bob@example.com')

ok

INSERT INTO products_2nf VALUES (1, 'Laptop', 999.99), (2, 'Mouse', 25.00)

ok

INSERT INTO orders_2nf VALUES (1, 1, '2025-11-01'), (2, 2, '2025-11-02')

ok

INSERT INTO order_items_2nf VALUES (1, 1, 1), (1, 2, 2), (2, 1, 1)

ok

SELECT * FROM order_items_2nf

3 rows

✅ 2NF erreicht! Keine partiellen Abhängigkeiten mehr.

Test: Preis ändern:

SELECT * FROM order_items_2nf;

1 1 1

1 2 2

2 1 1

-- Laptop-Preis ändern (nur EINE Zeile!)
UPDATE products_2nf SET product_price = 899.99 WHERE product_id = 1;

-- Alle Bestellungen haben automatisch den neuen Preis:
SELECT o.order_id, p.product_name, p.product_price, oi.quantity
FROM order_items_2nf oi
JOIN products_2nf p ON oi.product_id = p.product_id
JOIN orders_2nf o ON oi.order_id = o.order_id;

5
6

1
2
3
4
5
6
7
8

1

2

3

order_id product_id quantity



-- Laptop-Preis ändern (nur EINE Zeile!)

UPDATE products_2nf SET product_price = 899.99 WHERE product_id = 1

ok

-- Alle Bestellungen haben automatisch den neuen Preis:

SELECT o.order_id, p.product_name, p.product_price, oi.quantity

FROM order_items_2nf oi

JOIN products_2nf p ON oi.product_id = p.product_id

JOIN orders_2nf o ON oi.order_id = o.order_id

3 rows

Dritte Normalform (3NF)
Die dritte Normalform baut auf 2NF auf und fordert: Keine transitiven Abhängigkeiten. Was heißt das? Nicht-
Schlüssel-Attribute dürfen nicht von anderen Nicht-Schlüssel-Attributen abhängen. Nur vom
Primärschlüssel.

Regel: Keine transitiven Abhängigkeiten

Definition 3NF:

Beispiel: Verletzt 3NF

1 Laptop 899.99 1

1 Mouse 25.00 2

2 Laptop 899.99 1

Erfüllt 2NF

Keine transitiven Abhängigkeiten: A → B → C (wenn A der Schlüssel ist, darf B nicht C bestimmen)

Nicht-Schlüssel-Attribute dürfen nur vom Primärschlüssel abhängen, nicht voneinander

CREATE TABLE products_not_3nf (
 product_id INTEGER PRIMARY KEY,
 product_name TEXT NOT NULL,
 product_price DECIMAL(10,2) NOT NULL,
 category_name TEXT,
 category_description TEXT -- 🚨 Hängt von category_name ab, nicht
 product_id!
);

INSERT INTO products_not_3nf VALUES
 (1, 'Laptop', 999.99, 'Electronics', 'Devices and gadgets'),

1
2
3
4
5
6

7
8
9
10

1

2

3

order_id product_name product_price quantity



CREATE TABLE products_not_3nf (

 product_id INTEGER PRIMARY KEY,

 product_name TEXT NOT NULL,

 product_price DECIMAL(10,2) NOT NULL,

 category_name TEXT,

 category_description TEXT -- 🚨 Hängt von category_name ab, nicht von

product_id!

)

ok

INSERT INTO products_not_3nf VALUES

 (1, 'Laptop', 999.99, 'Electronics', 'Devices and gadgets'),

 (2, 'Mouse', 25.00, 'Electronics', 'Devices and gadgets'), -- 🚨 Redundanz!

 (3, 'Desk', 299.99, 'Furniture', 'Tables and chairs'),

 (4, 'Chair', 149.99, 'Furniture', 'Tables and chairs')

ok

-- 🚨 Redundanz!

SELECT * FROM products_not_3nf

4 rows

Problem:

, p p , , , g g ,
 (2, 'Mouse', 25.00, 'Electronics', 'Devices and gadgets'), -- 🚨
 Redundanz!
 (3, 'Desk', 299.99, 'Furniture', 'Tables and chairs'),
 (4, 'Chair', 149.99, 'Furniture', 'Tables and chairs'); -- 🚨
 Redundanz!

SELECT * FROM products_not_3nf;

1 Laptop 999.99 Electronics Devices and gadgets

2 Mouse 25.00 Electronics Devices and gadgets

3 Desk 299.99 Furniture Tables and chairs

4 Chair 149.99 Furniture Tables and chairs

11

12
13

14
15

1

2

3

4

product_id product_name product_price category_name category_description

Die Lösung: Kategorie-Informationen in eine separate Tabelle auslagern. Dann gibt es keine transitiven
Abhängigkeiten mehr.

Lösung: Kategorien auslagern

3NF-konforme Version:

-- Kategorien-Tabelle

CREATE TABLE categories_3nf (

 category_id INTEGER PRIMARY KEY,

 category_name TEXT UNIQUE NOT NULL,

 category_description TEXT

)

ok

-- Produkte-Tabelle (referenziert Kategorie)

CREATE TABLE products_3nf (

 product_id INTEGER PRIMARY KEY,

 product_name TEXT NOT NULL,

 product_price DECIMAL(10,2) NOT NULL,

 category_id INTEGER NOT NULL,

 FOREIGN KEY (category_id) REFERENCES categories_3nf(category_id)

)

ok

category_description hängt von category_name ab, nicht von product_id

Transitive Abhängigkeit: productid → categoryname → category_description

Redundanz: Kategorie-Beschreibungen werden dupliziert

Update-Anomalie: „Electronics“ umbenennen → mehrere Zeilen!

-- Kategorien-Tabelle
CREATE TABLE categories_3nf (
 category_id INTEGER PRIMARY KEY,
 category_name TEXT UNIQUE NOT NULL,
 category_description TEXT
);

-- Produkte-Tabelle (referenziert Kategorie)
CREATE TABLE products_3nf (
 product_id INTEGER PRIMARY KEY,
 product_name TEXT NOT NULL,
 product_price DECIMAL(10,2) NOT NULL,
 category_id INTEGER NOT NULL,
 FOREIGN KEY (category_id) REFERENCES categories_3nf(category_id)
);

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15



Daten einfügen:

-- Kategorien zuerst

INSERT INTO categories_3nf VALUES

 (1, 'Electronics', 'Devices and gadgets'),

 (2, 'Furniture', 'Tables and chairs')

ok

-- Produkte referenzieren Kategorien

INSERT INTO products_3nf VALUES

 (1, 'Laptop', 999.99, 1),

 (2, 'Mouse', 25.00, 1),

 (3, 'Desk', 299.99, 2),

 (4, 'Chair', 149.99, 2)

ok

SELECT * FROM products_3nf

4 rows

✅ 3NF erreicht! Keine transitiven Abhängigkeiten mehr.

Test: Kategorie ändern:

-- Kategorien zuerst
INSERT INTO categories_3nf VALUES
 (1, 'Electronics', 'Devices and gadgets'),
 (2, 'Furniture', 'Tables and chairs');

-- Produkte referenzieren Kategorien
INSERT INTO products_3nf VALUES
 (1, 'Laptop', 999.99, 1),
 (2, 'Mouse', 25.00, 1),
 (3, 'Desk', 299.99, 2),
 (4, 'Chair', 149.99, 2);

SELECT * FROM products_3nf;

1 Laptop 999.99 1

2 Mouse 25.00 1

3 Desk 299.99 2

4 Chair 149.99 2

1
2
3
4
5
6
7
8
9
10
11
12
13

1

2

3

4

product_id product_name product_price category_id



-- Kategorie-Beschreibung ändern (nur EINE Zeile!)

UPDATE categories_3nf

SET category_description = 'Electronic devices and accessories'

WHERE category_id = 1

ok

-- Alle Produkte haben automatisch die neue Beschreibung:

SELECT p.product_name, c.category_name, c.category_description

FROM products_3nf p

JOIN categories_3nf c ON p.category_id = c.category_id

4 rows

Finales Schema: Online-Shop komplett
Jetzt haben wir alle Puzzleteile. Lassen Sie uns das finale, vollständig normalisierte Online-Shop-Schema
zusammenbauen – mit allen Beziehungen, Constraints und Best Practices.

Komplettes normalisiertes Schema

-- Kategorie-Beschreibung ändern (nur EINE Zeile!)
UPDATE categories_3nf
SET category_description = 'Electronic devices and accessories'
WHERE category_id = 1;

-- Alle Produkte haben automatisch die neue Beschreibung:
SELECT p.product_name, c.category_name, c.category_description
FROM products_3nf p
JOIN categories_3nf c ON p.category_id = c.category_id;

Laptop Electronics Electronic devices and accessories

Mouse Electronics Electronic devices and accessories

Desk Furniture Tables and chairs

Chair Furniture Tables and chairs

-- 1. Kategorien
CREATE TABLE categories (
 category_id INTEGER PRIMARY KEY,
 category_name TEXT UNIQUE NOT NULL,
 description TEXT
);

-- 2 Produkte

1
2
3
4
5
6
7
8
9

1
2
3
4
5
6
7
8

1

2

3

4

product_name category_name category_description





 2. Produkte
CREATE TABLE products (
 product_id INTEGER PRIMARY KEY,
 product_name TEXT NOT NULL,
 price DECIMAL(10,2) NOT NULL CHECK (price >= 0),
 stock INTEGER DEFAULT 0 CHECK (stock >= 0),
 category_id INTEGER NOT NULL,
 FOREIGN KEY (category_id) REFERENCES categories(category_id)
);

-- 3. Kunden
CREATE TABLE customers (
 customer_id INTEGER PRIMARY KEY,
 customer_name TEXT NOT NULL,
 email TEXT UNIQUE NOT NULL,
 created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
);

-- 4. Adressen (separate Tabelle für Flexibilität)
CREATE TABLE addresses (
 address_id INTEGER PRIMARY KEY,
 customer_id INTEGER NOT NULL,
 street TEXT NOT NULL,
 city TEXT NOT NULL,
 postal_code TEXT NOT NULL,
 country TEXT NOT NULL,
 is_default BOOLEAN DEFAULT FALSE,
 FOREIGN KEY (customer_id) REFERENCES customers(customer_id) ON DELE
 CASCADE
);

-- 5. Bestellungen
CREATE TABLE orders (
 order_id INTEGER PRIMARY KEY,
 customer_id INTEGER NOT NULL,
 address_id INTEGER NOT NULL,
 order_date TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
 status TEXT CHECK (status IN ('pending', 'shipped', 'delivered',
 'cancelled')),
 FOREIGN KEY (customer_id) REFERENCES customers(customer_id),
 FOREIGN KEY (address_id) REFERENCES addresses(address_id)
);

-- 6. Bestellpositionen (Order Items - Many-to-Many)
CREATE TABLE order_items (
 order_id INTEGER,
 product_id INTEGER,
 quantity INTEGER NOT NULL CHECK (quantity > 0),
 price_at_order DECIMAL(10,2) NOT NULL, -- Preis zum Zeitpunkt der
 Bestellung
 PRIMARY KEY (order_id, product_id),

(d id) d (d id)

8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

36
37
38
39
40
41
42
43
44

45
46
47
48
49
50
51
52
53
54

55

 FOREIGN KEY (order_id) REFERENCES orders(order_id) ON DELETE CASCAD
 FOREIGN KEY (product_id) REFERENCES products(product_id)
);

56
57
58

-- 1. Kategorien

CREATE TABLE categories (

 category_id INTEGER PRIMARY KEY,

 category_name TEXT UNIQUE NOT NULL,

 description TEXT

)

ok

-- 2. Produkte

CREATE TABLE products (

 product_id INTEGER PRIMARY KEY,

 product_name TEXT NOT NULL,

 price DECIMAL(10,2) NOT NULL CHECK (price >= 0),

 stock INTEGER DEFAULT 0 CHECK (stock >= 0),

 category_id INTEGER NOT NULL,

 FOREIGN KEY (category_id) REFERENCES categories(category_id)

)

ok

-- 3. Kunden

CREATE TABLE customers (

 customer_id INTEGER PRIMARY KEY,

 customer_name TEXT NOT NULL,

 email TEXT UNIQUE NOT NULL,

 created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP

)

ok

-- 4. Adressen (separate Tabelle für Flexibilität)

CREATE TABLE addresses (

 address_id INTEGER PRIMARY KEY,

 customer_id INTEGER NOT NULL,

 street TEXT NOT NULL,

 city TEXT NOT NULL,

 postal_code TEXT NOT NULL,

 country TEXT NOT NULL,

 is_default BOOLEAN DEFAULT FALSE,

 FOREIGN KEY (customer_id) REFERENCES customers(customer_id) ON DELETE

CASCADE

)

ok

-- 5. Bestellungen

CREATE TABLE orders (

 order_id INTEGER PRIMARY KEY,

 customer_id INTEGER NOT NULL,

 address_id INTEGER NOT NULL,

 order_date TIMESTAMP DEFAULT CURRENT_TIMESTAMP,

 status TEXT CHECK (status IN ('pending', 'shipped', 'delivered', 'cancelled')),

 FOREIGN KEY (customer_id) REFERENCES customers(customer_id),

 FOREIGN KEY (address_id) REFERENCES addresses(address_id)

)

ok

-- 6. Bestellpositionen (Order Items - Many-to-Many)

CREATE TABLE order_items (

 order_id INTEGER,

 product_id INTEGER,

 quantity INTEGER NOT NULL CHECK (quantity > 0),

 price_at_order DECIMAL(10,2) NOT NULL, -- Preis zum Zeitpunkt der Bestellung

 PRIMARY KEY (order_id, product_id),

 FOREIGN KEY (order_id) REFERENCES orders(order_id) ON DELETE CASCADE,

 FOREIGN KEY (product_id) REFERENCES products(product_id)

)

ok

Schauen wir uns die Struktur visuell an. Jede Tabelle hat eine klare Verantwortung, alle Beziehungen sind
explizit definiert, keine Redundanz.

Entity-Relationship Diagramm

CUSTOMERS

int customer_id PK

string customer_name

string email UK

timestamp created_at

ADDRESSES

int address_id PK

int customer_id FK

string street

string city

string postal_code

string country

boolean is_default

ORDERS

int order_id PK

int customer_id FK

int address_id FK

timestamp order_date

string status

ORDER_ITEMS

int order_id FK

int product_id FK

int quantity

decimal price_at_order

PRODUCTS

int product_id PK

string product_name

decimal price

int stock

int category_id FK

CATEGORIES

int category_id PK

string category_name UK

string description

has

places

ships to

contains
ordered in

categorizes

Jetzt füllen wir den Shop mit Leben. Kategorien, Produkte, Kunden, Adressen, Bestellungen – alles
normalisiert, keine Redundanz.

Daten einfügen

K t i1 

-- Kategorien
INSERT INTO categories VALUES
 (1, 'Electronics', 'Electronic devices and accessories'),
 (2, 'Furniture', 'Tables, chairs, and office furniture');

-- Produkte
INSERT INTO products VALUES
 (1, 'Laptop', 999.99, 10, 1),
 (2, 'Mouse', 25.00, 50, 1),
 (3, 'Keyboard', 75.00, 30, 1),
 (4, 'Desk', 299.99, 5, 2),
 (5, 'Chair', 149.99, 8, 2);

-- Kunden
INSERT INTO customers VALUES
 (1, 'Alice', 'alice@example.com', CURRENT_TIMESTAMP),
 (2, 'Bob', 'bob@example.com', CURRENT_TIMESTAMP);

-- Adressen
INSERT INTO addresses VALUES
 (1, 1, 'Hauptstr. 1', 'Berlin', '10115', 'Germany', TRUE),
 (2, 2, 'Nebenstr. 5', 'Munich', '80331', 'Germany', TRUE);

-- Bestellungen
INSERT INTO orders VALUES
 (1, 1, 1, CURRENT_TIMESTAMP, 'pending'),
 (2, 2, 2, CURRENT_TIMESTAMP, 'shipped');

-- Bestellpositionen
INSERT INTO order_items VALUES
 (1, 1, 1, 999.99), -- Alice: 1x Laptop
 (1, 2, 2, 25.00), -- Alice: 2x Mouse
 (2, 4, 1, 299.99), -- Bob: 1x Desk
 (2, 5, 1, 149.99); -- Bob: 1x Chair

SELECT 'Shop erfolgreich aufgebaut!' AS status;

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36



-- Kategorien

INSERT INTO categories VALUES

 (1, 'Electronics', 'Electronic devices and accessories'),

 (2, 'Furniture', 'Tables, chairs, and office furniture')

ok

-- Produkte

INSERT INTO products VALUES

 (1, 'Laptop', 999.99, 10, 1),

 (2, 'Mouse', 25.00, 50, 1),

 (3, 'Keyboard', 75.00, 30, 1),

 (4, 'Desk', 299.99, 5, 2),

 (5, 'Chair', 149.99, 8, 2)

ok

-- Kunden

INSERT INTO customers VALUES

 (1, 'Alice', 'alice@example.com', CURRENT_TIMESTAMP),

 (2, 'Bob', 'bob@example.com', CURRENT_TIMESTAMP)

ok

-- Adressen

INSERT INTO addresses VALUES

 (1, 1, 'Hauptstr. 1', 'Berlin', '10115', 'Germany', TRUE),

 (2, 2, 'Nebenstr. 5', 'Munich', '80331', 'Germany', TRUE)

ok

-- Bestellungen

INSERT INTO orders VALUES

 (1, 1, 1, CURRENT_TIMESTAMP, 'pending'),

 (2, 2, 2, CURRENT_TIMESTAMP, 'shipped')

ok

-- Bestellpositionen

INSERT INTO order_items VALUES

 (1, 1, 1, 999.99), -- Alice: 1x Laptop

 (1, 2, 2, 25.00), -- Alice: 2x Mouse

 (2, 4, 1, 299.99), -- Bob: 1x Desk

 (2, 5, 1, 149.99)

ok

-- Bob: 1x Chair

SELECT 'Shop erfolgreich aufgebaut!' AS status

1 rows

Jetzt testen wir das normalisierte Schema. Keine Anomalien mehr! Adresse ändern, Produkt löschen, neues
Produkt hinzufügen – alles funktioniert sauber.

Tests: Keine Anomalien mehr!

Test 1: Update (Alice zieht um)

-- Adresse ändern (nur EINE Zeile!)

UPDATE addresses

SET street = 'Neue Str. 99', city = 'Hamburg', postal_code = '20095'

WHERE address_id = 1

ok

-- Alle Bestellungen haben automatisch die neue Adresse:

SELECT o.order_id, c.customer_name, a.street, a.city

FROM orders o

JOIN customers c ON o.customer_id = c.customer_id

JOIN addresses a ON o.address_id = a.address_id

WHERE c.customer_name = 'Alice'

1 rows

Shop erfolgreich aufgebaut!

-- Adresse ändern (nur EINE Zeile!)
UPDATE addresses
SET street = 'Neue Str. 99', city = 'Hamburg', postal_code = '20095'
WHERE address_id = 1;

-- Alle Bestellungen haben automatisch die neue Adresse:
SELECT o.order_id, c.customer_name, a.street, a.city
FROM orders o
JOIN customers c ON o.customer_id = c.customer_id
JOIN addresses a ON o.address_id = a.address_id
WHERE c.customer_name = 'Alice';

1 Alice Neue Str. 99 Hamburg

1
2
3
4
5
6
7
8
9
10
11

1

1

status

order_id customer_name street city



Test 2: Delete (Bob storniert Bestellung)

-- Bestellung löschen

DELETE FROM orders WHERE order_id = 2

ok

-- Produkte sind noch da (kein Datenverlust!):

SELECT product_id, product_name, price

FROM products

WHERE product_id IN (4, 5)

2 rows

Test 3: Insert (Neues Produkt ohne Bestellung)

-- Bestellung löschen
DELETE FROM orders WHERE order_id = 2;

-- Produkte sind noch da (kein Datenverlust!):
SELECT product_id, product_name, price
FROM products
WHERE product_id IN (4, 5);

4 Desk 299.99

5 Chair 149.99

-- Neues Produkt hinzufügen (kein Problem!)
INSERT INTO products VALUES
 (6, 'Monitor', 399.99, 12, 1);

SELECT * FROM products WHERE product_id = 6;

1
2
3
4
5
6
7

1
2
3
4
5

1

2

product_id product_name price





-- Neues Produkt hinzufügen (kein Problem!)

INSERT INTO products VALUES

 (6, 'Monitor', 399.99, 12, 1)

ok

SELECT * FROM products WHERE product_id = 6

1 rows

✅ Alle Tests bestanden! Keine Anomalien, keine Redundanz, volle Flexibilität.

Denormalisierung: Wann & Warum?
Normalisierung ist toll – aber es gibt Situationen, wo Sie bewusst dagegen verstoßen sollten.
Denormalisierung heißt: Kontrolliert Redundanz einbauen, um Performance zu gewinnen. Wann macht das
Sinn?

Trade-offs: Normalisierung vs. Performance

Wann denormalisieren?

Reads
Mehrere JOINs
nötig

Daten direkt
verfügbar

Read-heavy Systeme (z.B.
Analytics)

Writes
Einfach (nur
eine Tabelle)

Komplex (mehrere
Tabellen synchen)

Write-heavy Systeme
bevorzugen
Normalisierung

Speicher
Minimal (keine
Redundanz)

Höher (Duplikate)
Speicher ist billig,
Performance teuer

Konsistenz Garantiert
Manuell
sicherstellen

Kritische Daten: immer
normalisieren!

Beispiel: Denormalisierung für Performance

6 Monitor 399.99 12 1

Szenario Normalisiert Denormalisiert
Wann
Denormalisierung?

1

product_id product_name price stock category_id

Lösungsansätze:

In der Praxis: Starten Sie normalisiert (3NF), denormalisieren Sie nur gezielt bei gemessenen Performance-
Problemen. Niemals „blind“ denormalisieren!

Weitere Normalformen (Ausblick)
3NF ist meist ausreichend. Es gibt höhere Normalformen – BCNF, 4NF, 5NF – aber die brauchen Sie selten.
Kurzer Überblick, was darüber hinausgeht.

BCNF, 4NF, 5NF – Braucht man das?

Boyce-Codd Normalform (BCNF):

Vierte Normalform (4NF):

-- Normalisiert: 3 JOINs für Order-Übersicht
SELECT
 o.order_id,
 c.customer_name,
 c.email,
 a.city,
 p.product_name,
 oi.quantity,
 oi.price_at_order
FROM orders o
JOIN customers c ON o.customer_id = c.customer_id
JOIN addresses a ON o.address_id = a.address_id
JOIN order_items oi ON o.order_id = oi.order_id
JOIN products p ON oi.product_id = p.product_id;

-- Denormalisiert: Alles in einer Tabelle (wie am Anfang!)
-- ➔ Schneller, aber Redundanz & Update-Anomalien

Materialized Views: Automatisch aktualisierte denormalisierte Ansichten

Caching: Redis/Memcached für häufige Queries

Read Replicas: Separate DB für Lesezugriffe

CQRS: Command Query Responsibility Segregation (zwei Datenmodelle)

Verschärfung von 3NF

Jede Abhängigkeit muss vom Superschlüssel ausgehen

Relevant bei komplexen Schlüsselstrukturen

Praxis: Selten nötig, 3NF reicht meist



Fünfte Normalform (5NF):

💡 Empfehlung:

Weitere Beispiele
Normalisierung ist überall. Schauen wir uns kurz drei weitere Szenarien an: Blog, Bibliothek, Social Network.
Das Prinzip ist immer gleich.

Beispiel 1: Blog-System

Entities:

Beziehungen:

Schema:

Eliminiert Multi-Valued Dependencies

Beispiel: Lehrer unterrichtet mehrere Fächer UND mehrere Klassen (unabhängig)

Praxis: Sehr selten relevant

Eliminiert Join Dependencies

Theoretisch interessant, praktisch kaum relevant

Praxis: Fast nie notwendig

Ziel: 3NF als Standard

BCNF: Nur wenn Sie darauf stoßen

4NF+: Vergessen Sie es (außer Sie schreiben eine Dissertation)

Authors (Autoren)

Posts (Blog-Posts)

Comments (Kommentare)

Tags (Schlagworte)

Author 1:n Posts (Ein Autor, viele Posts)

Post 1:n Comments (Ein Post, viele Kommentare)

Posts n:m Tags (Ein Post hat mehrere Tags, ein Tag in mehreren Posts)

CREATE TABLE authors (
 author_id INTEGER PRIMARY KEY,
 name TEXT NOT NULL,
 email TEXT UNIQUE
);

CREATE TABLE posts (



Beispiel 2: Bibliothek

Entities:

Besonderheiten:

Schema:

p (
 post_id INTEGER PRIMARY KEY,
 author_id INTEGER NOT NULL,
 title TEXT NOT NULL,
 content TEXT,
 published_at TIMESTAMP,
 FOREIGN KEY (author_id) REFERENCES authors(author_id)
);

CREATE TABLE comments (
 comment_id INTEGER PRIMARY KEY,
 post_id INTEGER NOT NULL,
 author_name TEXT,
 content TEXT,
 created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
 FOREIGN KEY (post_id) REFERENCES posts(post_id) ON DELETE CASCADE
);

CREATE TABLE tags (
 tag_id INTEGER PRIMARY KEY,
 tag_name TEXT UNIQUE NOT NULL
);

CREATE TABLE post_tags (
 post_id INTEGER,
 tag_id INTEGER,
 PRIMARY KEY (post_id, tag_id),
 FOREIGN KEY (post_id) REFERENCES posts(post_id) ON DELETE CASCADE,
 FOREIGN KEY (tag_id) REFERENCES tags(tag_id)
);

Books (Bücher)

Authors (Autoren)

Copies (Exemplare)

Loans (Ausleihen)

Members (Mitglieder)

Books n:m Authors (Co-Autoren)

Book 1:n Copies (Ein Buch, mehrere physische Exemplare)

Copy 1:n Loans (Ein Exemplar wird mehrfach ausgeliehen)

CREATE TABLE b k (

Beispiel 3: Social Network (Self-Referencing)

Entity:

CREATE TABLE books (
 book_id INTEGER PRIMARY KEY,
 title TEXT NOT NULL,
 isbn TEXT UNIQUE,
 published_year INTEGER
);

CREATE TABLE authors (
 author_id INTEGER PRIMARY KEY,
 name TEXT NOT NULL
);

CREATE TABLE book_authors (
 book_id INTEGER,
 author_id INTEGER,
 PRIMARY KEY (book_id, author_id),
 FOREIGN KEY (book_id) REFERENCES books(book_id),
 FOREIGN KEY (author_id) REFERENCES authors(author_id)
);

CREATE TABLE copies (
 copy_id INTEGER PRIMARY KEY,
 book_id INTEGER NOT NULL,
 acquisition_date DATE,
 status TEXT CHECK (status IN ('available', 'on_loan', 'damaged')),
 FOREIGN KEY (book_id) REFERENCES books(book_id)
);

CREATE TABLE members (
 member_id INTEGER PRIMARY KEY,
 name TEXT NOT NULL,
 email TEXT UNIQUE,
 joined_date DATE
);

CREATE TABLE loans (
 loan_id INTEGER PRIMARY KEY,
 copy_id INTEGER NOT NULL,
 member_id INTEGER NOT NULL,
 loan_date DATE NOT NULL,
 due_date DATE NOT NULL,
 return_date DATE,
 FOREIGN KEY (copy_id) REFERENCES copies(copy_id),
 FOREIGN KEY (member_id) REFERENCES members(member_id)
);

Users (Nutzer)



Besonderheit:

Schema:

Zusammenfassung
Was haben Sie gelernt? Sie können jetzt Anomalien erkennen, Normalformen anwenden, Schemas
normalisieren und Trade-offs zwischen Normalisierung und Performance abwägen. Das ist das Fundament
für gutes Datenbankdesign.

Users n:m Users (Freundschaften = Self-Referencing Many-to-Many)

CREATE TABLE users (
 user_id INTEGER PRIMARY KEY,
 username TEXT UNIQUE NOT NULL,
 email TEXT UNIQUE NOT NULL,
 joined_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
);

CREATE TABLE friendships (
 user_id_1 INTEGER,
 user_id_2 INTEGER,
 status TEXT CHECK (status IN ('pending', 'accepted', 'blocked')),
 created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
 PRIMARY KEY (user_id_1, user_id_2),
 FOREIGN KEY (user_id_1) REFERENCES users(user_id),
 FOREIGN KEY (user_id_2) REFERENCES users(user_id),
 CHECK (user_id_1 < user_id_2) -- Verhindert Duplikate (A→B und B→A)
);

-- Freundschaften einfügen:
INSERT INTO users VALUES (1, 'alice', 'alice@example.com', CURRENT_TIMESTAM
INSERT INTO users VALUES (2, 'bob', 'bob@example.com', CURRENT_TIMESTAMP);
INSERT INTO friendships VALUES (1, 2, 'accepted', CURRENT_TIMESTAMP);

-- Alle Freunde von Alice:
SELECT u.username
FROM friendships f
JOIN users u ON (f.user_id_2 = u.user_id OR f.user_id_1 = u.user_id)
WHERE (f.user_id_1 = 1 OR f.user_id_2 = 1) AND u.user_id != 1;



Update-Anomalie
Redundante Daten führen zu
Inkonsistenzen

Vermeiden durch Normalisierung

Delete-Anomalie
Ungewollter Datenverlust beim
Löschen

Separate Tabellen für
unabhängige Entities

Insert-Anomalie
Daten können nicht ohne
andere eingefügt werden

Tabellen trennen

1NF
Atomare Werte (keine Listen in
Zellen)

Wiederholgruppen eliminieren

2NF Keine partiellen Abhängigkeiten
Jedes Attribut hängt vom
GANZEN Schlüssel ab

3NF
Keine transitiven
Abhängigkeiten

Nicht-Schlüssel-Attribute nur vom
Schlüssel abhängig

Denormalisierung
Kontrollierte Redundanz für
Performance

Nur bei gemessenen Problemen

Die wichtigsten Takeaways: Starten Sie normalisiert (3NF). Denormalisieren Sie nur gezielt bei Performance-
Problemen. Testen Sie immer: Können Sie UPDATE/DELETE/INSERT ohne Anomalien ausführen? Wenn ja, ist
Ihr Schema gut.

Checkliste: Ist mein Schema normalisiert?
Nutzen Sie diese Checkliste, um Ihre eigenen Schemas zu überprüfen. Jede Frage sollte mit „Ja“ beantwortet
werden können.

Normalisierungs-Check

Erste Normalform (1NF):

Zweite Normalform (2NF):

Jede Zelle enthält genau einen atomaren Wert?

Keine Arrays oder Listen in Spalten?

Keine Wiederholgruppen (z.B. „product1“, „product2“, „product3“)?

Jede Zeile ist eindeutig identifizierbar (PRIMARY KEY)?

Konzept Beschreibung Ziel

Dritte Normalform (3NF):

Best Practices:

Quiz: Testen Sie Ihr Wissen
Frage 1: Was ist eine Update-Anomalie?

Frage 2: Welche Normalform fordert atomare Werte?

Frage 3: Was eliminiert die 2NF?

Schema erfüllt 1NF?

Bei zusammengesetzten Schlüsseln: Hängt jedes Nicht-Schlüssel-Attribut vom GESAMTEN Schlüssel
ab?

Keine Redundanz durch partielle Abhängigkeiten?

Schema erfüllt 2NF?

Keine transitiven Abhängigkeiten (A → B → C)?

Nicht-Schlüssel-Attribute hängen nur vom Primärschlüssel ab, nicht voneinander?

Jede Tabelle hat einen klaren Zweck (Single Responsibility)?

FOREIGN KEYs sind definiert für alle Beziehungen?

Constraints (CHECK, NOT NULL, UNIQUE) sind sinnvoll gesetzt?

Tests durchgeführt: UPDATE/DELETE/INSERT ohne Anomalien?

Daten können nicht eingefügt werden

Redundante Daten führen zu Inkonsistenzen beim Update

Daten gehen beim Löschen verloren

Performance-Problem bei großen Tabellen

1NF

2NF

3NF

BCNF

Frage 4: Wann sollten Sie denormalisieren?

Frage 5: Was ist ein Self-Referencing Foreign Key?

Übungsaufgaben
Zeit für Praxis! Probieren Sie diese Aufgaben selbst aus.

Aufgabe 1: Schema normalisieren

Gegeben ist diese denormalisierte Tabelle:

Normalisieren Sie auf 3NF!

Wiederholgruppen

Partielle Abhängigkeiten

Transitive Abhängigkeiten

Multi-Valued Dependencies

Immer, Normalisierung ist überbewertet

Nie, 3NF ist heilig

Bei gemessenen Performance-Problemen in Read-heavy Systemen

Bei allen Write-heavy Systemen

Ein Fehler im Schema

Ein Foreign Key ohne Referenced Table

Ein Foreign Key, der auf die eigene Tabelle verweist (z.B. Freundschaften, Hierarchien)

Ein Primary Key, der sich selbst referenziert

employees_denormalized:
emp_id	name	dept_name	dept_manager	dept_location
1	Alice	IT	Bob	Berlin
2	Charlie	IT	Bob	Berlin
3	Diana	HR	Eve	Munich



Analyse: - dept_manager und dept_location hängen von dept_name ab (transitive
Abhängigkeit) - Lösung: Separate departments Tabelle `sql CREATE TABLE departments (dept_id
INTEGER PRIMARY KEY, dept_name TEXT UNIQUE NOT NULL, dept_manager TEXT, dept_location TEXT);
CREATE TABLE employees (emp_id INTEGER PRIMARY KEY, name TEXT NOT NULL, dept_id INTEGER NOT
NULL, FOREIGN KEY (deptid) REFERENCES departments(deptid)); INSERT INTO departments VALUES (1, ‚IT‘,
‚Bob‘, ‚Berlin‘), (2, ‚HR‘, ‚Eve‘, ‚Munich‘); INSERT INTO employees VALUES (1, ‚Alice‘, 1), (2, ‚Charlie‘, 1), (3,
‚Diana‘, 2); ` LIA: terminal *******************

Aufgabe 2: Anomalie identifizieren

Welche Anomalie tritt hier auf?

Wenn Student „Alice“ ihren Namen ändert, müssen Sie...?

`sql CREATE TABLE movies (movie_id INTEGER PRIMARY KEY, title TEXT NOT NULL, duration_minutes
INTEGER, genre TEXT); CREATE TABLE screenings (screening_id INTEGER PRIMARY KEY, movie_id INTEGER
NOT NULL, screening_time TIMESTAMP NOT NULL, room TEXT, FOREIGN KEY (movieid) REFERENCES
movies(movieid)); CREATE TABLE customers (customer_id INTEGER PRIMARY KEY, name TEXT NOT NULL,
email TEXT UNIQUE); CREATE TABLE bookings (booking_id INTEGER PRIMARY KEY, customer_id INTEGER
NOT NULL, screening_id INTEGER NOT NULL, seatsbooked INTEGER NOT NULL CHECK (seatsbooked > 0),
bookingtime TIMESTAMP DEFAULT CURRENTTIMESTAMP, FOREIGN KEY (customerid) REFERENCES
customers(customerid), FOREIGN KEY (screeningid) REFERENCES screenings(screeningid)); `

LIA: terminal ERD: - CUSTOMERS 1:n BOOKINGS - SCREENINGS 1:n BOOKINGS - MOVIES 1:n SCREENINGS

Ausblick: Was kommt als Nächstes?
Sie können jetzt normalisierte Schemas entwerfen. Mehrere Tabellen, klare Beziehungen, keine Redundanz.
Aber wie nutzen Sie diese Tabellen gemeinsam? Wie kombinieren Sie Daten aus customers , orders
und products in einer einzigen Abfrage? Das sind Joins – unser nächstes großes Thema.

Kommende Sessions:

CREATE TABLE courses_denormalized (
 student_id INTEGER,
 course_id INTEGER,
 student_name TEXT,
 student_email TEXT,
 course_name TEXT,
 instructor TEXT,
 PRIMARY KEY (student_id, course_id)
);



🎉 Glückwunsch! Sie beherrschen jetzt Normalisierung – das Fundament für professionelles
Datenbankdesign!

Anhang: DBML-Syntax-Referenz
Für Interessierte: Eine komplette Referenz der DBML-Syntax, die Sie in den ER-Diagrammen gesehen haben.
DBML ist die Sprache hinter dbdiagram punkt io. Wenn Sie eigene Diagramme erstellen möchten, ist dies Ihre
Cheat-Sheet.

Tabellen definieren

Column Types:

Column Settings:

Beispiel:

Session 10: SQL Joins & Combining Data (INNER, LEFT, RIGHT, FULL, CROSS)

Session 11: Row-Level Functions (String, Number, Date, CASE)

Session 12: Aggregation & Window Functions

Session 13: Advanced SQL Techniques (Subqueries, CTEs, Views)

Session 14: Relationale Algebra (formale Grundlagen)

Table table_name {
 column_name column_type [settings]
}

int , integer

varchar(n) , char(n) , text

decimal(p,s) , numeric(p,s)

timestamp , datetime , date , time

boolean , bool

pk – Primary Key

not null – Nicht NULL

unique – Eindeutig

increment – Auto-Increment

default: value – Default-Wert

note: 'text' – Spalten-Kommentar

Table users {





Beziehungen (Relationships)

Beziehungen sind das Herzstück von ER-Diagrammen. DBML hat eine elegante Syntax dafür.

Inline (empfohlen):

Separat:

Relationship Types:

WICHTIG: Bei n:m verwenden Sie Junction Tables!

Benannte Beziehungen:

Indexes

Indexes sind wichtig für Performance. DBML lässt Sie diese direkt im Schema definieren.

 user_id int [pk, increment]
 username varchar(50) [not null, unique]
 email varchar(100) [not null, unique]
 created_at timestamp [default: `now()`]
 status varchar(20) [default: 'active', note: 'active, inactive, banned']

 Note: 'User accounts in the system'
}

Table orders {
 user_id int [ref: > users.id] // many-to-one
}

Ref: orders.user_id > users.id

> – many-to-one (viele Orders → ein User)

< – one-to-many (ein User → viele Orders)

- – one-to-one (ein User → ein Profile)

<> – many-to-many (viele Students ↔ viele Courses)

Table student_courses {
 student_id int [ref: > students.id]
 course_id int [ref: > courses.id]

 indexes {
 (student_id, course_id) [pk]
 }
}

Ref name_of_relationship: products.category_id > categories.id









Index Settings:

Notes (Dokumentation)

Dokumentation direkt im Schema – für Sie und Ihre Kollegen!

Tabellen-Notes:

Spalten-Notes:

Multi-line Notes:

Table users {
 email varchar(100)
 username varchar(50)

 indexes {
 email [unique]
 (email, username) [unique, name: 'email_username_idx']
 username [type: btree, note: 'Speed up username lookups']
 }
}

unique – Unique Index

pk – Primary Key Index

type: btree – Index-Typ (btree, hash, gin, gist)

name: 'index_name' – Expliziter Index-Name

note: 'text' – Index-Kommentar

Table users {
 id int [pk]

 Note: 'This table stores all user accounts in the system'
}

Table users {
 id int [pk, note: 'Unique identifier for each user']
 status varchar(20) [note: 'Possible values: active, inactive, banned']
}

Table users {
 Note: '''
 This table stores user accounts.

 Business Rules:
 - Email must be unique
 - Username must be at least 3 characters









Table Groups

Gruppieren Sie zusammengehörige Tabellen für bessere Übersicht.

Enums

Definieren Sie Enums für eingeschränkte Wertebereiche.

Vollständiges Beispiel

 - Status defaults to 'active'
 '''
}

TableGroup ecommerce {
 customers
 orders
 order_items
 products
}

TableGroup auth {
 users
 sessions
 permissions
}

enum order_status {
 pending
 processing
 shipped
 delivered
 cancelled
}

Table orders {
 order_id int [pk]
 status order_status [default: 'pending']
}

// E-Commerce Schema

enum order_status {
 pending
 processing
 shipped
 delivered
 cancelled
}

Table customers {







Table customers {
 customer_id int [pk, increment]
 name varchar(100) [not null]
 email varchar(100) [unique, not null]
 created_at timestamp [default: `now()`]

 indexes {
 email [unique]
 created_at [type: btree]
 }

 Note: 'Customer accounts'
}

Table products {
 product_id int [pk, increment]
 name varchar(200) [not null]
 price decimal(10,2) [not null, note: 'Price in EUR']
 stock int [default: 0]
 category_id int [ref: > categories.category_id]

 indexes {
 category_id
 (name, category_id) [note: 'Speed up product searches']
 }

 Note: 'Product catalog'
}

Table categories {
 category_id int [pk, increment]
 name varchar(100) [unique, not null]
 description text

 Note: 'Product categories'
}

Table orders {
 order_id int [pk, increment]
 customer_id int [not null, ref: > customers.customer_id]
 order_date timestamp [default: `now()`]
 status order_status [default: 'pending']
 total_amount decimal(10,2)

 indexes {
 customer_id
 order_date
 (customer_id, order_date) [name: 'customer_orders_idx']
 }

 Note: 'Customer orders'

Nützliche Links

Ende der Session 9 – Sie sind jetzt ein Normalisierungs-Profi! 🎓

}

Table order_items {
 order_id int [pk, ref: > orders.order_id]
 product_id int [pk, ref: > products.product_id]
 quantity int [not null]
 price_at_order decimal(10,2) [not null, note: 'Price at time of purchase'

 Note: 'Junction table for orders and products'
}

// Gruppierung
TableGroup core {
 customers
 orders
 order_items
}

TableGroup catalog {
 products
 categories
}

dbdiagram.io: https://dbdiagram.io/

DBML Documentation: https://dbml.dbdiagram.io/docs/

Live Editor: https://dbdiagram.io/d (zum Experimentieren)

dbdiagram CLI: https://github.com/holistics/dbml (für Automation)

https://dbdiagram.io/
https://dbml.dbdiagram.io/docs/
https://dbdiagram.io/d
https://github.com/holistics/dbml

