Session 15 - Functions & Trigger

Session-Typ: Vorlesung Dauer: 90 Minuten Lernziele: Stored Functions schreiben, Trigger erstellen,
Automatisierung verstehen

Willkommen zu Session 15! Heute schauen wir uns an, wie wir Logik nicht nur in unserer Anwendung,
sondern direkt in der Datenbank ausfiihren konnen. Warum ist das sinnvoll? Stellen Sie sich vor, Sie
mochten, dass bei jeder Anderung an einem Produkt automatisch ein Timestamp aktualisiert wird - oder
dass jede Preisanderung protokolliert wird. Das manuell in jeder Anwendung zu implementieren ist
fehleranfallig. Besser: Die Datenbank macht es automatisch! Heute lernen Sie Functions und Trigger kennen
- und probieren alles direkt im Browser aus.

Motivation: Warum Logik in der Datenbank?

Beginnen wir mit einer Frage: Wo sollte Geschaftslogik leben? In der Anwendung oder in der Datenbank? Die
Antwort ist: Es kommt darauf an! Aber flir bestimmte Aufgaben ist die Datenbank der perfekte Ort.

Problem 1: Vergessene Timestamps

Klassisches Szenario: Sie wollen bei jeder Anderung an einem Datensatz das ,updated_at*“ Feld
aktualisieren.

Ohne Automatisierung (Anwendungsseite):

// In jeder Update-Funktion manuell:

await db.query(
'"UPDATE products SET price = $1, updated_at = NOW() WHERE 1id = $2',
[newPrice, productId]

)3

// XK Fehleranfallig: Was, wenn jemand vergisst, updated_at zu setzen?
// XK Duplizierter Code: In 50 verschiedenen Update-Funktionen
// K Inkonsistent: Manche Entwickler machen es, andere nicht

Mit einem Trigger ist das Problem gelost - einmal definiert, funktioniert es immer. Automatisch. Konsistent.
Ohne dass die Anwendung daran denken muss.

Mit Trigger (Datenbank):

CREATE TRIGGER set_updated_at
BEFORE UPDATE ON products

FOR EACH ROW

EXECUTE FUNCTION update_timestamp();

- Funktioniert immer, egal welche Anwendung zugreift
—— ™ rade an einer 7entralen Stelle

~wvmie v e P T L h UL I IR AR UE R U VR

. e
-- M Konsistent fiir alle Updates

Problem 2: Audit-Logging

Zweites Szenario: Sie wollen nachvollziehen, wer wann welche Preise geandert hat. Compliance-
Anforderung!

Ohne Trigger:

// In jedem Update manuell protokollieren
await db.query('UPDATE products SET price = $1 WHERE 1id = $2', [newPrice, 1
await db.query(
"INSERT INTO audit_log (table_name, action, old_value, new_value) VALUES
$2, $3, $4)',
['products', 'UPDATE', oldPrice, newPrice]
)3

// K Zwei Queries - was bei Fehler zwischen beiden?
// XK Entwickler muss daran denken
// XK Audit-Log kann vergessen werden

Mit einem Trigger passiert das Logging automatisch - transparent, konsistent, fehlerfrei.

Mit Trigger:

CREATE TRIGGER audit_changes
AFTER UPDATE ON products

FOR EACH ROW

EXECUTE FUNCTION log_change();

-- [Automatisch bei jedem Update
-- [Kann nicht vergessen werden
-- [Atomar: Entweder beide Operationen oder keine

Use Cases fiir Functions & Trigger

Wann machen Functions und Trigger Sinn? Hier ist eine Ubersicht:

Use Case

Berechnungen (z.B. Steuer,
Rabatt)

Validierung (z.B. negative
Preise verhindern)

Automatische Timestamps

Audit-Logging

Soft Delete (Loschen =
Markieren)

Komplexe Geschaftslogik

Faustregel:

Functions

Wiederverwendbar

Kann manuell
aufgerufen werden

I\ Muss aufgerufen
werden

I\ Muss explizit
aufgerufen werden

I\ Muss implementiert
werden

Gut testbar,
wiederverwendbar

Trigger

I\ Automatisch bei jedem
Event

Automatisch, kann

nicht umgangen werden

Automatisch bei
INSERT/UPDATE

Automatisch, konsistent

Uberschreibt DELETE
automatisch

)\ Schwer zu debuggen

* Functions = Wiederverwendbare Logik, die Sie aktiv aufrufen
* Trigger = Automatische Reaktion auf Datenbankanderungen

Heute lernen Sie beide Konzepte kennen - und zwar nicht nur theoretisch, sondern mit vielen praktischen
Demos, die Sie direkt im Browser ausprobieren kénnen!

Teil 1: Stored Functions

Beginnen wir mit Stored Functions. Das sind quasi JavaScript-Funktionen, aber in der Datenbank. Sie
schreiben sie einmal, speichern sie in der Datenbank - und kdnnen sie dann in Queries verwenden.

Was sind Stored Functions?

Eine Stored Function ist ein Stiick SQL-Code, das in der Datenbank gespeichert wird und wiederverwendet
werden kann.

Vorteile:

Wiederverwendbarkeit: Einmal schreiben, Giberall nutzen

Performance: Code lauft auf dem Datenbankserver (kein Netzwerk-Overhead)

Konsistenz: Eine zentrale Definition, keine Duplikation

Sicherheit: Benutzer konnen Funktionen aufrufen, ohne Tabellenzugriff zu haben
Nachteile:

e I\ Portabilitat: Syntax unterscheidet sich zwischen Datenbanken

* I Debugging: Schwieriger als Anwendungscode

* I Testing: Unit-Tests sind komplizierter

Grundlegende Syntax

Die Syntax fl‘jr| CREATE FUNCTION |sieht in PostgreSQL so aus:

CREATE FUNCTION function_name(parameterl TYPE, parameter2 TYPE,
RETURNS return_type AS $$
BEGIN
-— Funktionskorper
RETURN result;
END;
$$ LANGUAGE plpgsql;

Wichtige Bestandteile:

. | CREATE FUNCTION function_name(...) |— Name und Parameter

| RETURNS return_type |- Was gibt die Funktion zuriick? (INT, TEXT, DECIMAL, ...

$$... $S —String—Delimiter(statt), macht Code lesbarer

| BEGIN ... END; |— Der eigentliche Code

| LANGUAGE plpgsql |— PostgreSQL's Procedural Language

Demo 1: Einfache Addition

Schauen wir uns ein ganz einfaches Beispiel an: Eine Funktion, die zwei Zahlen addiert.

CREATE FUNCTION add_numbers(a INT, b INT)
RETURNS INT AS $$
BEGIN
RETURN a + b;
END;
$$ LANGUAGE plpgsql;

-— Aufruf
SELECT add_numbers(5, 3) as result;

O 0o ~NOo ol b~ WDNBRE

CREATE FUNCTION add_numbers(a INT, b INT)
RETURNS INT AS $$%
BEGIN
RETURN a + b;
END;
$$ LANGUAGE plpgsql

ok

-- Aufruf
SELECT add_numbers(5, 3) as result

result

8

Das war's! Sie sehen: Parameter in Klammern, Ruckgabetyp mit RETURNS, und im Body ein einfaches
RETURN. Probieren Sie es aus - andern Sie die Zahlen!

Demo 2: String-Verarbeitung

Functions kdnnen auch mit Strings arbeiten. Hier eine Gruf¥funktion:

1 CREATE FUNCTION greet(name TEXT)

2 RETURNS TEXT AS $$

3 BEGIN

4 IF name IS NULL THEN

5 RETURN 'Hallo Unbekannter!';
6 ELSE

7 RETURN 'Hallo ' || name || '!';
8 END IF;

9 END;
10 $$ LANGUAGE plpgsql;
11
12 -- Aufruf
13 SELECT greet('Alice') as greeting;
14 SELECT greet('Bob') as greeting;
15 SELECT greet(NULL) as greeting;

CREATE FUNCTION greet(name TEXT)
RETURNS TEXT AS $%
BEGIN
IF name IS NULL THEN
RETURN 'Hallo Unbekannter!’;
ELSE
RETURN ‘'Hallo ' || name || '!%;
END IF;
5 \\[»H
$$ LANGUAGE plpgsql

ok

-- Aufruf
SELECT greet('Alice’) as greeting

greeting

Hallo Alice!

SELECT greet('Bob’') as greeting

greeting

Hallo Bob!

SELECT greet(NULL) as greeting

greeting

Hallo Unbekannter!

Hier sehen Sie das erste Mal IF..THEN...ELSE. Schauen wir uns Kontrollstrukturen genauer an.

Kontrollstrukturen: IF & CASE

IF / THEN / ELSE

Mit IF kdnnen Sie Bedingungen priifen - wie in jeder Programmiersprache.

Syntax:

IF condition THEN
-- Code, wenn wahr

ELSE
-- Code, wenn falsch
END IF;

Wichtig:
e | THEN [nach der Bedingung

o zum AbschliefRen (nicht nur)
Demo 3: Alterscheck

Ein praktisches Beispiel: Priifen, ob jemand volljahrig ist.

CREATE FUNCTION check_age(age INT)
RETURNS TEXT AS $$
BEGIN
IF age >= 18 THEN
RETURN 'Volljahrig';
ELSE
RETURN 'Minderjahrig';
END IF;
END;
$$ LANGUAGE plpgsql;

O© oo ~NOo Ul b~ WNBRE

R e
N R ®

-— Testen

SELECT check_age(25) as status;

SELECT check_age(16) as status;

SELECT check_age(18) as status; -- Grenzfall

SELECT check_age(NULL) as status; —-- Was passiert hier?

[S ey
o U AW

CREATE FUNCTION check_age(age INT)
RETURNS TEXT AS $$
BEGIN
IF age >= 18 THEN
RETURN 'Volljahrig';
ELSE
RETURN 'Minderjahrig';
END IF;
5 \\[»H
$$ LANGUAGE plpgsql

ok

-- Testen
SELECT check_age(25) as status

status

Volljahrig

SELECT check_age(16) as status

status

Minderjahrig

SELECT check_age(18) as status

status

Volljahrig

-- Grenzfall
SELECT check_age(NULL) as status

status

Minderjahrig

-- Was passiert hier?

ok

Beachten Sie: Bei NULL gibt die Funktion auch NULL zuriick - denn NULL >= 18 ist NULL, also falsch. Das ist
SQL-Logik!

CASE: Alternative zu IF

Fur Mehrfachauswahl ist CASE oft eleganter als verschachtelte IFs.

Syntax:

RETURN CASE
WHEN conditionl THEN resultl
WHEN condition2 THEN result2
ELSE default_result

END;

Demo 4: Notensystem

Ein Notensystem - perfekt flir CASE:

1 CREATE FUNCTION get_grade(score INT)

2 RETURNS TEXT AS $$

3 BEGIN

4 RETURN CASE

5 WHEN score >= 90 THEN 'Sehr gut (1)'

6 WHEN score >= 80 THEN 'Gut (2)'

7 WHEN score >= 70 THEN 'Befriedigend (3)'
8 WHEN score >= 60 THEN 'Ausreichend (4)'
9 ELSE 'Nicht bestanden (5)'

10 END;

11 END;

12 $$ LANGUAGE plpgsql;

13

14 -- Testen

15 SELECT get_grade(95) as note;

16 SELECT get_grade(85) as note;

17 SELECT get_grade(72) as note;

18 SELECT get_grade(50) as note;

CREATE FUNCTION get_grade(score INT)
RETURNS TEXT AS $$
BEGIN
RETURN CASE
WHEN score >= 90 THEN 'Sehr gut (1)’
WHEN score >= 80 THEN 'Gut (2)'
WHEN score >= 70 THEN 'Befriedigend (3)'
WHEN score >= 60 THEN 'Ausreichend (4)'
ELSE 'Nicht bestanden (5)'
END;
END;
$$ LANGUAGE plpgsql

ok

-- Testen
SELECT get_grade(95) as note

note

Sehr gut (1)

SELECT get_grade(85) as note

note

Gut (2)

SELECT get_grade(72) as note

note

Befriedigend (3)

SELECT get_grade(50) as note

note

Nicht bestanden (5)

CASE ist hier viel lesbarer als verschachtelte IFs. Wann nutzen Sie was? IF fir komplexe Bedingungen mit

mehreren Anweisungen, CASE fur einfache Wertauswahl.

Fehlerbehandlung: RAISE

Was, wenn etwas schiefgeht? Mit RAISE konnen Sie Fehler werfen - ahnlich wie ,,throw* in JavaScript.
RAISE EXCEPTION

Syntax:

RAISE EXCEPTION 'Fehlermeldung: %', variable;

Platzhalter: - Wird durch die néchste Variable ersetzt - Ahnlich wie in C oder String-
Interpolation

Demo 5: Division mit Fehlerbehandlung

Ein Klassiker: Division durch Null verhindern.

CREATE FUNCTION divide(a INT, b INT)
RETURNS DECIMAL AS $S
BEGIN

IF b = 0 THEN

RAISE EXCEPTION 'Division durch Null st nicht erlaubt!
)'s b

END IF;

RETURN a::DECIMAL / b;
END;
$$ LANGUAGE plpgsql;

a b~ WN B

O 00 N O

10

11 -- Testen: Erfolg

12 SELECT divide(10, 2) as result;

13 SELECT divide(100, 4) as result;

14

15 -- Testen: Fehler

16 SELECT divide(10, 0) as result; -- X Wirft Exception

(Divi

CREATE FUNCTION divide(a INT, b INT)
RETURNS DECIMAL AS $$%
BEGIN
IF b =0 THEN
RAISE EXCEPTION 'Division durch Null ist nicht erlaubt! (Divisor: %)’, b;
END IF;
RETURN a::DECIMAL / b;
END;
$$ LANGUAGE plpgsql

ok

-- Testen: Erfolg
SELECT divide(10, 2) as result

result

5.0000000000000000

SELECT divide(100, 4) as result

result

25.0000000000000000

-- Testen: Fehler
SELECT divide(10, 0) as result

Division durch Null ist nicht erlaubt! (Divisor: 0)

Probieren Sie die letzte Zeile aus - Sie sehen eine klare Fehlermeldung! Das ist besser als ein kryptischer
Datenbankfehler.

Praxisbeispiel: Preishberechnung

Demo 6: Preisberechnung mit MwSt.

Kombinieren wir alles Gelernte in einem realistischen Beispiel: Gesamtpreis mit Steuer berechnen.

CREATE FUNCTION calculate_total(price DECIMAL, tax_rate DECIMAL)
RETURNS DECIMAL AS $$
BEGIN
IF price < 0 THEN
RAISE EXCEPTION 'Preis kann nicht negativ sein: %', price;
END IF;

10
11
12
13
14
15
16
17
18
19
20
21
22
23

IF tax_rate < © OR tax_rate > 1 THEN

RAISE EXCEPTION 'Steuersatz muss zwischen 0 und 1 liegen: %',

tax_rate;
END IF;

RETURN price * (1 + tax_rate);
END;
$$ LANGUAGE plpgsql;

-— Testen mit verschiedenen Szenarien
SELECT calculate_total(100, 0.19) as brutto;
SELECT calculate_total(50, 0.07) as brutto;
SELECT calculate_total(200, 0) as brutto;

-— Fehler provozieren:
-— SELECT calculate_total(-10, 0.19) as brutto;
-— SELECT calculate_total(1060, 1.5) as brutto;

-- Deutschland: 19% M
-— Ermalkigt: 7%
-— Steuerfrei

-- X Negativer Prei
-- X Ungiiltiger Ste

CREATE FUNCTION calculate_total(price DECIMAL, tax_rate DECIMAL)
RETURNS DECIMAL AS $%
BEGIN
IF price < 0 THEN
RAISE EXCEPTION 'Preis kann nicht negativ sein: %', price;
END IF;

IF tax_rate < O OR tax_rate > 1 THEN
RAISE EXCEPTION 'Steuersatz muss zwischen 0 und 1 liegen: %', tax_rate;
END IF;

RETURN price * (1 + tax_rate);
5 \\[»H
$$ LANGUAGE plpgsql

ok

-- Testen mit verschiedenen Szenarien
SELECT calculate_total(100, 0.19) as brutto

brutto
119.00

-- Deutschland: 19% MwSt
SELECT calculate_total(50, 0.07) as brutto

brutto
53.50

-- ErmaRigt: 7%
SELECT calculate_total(200, 0) as brutto

brutto

200

-- Steuerfrei

-- Fehler provozieren:
-- SELECT calculate_total(-10, 0.19) as brutto; -- >{ Negativer Preis
-- SELECT calculate_total(100, 1.5) as brutto; -- >{ Ungiiltiger Steuersatz

ok

Perfekt! Jetzt konnen Sie solide Functions schreiben. Aber was, wenn Sie wollen, dass Code automatisch
ausgefuhrt wird - ohne dass jemand die Funktion aufruft? Genau dafir gibt es Trigger!

Teil 2: Trigger

Trigger sind das Automatisierungs-Werkzeug der Datenbank. Sie ,triggern® - werden ausgelost - bei
bestimmten Events: INSERT, UPDATE oder DELETE. Denken Sie an Event-Listener in JavaScript, aber auf
Datenbankebene.

Was sind Trigger?
Definition:

Ein Trigger ist eine Funktion, die automatisch ausgefiihrt wird, wenn ein bestimmtes Event auf einer Tabelle
passiert.

Komponenten:

1. Trigger-Function: Eine spezielle Function mit| RETURNS TRIGGER

2. Trigger: Verbindet die Function mit einer Tabelle und einem Event

Syntax:

-- 1. Function erstellen
CREATE FUNCTION trigger_function()
RETURNS TRIGGER AS $$
BEGIN

-— Code hier

RETURN NEW; -- oder OLD oder NULL
END;
$$ LANGUAGE plpgsql;

-- 2. Trigger erstellen

CREATE TRIGGER trigger_name

BEFORE UPDATE ON table_name

FOR EACH ROW

EXECUTE FUNCTION trigger_function();

Besonderheiten von Trigger-Functions

Trigger-Functions sind anders als normale Functions:

Spezielle Variablen:

Variable Typ Beschreibung Verfiigbar bei

NEW RECORD Die neue Zeile INSERT, UPDATE
OLD RECORD Die alte Zeile UPDATE, DELETE
Beispiel:

CREATE FUNCTION my_trigger ()

RETURNS TRIGGER AS $$

BEGIN
-- Bei INSERT: nur NEW verflgbar
-- Bei UPDATE: OLD und NEW verfugbar
—-- Bei DELETE: nur OLD verflgbar

RAISE NOTICE 'Alte Zeile: %, Neue Zeile: %', OLD, NEW;
RETURN NEW; -- Gibt die (ggf. modifizierte) Zeile zurlck

END;
$$ LANGUAGE plpgsql;

RETURN-Werte bei BEFORE-Triggern

Bei BEFORE-Triggern ist der RETURN-Wert wichtig:

RETURN Bedeutung

| RETURN NEW; | Anderungen tibernehmen (bei INSERT/UPDATE)

| RETURN OLD; | Urspriingliche Werte behalten (bei UPDATE)

| RETURN NULL; | Operation abbrechen! (bei DELETE: Zeile wird NICHT geldscht)

Bei AFTER-Triggern: RETURN-Wert wird ignoriert,| RETURN NULL; |ist ublich.

CREATE TRIGGER Syntax

So erstellen Sie einen Trigger:

CREATE TRIGGER trigger_name

{ BEFORE | AFTER } { INSERT | UPDATE | DELETE [OR ...] }
ON table_name

FOR EACH ROW

EXECUTE FUNCTION function_name();

Optionen:
* | BEFORE |- Trigger lauft VOR der Operation (kann Daten andern oder Operation abbrechen)

* | AFTER |- Trigger lauft NACH der Operation (kann nicht mehr eingreifen)

. |FOR EACH ROW|—TﬁggerwhdfuqedeberﬁeneZeHeausgﬁUhn

° MehﬁweEvmﬂ$|BEFORE INSERT OR UPDATE OR DELETE|
Genug Theorie - schauen wir uns vier praktische Beispiele an, die Sie sofort nutzen konnen!

Demo 7: Automatische Timestamps

Das haufigste Use Case: Timestamp-Felder automatisch aktualisieren.

Schritt 1: Tabelle vorbereiten

Zuerst erstellen wir eine Produkte-Tabelle mit Timestamp-Feldern.

1~ CREATE TABLE products (

2 id SERIAL PRIMARY KEY,

3 name TEXT NOT NULL,

4 price DECIMAL (10, 2) NOT NULL,

5 created_at TIMESTAMP DEFAULT NOW(),
6 updated_at TIMESTAMP DEFAULT NOW()
-

8
9

)3

—-- Testdaten einflgen
10 INSERT INTO products (name, price) VALUES

11 ('Laptop', 999.99),
12 ("Maus', 29.99);

13

14 -- Ausgangszustand

15 SELECT 1id, name, price, created_at, updated_at FROM products;

CREATE TABLE products (
id SERIAL PRIMARY KEY,
name TEXT NOT NULL,
price DECIMAL(10, 2) NOT NULL,
created_at TIMESTAMP DEFAULT NOW(),
updated_at TIMESTAMP DEFAULT NOW()

-- Testdaten einfiigen

INSERT INTO products (name, price) VALUES
(‘Laptop’, 999.99),
(‘Maus’, 29.99)

-- Ausgangszustand
SELECT id, name, price, created_at, updated_at FROM products

id name price created_at updated_at

1 Laptop 999.99 2026-02-05T15:48:14.350Z 2026-02-05T15:48:14.350Z

P Maus 29.99 2026-02-05T15:48:14.350Z 2026-02-05T15:48:14.350Z

Schritt 2: Trigger-Function & Trigger erstellen

Jetzt die Magie: Eine Function, die updated_at automatisch setzt.

-— Function: Setzt updated_at auf NOW()
CREATE OR REPLACE FUNCTION update_timestamp()
RETURNS TRIGGER AS $$
BEGIN

NEW.updated_at = NOW();

RETURN NEW;
END;
$$ LANGUAGE plpgsql;

O o0o~NO U~ WN R

=
(O]

-— Trigger: Wird bei jedem UPDATE ausgefihrt
CREATE TRIGGER set_updated_at

BEFORE UPDATE ON products

FOR EACH ROW

EXECUTE FUNCTION update_timestamp();

[l R U e
o ulh wWwN R

—-- Bestatigung
SELECT 'Trigger erfolgreich erstellt!' as status;

=
~

-- Function: Setzt updated_at auf NOW()
CREATE OR REPLACE FUNCTION update_timestamp()
RETURNS TRIGGER AS $$
BEGIN
NEW.updated_at = NOW();
RETURN NEW;
END;
$$ LANGUAGE plpgsql

ok

-- Trigger: Wird bei jedem UPDATE ausgefiihrt
CREATE TRIGGER set_updated_at

BEFORE UPDATE ON products

FOR EACH ROW

EXECUTE FUNCTION update_timestamp()

ok

-- Bestatigung
SELECT 'Trigger erfolgreich erstellt!' as status

status

Trigger erfolgreich erstellt!

Schritt 3: Testen
Jetzt andern wir Daten und schauen, ob updated_at automatisch aktualisiert wird.
1 -- Kurze Pause simulieren (damit Zeitunterschied sichtbar -ist)
2 SELECT pg_sleep(l);
3
4 -- Preis andern
5 UPDATE products
6 SET price = 899.99
7 WHERE name = 'Laptop';
8
9 -- Ergebnis priufen
10 SELECT
11 name,
12 price,
13 created_at,
14 updated_at,
15 (updated_at > created_at) as timestamp_updated
16 FROM products;

-- Kurze Pause simulieren (damit Zeitunterschied sichtbar ist)
SELECT pg_sleep(1)

pg_sleep

-- Preis andern

UPDATE products

SET price = 899.99
WHERE name = ‘Laptop'

ok

-- Ergebnis prufen
SELECT

name,

price,

created_at,

updated_at,

(updated_at > created_at) as timestamp_updated
FROM products

name | price created_at updated_at timestamp_updated

Maus 29.99 2026-02- 2026-02- false
05T15:48:14.350Z 05T15:48:14.350Z

Laptop 899.99 2026-02- 2026-02-
05T15:48:14.350Z 05T15:48:16.663Z

Perfekt! Das updated_at-Feld wurde automatisch aktualisiert - ohne dass wir es in der UPDATE-Query

angeben mussten. Das funktioniert jetzt fir jedes Update, egal aus welcher Anwendung!

Demo 8: Audit-Logging

Zweitens: Anderungen protokollieren fiir Compliance und Nachvollziehbarkeit.

Schritt 1: Tabellen vorbereiten

Wir brauchen eine Audit-Tabelle, um Anderungen zu protokollieren.

1 -- Produkte-Tabelle
2~ CREATE TABLE products_audit_demo (
3 id SERIAL PRIMARY KEY,

A nama TEYT

O 00 N o U

10
11
12
13
14
15
16
17
18
19
20
21
22

[NECTTTI L AN)

price DECIMAL(10, 2)
)3

-— Audit-Tabelle
= CREATE TABLE products_audit_log (
audit_id SERIAL PRIMARY KEY,
product_id INT,
old_price DECIMAL(10, 2),
new_price DECIMAL(10, 2),

changed_at TIMESTAMP DEFAULT NOW()

)5

-- Testdaten

INSERT INTO products_audit_demo (name, price) VALUES ('Laptop', 999.9

—-- Ausgangszustand
SELECT * FROM products_audit_demo;
SELECT * FROM products_audit_log;

-- Noch Tleer

-- Produkte-Tabelle

CREATE TABLE products_audit_demo (
id SERIAL PRIMARY KEY,
name TEXT,
price DECIMAL(10, 2)

-- Audit-Tabelle

CREATE TABLE products_audit_log (
audit_id SERIAL PRIMARY KEY,
product_id INT,
old_price DECIMAL(10, 2),
new_price DECIMAL(10, 2),
changed_at TIMESTAMP DEFAULT NOW()

-- Testdaten
INSERT INTO products_audit_demo (name, price) VALUES (‘'Laptop’, 999.99)

ok

-- Ausgangszustand
SELECT * FROM products_audit_demo

id name

1 Laptop

SELECT * FROM products_audit_log

audit_id product_id old_price new_price changed_at

-- Noch leer

ok

Schritt 2: Audit-Trigger erstellen

Function, die Preisanderungen protokolliert:

O oo ~NO U WN R

NNBRERRPRRBRRHRRRR
HO®WOWw-NouhwNRO

-— Function: Protokolliert Preisanderungen
CREATE OR REPLACE FUNCTION log_price_change()
RETURNS TRIGGER AS $$
BEGIN
-- Nur protokollieren, wenn sich der Preis tatsachlich geandert h
IF OLD.price IS DISTINCT FROM NEW.price THEN
INSERT INTO products_audit_log (product_id, old_price, new_pr
VALUES (NEW.id, OLD.price, NEW.price);
END IF;

RETURN NEW;
END;
$$ LANGUAGE plpgsql;

-- Trigger: Wird NACH jedem UPDATE ausgeflihrt
CREATE TRIGGER audit_price_changes

AFTER UPDATE ON products_audit_demo

FOR EACH ROW

EXECUTE FUNCTION log_price_change();

SELECT 'Audit-Trigger erstellt!' as status;

-- Function: Protokolliert Preisanderungen
CREATE OR REPLACE FUNCTION log_price_change()
RETURNS TRIGGER AS $$
BEGIN
-- Nur protokollieren, wenn sich der Preis tatsachlich geandert hat
IF OLD.price IS DISTINCT FROM NEW.price THEN
INSERT INTO products_audit_log (product_id, old_price, new_price)
VALUES (NEW.id, OLD.price, NEW.price);
END IF;

RETURN NEW;
END;
$$ LANGUAGE plpgsql

ok

-- Trigger: Wird NACH jedem UPDATE ausgefiihrt
CREATE TRIGGER audit_price_changes

AFTER UPDATE ON products_audit_demo

FOR EACH ROW

EXECUTE FUNCTION log_price_change()

(0] 4

SELECT 'Audit-Trigger erstellt!' as status

status

Audit-Trigger erstellt!

Schritt 3: Testen
Jetzt andern wir den Preis mehrmals und schauen ins Audit-Log.
1 -- Mehrere Preisanderungen
2 UPDATE products_audit_demo SET price = 899.99 WHERE name = 'Laptop';
3 UPDATE products_audit_demo SET price = 799.99 WHERE name = 'Laptop';
4 UPDATE products_audit_demo SET price = 849.99 WHERE name = 'Laptop';
5
6 -- Aktueller Zustand
7 SELECT * FROM products_audit_demo;
8
9 -- Audit-Log: Alle Anderungen protokolliert!
10 SELECT
11 audit_did,
12 product_1id,
13 old_price,

14
15
16
17
18

new_price,
old_price - new_price as price_change,
changed_at

FROM products_audit_log

ORDER BY changed_at;

-- Mehrere Preisanderungen
UPDATE products_audit_demo SET price = 899.99 WHERE name =

ok

UPDATE products_audit_demo SET price = 799.99 WHERE name

ok

UPDATE products_audit_demo SET price = 849.99 WHERE name =

ok

-- Aktueller Zustand
SELECT * FROM products_audit_demo

id name

1 Laptop

-- Audit-Log: Alle Anderungen protokolliert!
SELECT
audit_id,
product_id,
old_price,
nhew_price,
old_price - new_price as price_change,
changed_at
FROM products_audit_log
ORDER BY changed_at

audit_id product_id old_price new_price price_change changed_at

1 1 999.99 899.99 100.00 2026-02-
05T15:48:19.805Z

899.99 799.99 100.00 2026-02-
05T15:48:19.808Z7

799.99 849.99 -50.00 2026-02-
05T15:48:19.808Z

Exzellent! Jede Preisanderung wurde automatisch protokolliert. Das ist perfekt flir Compliance-

Anforderungen - die Anwendung kann das Logging nicht ,vergessen“.

Demo 9: Validierung

Drittens: Datenintegritat mit Triggern erzwingen - z.B. negative Preise verhindern.

Schritt 1: Tabelle & Trigger erstellen

Wir erstellen eine Tabelle und einen Trigger, der negative Preise verhindert.

O oo ~No ul b~ WNBRE

NNNNMNNNNRRHRERRRRRRR
OUDNWNHOUOWWNOUDMWNRO

4

-— Tabelle

CREATE TABLE products_validation (
id SERIAL PRIMARY KEY,
name TEXT,
price DECIMAL(10, 2)

)3

-- Function: Prift, ob Preis giltig ist
CREATE OR REPLACE FUNCTION prevent_negative_price()
RETURNS TRIGGER AS $$
BEGIN
IF NEW.price < © THEN
RAISE EXCEPTION 'Preis % ist unglltig (negativ)!', NEW.price;
END IF;

RETURN NEW;
END;
$$ LANGUAGE plpgsql;

-- Trigger: Lauft bei INSERT und UPDATE

CREATE TRIGGER check_priice

BEFORE INSERT OR UPDATE ON products_validation
FOR EACH ROW

EXECUTE FUNCTION prevent_negative_price();

SELECT 'Validierungs-Trigger erstellt!' as status;

-- Tabelle

CREATE TABLE products_validation (
id SERIAL PRIMARY KEY,
name TEXT,
price DECIMAL(10, 2)

-- Function: Priift, ob Preis giiltig ist
CREATE OR REPLACE FUNCTION prevent_negative_price()
RETURNS TRIGGER AS $$%
BEGIN
IF NEW.price < 0 THEN
RAISE EXCEPTION 'Preis % ist ungiiltig (negativ)!', NEW.price;
END IF;

RETURN NEW;
5\\[»H
$$ LANGUAGE plpgsql

ok

-- Trigger: Lauft bei INSERT und UPDATE

CREATE TRIGGER check_price

BEFORE INSERT OR UPDATE ON products_validation
FOR EACH ROW

EXECUTE FUNCTION prevent_negative price()

ok

SELECT 'Validierungs-Trigger erstellt!' as status

status

Validierungs-Trigger erstellt!

Schritt 2: Erfolgreiche Einfiigungen

Zuerst testen wir mit glltigen Daten:

-— GUltige Inserts

INSERT INTO products_validation (name, price) VALUES ('Laptop', 999.9
INSERT INTO products_validation (name, price) VALUES ('Maus', 29.99);
INSERT INTO products_validation (name, price) VALUES ('Gratis-Ebook',

--— Alles funktioniert

7 SELECT * FROM products_validation;

-- Gultige Inserts
INSERT INTO products_validation (name, price) VALUES ('Laptop’, 999.99)

ok

INSERT INTO products_validation (name, price) VALUES ('Maus', 29.99)

ok

INSERT INTO products_validation (name, price) VALUES ('Gratis-Ebook’, 0.00)

ok

-- Alles funktioniert
SELECT * FROM products_validation

id name
1 Laptop
2 Maus

3 Gratis-Ebook

Schritt 3: Ungiiltige Daten provozieren

Jetzt versuchen wir, einen negativen Preis einzufiigen:

—-- Dieser Versuch schlagt fehl!
INSERT INTO products_validation (name, price) VALUES ('Fehlerhaft', -1

A WDN R

-— X ERROR: Preis -10.00 ist ungiiltig (negativ)!

-- Dieser Versuch schlagt fehl!
INSERT INTO products_validation (name, price) VALUES ('Fehlerhaft’, -10.00)

Preis -10.00 ist ungultig (negativ)!

Perfekt! Der Trigger hat die ungiiltige Operation verhindert. Die Anwendung kann diese Regel nicht umgehen
- sieistin der Datenbank verankert.

Demo 10: Soft Delete mit Views & INSTEAD OF Trigger

Viertens: Loschen, ohne wirklich zu l6schen - fiir Wiederherstellung und Audit-Zwecke. Diesmal mit einem
eleganten Twist: Die Anwendung arbeitet nur mit einer View und weil} gar nicht, dass Soft Delete passiert!

Schritt 1: Basis-Tabelle mit Soft-Delete-Flag

Wir erstellen die eigentliche Produkte-Tabelle mit einem deleted_at Feld:

1 -- Basis-Tabelle (kennt die Anwendung nicht!)
2~ CREATE TABLE products_base (

3 id SERIAL PRIMARY KEY,

4 name TEXT NOT NULL,

5 price DECIMAL(10, 2) NOT NULL,

6 created_at TIMESTAMP DEFAULT NOW(),

7 deleted_at TIMESTAMP -- NULL = aktiv, Timestamp = geloscht
8)

S

10 -- Testdaten

11 INSERT INTO products_base (name, price) VALUES
12 ('"Laptop', 999.99),

13 ("Maus', 29.99),

14 ('Tastatur', 79.99);

15

16 -- Alle Daten (inkl. deleted_at)

17 SELECT * FROM products_base;

-- Basis-Tabelle (kennt die Anwendung nicht!)
CREATE TABLE products_base (
id SERIAL PRIMARY KEY,
name TEXT NOT NULL,
price DECIMAL(10, 2) NOT NULL,
created_at TIMESTAMP DEFAULT NOW(),
deleted_at TIMESTAMP -- NULL = aktiv, Timestamp = geloscht

-- Testdaten

INSERT INTO products_base (name, price) VALUES
(‘Laptop’, 999.99),
(‘Maus', 29.99),
('Tastatur', 79.99)

-- Alle Daten (inkl. deleted_at)
SELECT * FROM products_base

id nhame price created_at deleted_at
1 Laptop 999.99 2026-02-05T15:48:26.463Z null
P Maus 29.99 2026-02-05T15:48:26.463Z null

Tastatur 79.99 2026-02-05T15:48:26.463Z null

Schritt 2: View fiir aktive Produkte

Die Anwendung arbeitet nur mit dieser View - sie zeigt nur aktive Produkte:

-— View: Die "offentliche" Schnittstelle zur Datenbank
CREATE VIEW products AS

SELECT +id, name, price, created_at

FROM products_base

WHERE deleted_at IS NULL; -- Filter: nur aktive Produkte

-- Anwendung sieht nur diese View
SELECT * FROM products;

0 ~No ok~ WNBRE

-- View: Die "offentliche" Schnittstelle zur Datenbank
CREATE VIEW products AS

SELECT id, name, price, created_at

FROM products_base

WHERE deleted_at IS NULL

ok

-- Filter: nur aktive Produkte

-- Anwendung sieht nur diese View
SELECT * FROM products

id name price created_at

1 Laptop 999.99 2026-02-05T15:48:26.463Z
2 Maus 29.99 2026-02-05T15:48:26.463Z

Tastatur 79.99 2026-02-05T15:48:26.463Z

—{12}}- Beachten Sie: Die View zeigt das deleted_at Feld gar nicht - die Anwendung weil3 nichts von Soft
Delete!

Schritt 3: INSTEAD OF Trigger auf der View

Jetzt kommt die Magie: Ein Trigger auf der View, der DELETE-Operationen abfangt:

1 -- Function: FuUhrt Soft Delete auf der Basis-Tabelle aus
2 CREATE OR REPLACE FUNCTION soft_delete_via_view()
3 RETURNS TRIGGER AS s$
4 BEGIN
5 -- Setzt deleted_at auf der echten Tabelle
6 UPDATE products_base
7 SET deleted_at = NOW()
8 WHERE id = OLD.qd;
9
10 -— RETURN OLD bei INSTEAD OF Triggern
11 RETURN OLD;
12 END;
13 $$ LANGUAGE plpgsql;
14
15 -- INSTEAD OF Trigger: Ersetzt DELETE auf der View
16 CREATE TRIGGER soft_delete_products
17 INSTEAD OF DELETE ON products
18 FOR EACH ROW
19 EXECUTE FUNCTION soft_delete_via_view();
20
21 SELECT 'Soft-Delete-Trigger auf View erstellt!' as status:

-- Function: Fiihrt Soft Delete auf der Basis-Tabelle aus
CREATE OR REPLACE FUNCTION soft_delete_via_view()
RETURNS TRIGGER AS $%
BEGIN

-- Setzt deleted_at auf der echten Tabelle

UPDATE products_base

SET deleted_at = NOW()

WHERE id = OLD.id;

-- RETURN OLD bei INSTEAD OF Triggern
RETURN OLD;

END;

$$ LANGUAGE plpgsql

ok

-- INSTEAD OF Trigger: Ersetzt DELETE auf der View
CREATE TRIGGER soft_delete_products

INSTEAD OF DELETE ON products

FOR EACH ROW

EXECUTE FUNCTION soft_delete_via_view()

ok

SELECT 'Soft-Delete-Trigger auf View erstellt!' as status

status

Soft-Delete-Trigger auf View erstellt!

INSTEAD OF Trigger funktionieren nur auf Views und ersetzen die Operation komplett. Perfekt flir unseren
Use Case!

Schritt 4: ,Loschen” iiber die View

Die Anwendung ,l6scht” ein Produkt — aber es wird nur markiert:

-- Anwendung l6scht Uber die View (weifs nichts von Soft Delete!)
DELETE FROM products WHERE name = 'Maus';

-- View zeigt nur noch aktive Produkte
SELECT 'Aktive Produkte (View):' as 1info;
SELECT * FROM products;

-— Basis-Tabelle zeigt ALLE Produkte (inkl. deleted_at)
SELECT 'Alle Produkte (Basis-Tabelle):' as 1info;

O 00N U~ WN R

10
11
12
13
14
15
16
17
18
19
20

SELECT
id,
name,
price,
deleted_at,
CASE
WHEN deleted_at IS NULL THEN 'i' Aktiv'
ELSE ') Geldscht!'
END as status
FROM products_base
ORDER BY -d;

-- Anwendung léscht liber die View (weiB8 nichts von Soft Delete!)
DELETE FROM products WHERE name = 'Maus'

ok

-- View zeigt nur noch aktive Produkte
SELECT 'Aktive Produkte (View):' as info

info

Aktive Produkte (View):

SELECT * FROM products

id name price created_at
1 Laptop 999.99 2026-02-05T15:48:26.463Z

3 Tastatur 79.99 2026-02-05T15:48:26.463Z

-- Basis-Tabelle zeigt ALLE Produkte (inkl. deleted_at)
SELECT 'Alle Produkte (Basis-Tabelle):' as info

info

Alle Produkte (Basis-Tabelle):

SELECT
id,

name,
price,
deleted_at,
CASE
WHEN deleted_at IS NULL THEN '# Aktiv'
ELSE '>{ Geloscht'
END as status
FROM products_base
ORDER BY id

name deleted_at status

Laptop null ¥ Aktiv

Maus 2026-02-05T15:48:28.837Z > Geldscht

Tastatur null W Aktiv

Brilliant! Die Maus ist aus der View verschwunden - aber in der Basis-Tabelle noch vorhanden mit gesetztem
deleted_at Timestamp. Die Anwendung merkt nichts von der Implementierung!

Schritt 5: Wiederherstellung

—{{BB}}- Gelbéschte Produkte kénnen einfach wiederhergestellt werden:

—-— Admin-Funktion: Produkt wiederherstellen
UPDATE products_base

SET deleted_at = NULL

WHERE name = 'Maus';

-— View zeigt das Produkt wieder!
SELECT * FROM products;

~No o WNBE

-- Admin-Funktion: Produkt wiederherstellen
UPDATE products_base
SET deleted_at = NULL
WHERE name = 'Maus'

ok

-- View zeigt das Produkt wieder!
SELECT * FROM products

id name price created_at

1 Laptop 999.99 2026-02-05T15:48:26.463Z

3 Tastatur 79.99 2026-02-05T15:48:26.463Z

P Maus 29.99 2026-02-05T15:48:26.463Z

Perfekt! Durch die View-Abstraktion haben Sie eine saubere Trennung: Die Anwendung arbeitet mit der View,
Admins konnen auf die Basis-Tabelle zugreifen.

Warum ist das elegant?

Schauen wir uns die Vorteile an:

Vorteile dieser Architektur:

Aspekt Ohne View Mit View + INSTEAD OF Trigger
Anwendungscode Muss Soft Delete implementieren Arbeitet normal mit DELETE
Komplexitat Verteilt Giber viele Stellen Zentralisiert in der DB
Konsistenz Entwickler konnen es vergessen Automatisch garantiert
. Muss explizit implementiert Einfaches UPDATE auf Basis-
Wiederherstellung
werden Tabelle
. Anwendung muss angepasst Transparent - keine Code-
Migration ,
werden Anderung
Testen Schwierig (Uberall priifen) Einfach (nur View testen)

Anwendungscode-Vergleich:

// Ohne View: Anwendung muss Soft Delete kennen

await db.query(
"UPDATE products SET deleted_at = NOW() WHERE 1id = $1',
[productId]

)3

// Mit View: Anwendung nutzt normales DELETE
await db.query(
'DELETE FROM products WHERE +id = $1°',
[productId]
)3
// " Trigger macht den Rest - transparent!

Best Practice: Diese Architektur nennt sich Database Abstraction Layer. Die View ist die 6ffentliche API, die
Implementierung dahinter kann sich andern, ohne die Anwendung anzufassen.

Gefahren & Best Practices

Trigger sind machtig — aber mit groRer Macht kommt grofRe Verantwortung! Schauen wir uns potenzielle

Probleme an.

Gefahr 1: Trigger-Kaskaden

Das grofdte Problem: Trigger, die andere Trigger auslosen - eine Kettenreaktion!

Szenario:

Trigger A (on products)
- UPDATE -inventory
- Trigger B (on inventory)
— INSERT audit_log
- Trigger C (on audit_log)
— UPDATE statistics
- Trigger D (on statistics)

—

Problem:
e X Schwer zu debuggen
e X Performance-Einbruch
e X Risiko von Endlosschleifen
e X Unvorhersehbares Verhalten

Losung:

-— NIEMALS 1in einem Trigger weitere Trigger auslosen!

-— Stattdessen: Komplexe Logik in eine Funktion auslagern
CREATE FUNCTION process_order()

RETURNS VOID AS $$

BEGIN
-- Alle Operationen explizit hier
UPDATE -1inventory ...;
INSERT INTO audit_log ...;
UPDATE statistics ...;
END;

$$ LANGUAGE plpgsql;

Gefahr 2: Performance-Impact

Trigger laufen bei JEDER Operation - auch bei BULK Inserts!

Problem:

-— BULK INSERT von 100.000 Zeilen
INSERT INTO products SELECT * FROM -imported_data;

-- Wenn ein Trigger existiert:
-- - 100.000x Trigger—-Ausfihrung!
-- o Kann Minuten statt Sekunden dauern

Losung:

-- Trigger temporar deaktivieren (PostgreSQL)
ALTER TABLE products DISABLE TRIGGER set_updated_at;

-— BULK Operation
INSERT INTO products SELECT * FROM -imported_data;

-— Trigger wieder aktivieren
ALTER TABLE products ENABLE TRIGGER set_updated_at;

Best Practice: Uberlegen Sie, ob ein Batch-Job statt Trigger sinnvoller ist!

Gefahr 3: Debugging-Schwierigkeiten

Trigger sind unsichtbar fiir die Anwendung - Fehler sind schwer zu finden.

Problem:

// Anwendungscode
await db.query('UPDATE products SET price = 99.99 WHERE 1id = 1');

// ? Pl6tzlich ist die Performance schlecht
// ? Plétzlich gibt es unerwartete Anderungen in anderen Tabellen
// ? Die Anwendung weiR nicht, dass Trigger existieren!

Losung:

1. Dokumentation: Kommentiere alle Trigger im Schema-Script

2. NanﬁngConvenﬁom|trigger_<tab1e>_<event>_<action>

3. Logging: RAISE NOTICE in Triggern fiir Debugging

4. Monitoring: Query-Performance liberwachen

CREATE TRIGGER trigger_products_after_update_audit
AFTER UPDATE ON products

FOR EACH ROW

EXECUTE FUNCTION log_price_change();

-— Name verrat: Tabelle = products, Event = update, Aktion = audit

Best Practice 1: Trigger nur wenn notig

Viele Anforderungen kénnen einfacher gelost werden!

Anforderung

Validierung

Default-Werte

Ref. Integritat

Timestamps

Audit-
Logging

Soft Delete

X Trigger

| CREATE TRIGGER
check_price...|

| CREATE TRIGGER
set_default...|

| CREATE TRIGGER
check_fk. .. |

Trigger ist OK

Trigger ist ideal

Trigger ist gut

Bessere Losung

| CHECK (price >= 0) |

| DEFAULT Now() |

| FOREIGN KEY |

Oder: | DEFAULT NOW() |+ Trigger
fiir UPDATE

Keine Alternative

Oder: App-seitig

Faustregel: Nutze deklarative Constraints wo moglich, Trigger nur wenn nétig!

Best Practice 2: BEFORE vs. AFTER

Wann welchen Trigger-Typ nutzen?

Use Case BEFORE
Daten andern (z.B. _
. (Ja
Timestamps)
Validierung (z.B. negative .
. gl g 7 Ja
Preise)
("4 RETURN
Operation abbrechen 4
NULL
Audit-Logging I\ Moglich
Andere Tabellen andern I\ Moglich

Faustregel:

AFTER

X zu spit

X Zu spit

X Nicht moglich

Besser (Anderung ist garantiert
committed)

Besser (Hauptoperation ist fertig)

* BEFORE fiir Anderungen an der aktuellen Zeile

e AFTER fiir Anderungen an anderen Tabellen oder Logging
Best Practice 3: Testen, testen, testen!

Trigger sind Code - und Code muss getestet werden!

Setup: Testumgebung vorbereiten

Zuerst erstellen wir eine Testumgebung mit Produkten-Tabelle und allen Triggern:

O 0o ~NOoO U~ WN R

WWWWWwwwwwwNNNNNMNNNNNNRRRRERRRRRR R
OO NOOUDNWNHOOWOWNOUNWNROOOOWNOUDNWNRO

4

—-- Tabelle mit Timestamp-Feldern und Validierung
CREATE TABLE products (
id SERIAL PRIMARY KEY,
name TEXT NOT NULL,
price DECIMAL(10, 2) NOT NULL,
created_at TIMESTAMP DEFAULT NOW(),
updated_at TIMESTAMP DEFAULT NOW()

)3

-— Function 1: Timestamp automatisch aktualisieren
CREATE OR REPLACE FUNCTION update_timestamp()
RETURNS TRIGGER AS $$
BEGIN

NEW.updated_at = NOW();

RETURN NEW;
END;
$$ LANGUAGE plpgsql;

-— Trigger 1: Setzt updated_at bei jedem UPDATE
CREATE TRIGGER set_updated_at

BEFORE UPDATE ON products

FOR EACH ROW

EXECUTE FUNCTION update_timestamp();

-- Function 2: Negative Preise verhindern
CREATE OR REPLACE FUNCTION prevent_negative_price()
RETURNS TRIGGER AS $$
BEGIN
IF NEW.price < @ THEN
RAISE EXCEPTION 'Preis % ist unglltig (negativ)!', NEW.price;
END IF;
RETURN NEW;
END;
$$ LANGUAGE plpgsql;

-— Trigger 2: Validierung bei INSERT und UPDATE
CREATE TRIGGER check_price

BEFORE INSERT OR UPDATE ON products

FOR EACH ROW

40
41
42
43
44
45
46
47
48
49

EXECUIE FUNCILUN prevent_negative_price();

-— Testdaten

INSERT INTO products (name, price) VALUES
('Laptop', 999.99),
("Maus', 29.99);

—-— Status
SELECT 'Test-Umgebung erfolgreich erstellt!' as status;
SELECT * FROM products;

-- Tabelle mit Timestamp-Feldern und Validierung
CREATE TABLE products (
id SERIAL PRIMARY KEY,
name TEXT NOT NULL,
price DECIMAL(10, 2) NOT NULL,
created_at TIMESTAMP DEFAULT NOW(),
updated_at TIMESTAMP DEFAULT NOW()

-- Function 1: Timestamp automatisch aktualisieren
CREATE OR REPLACE FUNCTION update_timestamp()
RETURNS TRIGGER AS $$
BEGIN

NEW.updated_at = NOW();

RETURN NEW;
END;
$$ LANGUAGE plpgsql

ok

-- Trigger 1: Setzt updated_at bei jedem UPDATE
CREATE TRIGGER set_updated_at

BEFORE UPDATE ON products
FOR EACH ROW
EXECUTE FUNCTION update_timestamp()

ok

-- Function 2: Negative Preise verhindern
CREATE OR REPLACE FUNCTION prevent_negative_price()
RETURNS TRIGGER AS $$%
BEGIN
IF NEW.price < 0 THEN
RAISE EXCEPTION 'Preis % ist ungiiltig (negativ)!', NEW.price;
END IF;
RETURN NEW;
5\\[» H
$$ LANGUAGE plpgsql

ok

-- Trigger 2: Validierung bei INSERT und UPDATE
CREATE TRIGGER check_price

BEFORE INSERT OR UPDATE ON products

FOR EACH ROW

EXECUTE FUNCTION prevent_negative_price()

ok

-- Testdaten

INSERT INTO products (name, price) VALUES
(‘Laptop’, 999.99),
(‘Maus', 29.99)

-- Status
SELECT 'Test-Umgebung erfolgreich erstellt!' as status

status

Test-Umgebung erfolgreich erstellt!

SELECT * FROM products

id name price created_at updated_at

1 Laptop 999.99 2026-02-05T15:48:39.634Z 2026-02-05T15:48:39.634Z

2 Maus 29.99 2026-02-05T15:48:39.634Z 2026-02-05T15:48:39.634Z

Test 1: Erfolgreicher Fall (Timestamp-Update)

Testen wir, ob der Timestamp-Trigger korrekt funktioniert. Wir nutzen eine Transaktion mit ROLLBACK, um
die Testdaten nicht dauerhaft zu andern:

1 -- Test 1: Erfolgreicher Fall

2 —- Erwartung: updated_at wird automatisch aktualisiert
3

4 BEGIN; -- Transaktion starten

5

6 -- Vor dem Update

7 SELECT

8 name,

9 price,

10 created_at,

11 updated_at,

12 'BEFORE UPDATE' as moment

13 FROM products WHERE name = 'Laptop';

14

15 -- Kurze Pause flr sichtbaren Zeitunterschied
16 SELECT pg_sleep(0.5);

=
~

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

-- Update durchfihren
UPDATE products SET price = 899.99 WHERE name = 'Laptop';

-— Nach dem Update: updated_at sollte NACH created_at liegen
SELECT

name,

price,

created_at,

updated_at,

'"AFTER UPDATE' as moment,

(updated_at > created_at) as timestamp_wurde_aktualisiert
FROM products WHERE name = 'Laptop';

—— "4 Test erfolgreich wenn: timestamp_wurde_aktualisiert = true

ROLLBACK; -- Anderungen verwerfen, Daten bleiben unverandert

-- Prifen: Daten sind wieder im Originalzustand
SELECT 'Nach ROLLBACK:' as info, * FROM products WHERE name =

'Laptop

-- Test 1: Erfolgreicher Fall
-- Erwartung: updated_at wird automatisch aktualisiert

BEGIN

ok

-- Transaktion starten

-- Vor dem Update
SELECT
name,
price,
created_at,
updated_at,
'BEFORE UPDATE' as moment
FROM products WHERE name = 'Laptop’

name @ price created_at updated_at

Laptop 999.99 2026-02- 2026-02-
05T15:48:39.634Z 05T15:48:39.634Z

-- Kurze Pause flr sichtbaren Zeitunterschied
SELECT pg_sleep(0.5)

pg_sleep

-- Update durchfihren
UPDATE products SET price = 899.99 WHERE name = 'Laptop'’

ok

-- Nach dem Update: updated_at sollte NACH created_at liegen
SELECT

name,

price,

created_at,

updated_at,

'AFTER UPDATE' as moment,

(updated_at > created_at) as timestamp_wurde_aktualisiert
FROM products WHERE name = 'Laptop’

moment

BEFORE
UPDATE

name @ price created_at updated_at moment timestamp_wurde_a

Laptop 899.99 2026-02- 2026-02- AFTER true
05T15:48:39.634Z 05T15:48:39.974Z UPDATE

1 rows

-- ¥ Test erfolgreich wenn: timestamp_wurde_aktualisiert = true

ROLLBACK

ok

- I'-'\nderungen verwerfen, Daten bleiben unverandert

-- Prifen: Daten sind wieder im Originalzustand
SELECT 'Nach ROLLBACK:' as info, * FROM products WHERE name = 'Laptop'
info id name @ price created_at updated_at

Nach 1 Laptop 999.99 2026-02- 2026-02-
ROLLBACK: 05T15:48:39.634Z 05T15:48:39.634Z

Test 2: Fehlerfall (Negative Preise)

Jetzt testen wir die Validierung - negative Preise miissen verhindert werden. Die Transaktion wird
automatisch zurtickgerollt, wenn ein Fehler auftritt:

1 -- Test 2: Fehlerfall

2 -- Erwartung: INSERT mit negativem Preis wird abgelehnt

3

4 BEGIN; -- Transaktion starten

5

6 -- Anzahl Produkte vor dem Test

7 SELECT 'Vor dem Test:' as info, COUNT(*) as anzahl_produkte FROM prod

8

9 -- Dieser Versuch MUSS fehlschlagen:

10 INSERT INTO products (name, price) VALUES ('Fehlerprodukt', -10.00);

11

12 -- X Erwartete Fehlermeldung: "Preis -10.00 st ungiltig (negativ)!"

13 -- X Diese Zeile wird NICHT erreicht, da vorher eine Exception gewor
wird

14

15 ROLLBACK; -- Wird nur bei manuellem Aufruf erreicht

16

17 -- Nach dem Fehler: Prifen, dass keine Daten eingefligt wurden

18 SELECT 'Nach dem fehlgeschlagenen INSERT:' as info, COUNT(x) as
anzahl_produkte FROM products;

19
20 -- [¥ Test erfolgreich wenn: Exception wird geworfen UND anzahl_prod
bleibt gleich

-- Test 2: Fehlerfall
-- Erwartung: INSERT mit negativem Preis wird abgelehnt

BEGIN

ok

-- Transaktion starten

-- Anzahl Produkte vor dem Test
SELECT 'Vor dem Test:' as info, COUNT(*) as anzahl_produkte FROM products

info anzahl_produkte

Vor dem Test: 2

-- Dieser Versuch MUSS fehlschlagen:
INSERT INTO products (name, price) VALUES (‘Fehlerprodukt’, -10.00)

Preis -10.00 ist ungultig (negativ)!

Test 3: Edge Cases (NULL-Werte)

Edge Cases sind wichtig — was passiert mit NULL? Auch hier nutzen wir eine Transaktion:

1 -- Test 3: Edge Cases

2 -- Erwartung: NULL-Preis wird durch NOT NULL Constraint abgelehnt

3

4 BEGIN; -- Transaktion starten

5

6 -- Aktueller Zustand vor dem Test

7 SELECT 'Vor dem Test:' as info, id, name, price FROM products WHERE 1

8

9 -- Versuch, Preis auf NULL zu setzen

10 UPDATE products SET price = NULL WHERE id = 1;

11

12 -- X Erwartete Fehlermeldung: NOT NULL Constraint Violation

13 -- X Diese Zeilen werden NICHT erreicht, da vorher eine Exception gd
wird

14

15 ROLLBACK; -- Wird nur bei manuellem Aufruf erreicht

16

17 -- Prifen. dass Daten unverandert sind

18 SELECT 'Nach dem fehlgeschlagenen Update:' as 1info, id, name, price

19 FROM products WHERE id = 1;

20

21 -- ¥ Test erfolgreich wenn: Update wird verhindert UND Preis bleibt
unverandert

-- Test 3: Edge Cases
-- Erwartung: NULL-Preis wird durch NOT NULL Constraint abgelehnt

BEGIN

current transaction is aborted, commands ignored until end of transaction block

Test-Zusammenfassung

Was haben wir getestet?

Test-Ergebnisse:

Test Ziel Erwartetes Ergebnis Status
Test 1 Timestamp- updated_at|> v
es
Update created_at Erfolgreich

4

Test 2 Negative Preise Exception wird geworfen .
Erfolgreich

4

Test 3 NULL-Werte NOT NULL Constraint greift .
Erfolgreich

Best Practice:

%4 schreibe Test-Scripts fiir jeden Trigger

%4 Teste Edge Cases (NULL, 0, negative Werte)

%4 Teste sowohl Erfolgs- als auch Fehlfille

(%4 Nutze Transaktionen (BEGIN/ROLLBACK) fiir isolierte Tests - so bleiben Testdaten sauber!
o [4 Teste Performance mit vielen Zeilen (hier nicht gezeigt)

Vorteile von Transaktionen beim Testen:

. Tests sind wiederholbar - keine Datenverunreinigung

e [Testssind isoliert - beeinflussen sich nicht gegenseitig

. Tests sind schnell - ROLLBACK ist schneller als DELETE

. Originalzustand bleibt erhalten - Setup muss nicht wiederholt werden
Erweiterte Tests (Optional):

e Test mit 0 als Preis (sollte erlaubt sein)

* Test mit sehr groRen Zahlen

* Test mitvielen gleichzeitigen Updates

* Performance-Test mit BULK Inserts

Zusammenfassung

Was haben wir heute gelernt? Functions und Trigger sind machtige Werkzeuge fiir server-seitige Logik in der
Datenbank.

Kernpunkte: Functions

1. Stored Functions = Wiederverwendbare Logik in der Datenbank

2. Syntax:|CREATE FUNCTION name(params) RETURNS type AS $$... $$ LANGUAGE
plpgsql;

3. Kontrollstrukturen:| IF...THEN. ..ELSE |und|CASE |

4. Fehlerbehandlung:| RAISE EXCEPTION |

5. Use Cases: Berechnungen, Validierung, String-Verarbeitung
Kernpunkte: Trigger

6. Trigger = Automatische Reaktion auf Datenbankanderungen

7. Trigger-Functions:| RETURNS TRIGGER | nutzen|OLD |und| NEW |

8. Syntax:| CREATE TRIGGER name BEFORE/AFTER event ON table FOR EACH ROW
EXECUTE FUNCTION func(); |

9. Use Cases: Timestamps, Audit-Logging, Validierung, Soft Delete
10. Gefahren: Kaskaden, Performance, Debugging-Schwierigkeiten

Wann was nutzen?

Szenario Losung

Einfache Validierung CHECK Constraint

Default-Werte DEFAULT Clause

Automatische Timestamps Trigger (UPDATE) + DEFAULT (INSERT)
Audit-Logging Trigger

Soft Delete Trigger oder App-Logik

Komplexe Berechnungen Function

Referentielle Integritat FOREIGN KEY

Sie haben heute 10 interaktive Demos durchgearbeitet - von einfachen Functions bis zu komplexen Triggern.

Experimentieren Sie weiter! Andern Sie die Beispiele, brechen Sie sie, fixen Sie sie wieder. So lernt man am
besten!

Referenzen & Quellen

Offizielle Dokumentation

* PostgreSQL: PL/pgSQL Functions

* PostgreSQL: Trigger Functions

e PostgreSQL: CREATE TRIGGER

* PGlite: Browser PostgreSQL

Blicher & Tutorials
»PostgreSQL: Up and Running® - Regina Obe & Leo Hsu (Kapitel zu Functions & Trigger)
* ,Mastering PostgreSQL® - Hans-Jurgen Schonig

e PostGIS Tutorial: Custom Functions

Best Practices

¢ Use the Index, Luke: Triggers & Performance

* PostgreSQL Wiki: Trigger Best Practices

Tools

https://www.postgresql.org/docs/current/plpgsql.html
https://www.postgresql.org/docs/current/plpgsql-trigger.html
https://www.postgresql.org/docs/current/sql-createtrigger.html
https://github.com/electric-sql/pglite
https://postgis.net/workshops/postgis-intro/functions.html
https://use-the-index-luke.com/
https://wiki.postgresql.org/wiki/Triggers

* pgAdmin - Trigger-Debugging
e DBeaver - Cross-Platform Database Tool

* PGlite - PostgreSQL im Browser

https://www.pgadmin.org/
https://dbeaver.io/
https://pglite.dev/

