
Session 15 – Functions & Trigger

Session-Typ: Vorlesung Dauer: 90 Minuten Lernziele: Stored Functions schreiben, Trigger erstellen,
Automatisierung verstehen

Willkommen zu Session 15! Heute schauen wir uns an, wie wir Logik nicht nur in unserer Anwendung,
sondern direkt in der Datenbank ausführen können. Warum ist das sinnvoll? Stellen Sie sich vor, Sie
möchten, dass bei jeder Änderung an einem Produkt automatisch ein Timestamp aktualisiert wird – oder
dass jede Preisänderung protokolliert wird. Das manuell in jeder Anwendung zu implementieren ist
fehleranfällig. Besser: Die Datenbank macht es automatisch! Heute lernen Sie Functions und Trigger kennen
– und probieren alles direkt im Browser aus.

Motivation: Warum Logik in der Datenbank?
Beginnen wir mit einer Frage: Wo sollte Geschäftslogik leben? In der Anwendung oder in der Datenbank? Die
Antwort ist: Es kommt darauf an! Aber für bestimmte Aufgaben ist die Datenbank der perfekte Ort.

Problem 1: Vergessene Timestamps
Klassisches Szenario: Sie wollen bei jeder Änderung an einem Datensatz das „updated_at“ Feld
aktualisieren.

Ohne Automatisierung (Anwendungsseite):

Mit einem Trigger ist das Problem gelöst – einmal definiert, funktioniert es immer. Automatisch. Konsistent.
Ohne dass die Anwendung daran denken muss.

Mit Trigger (Datenbank):

// In jeder Update-Funktion manuell:
await db.query(
 'UPDATE products SET price = $1, updated_at = NOW() WHERE id = $2',
 [newPrice, productId]
);

// ❌ Fehleranfällig: Was, wenn jemand vergisst, updated_at zu setzen?
// ❌ Duplizierter Code: In 50 verschiedenen Update-Funktionen
// ❌ Inkonsistent: Manche Entwickler machen es, andere nicht

CREATE TRIGGER set_updated_at
BEFORE UPDATE ON products
FOR EACH ROW
EXECUTE FUNCTION update_timestamp();

-- ✅ Funktioniert immer, egal welche Anwendung zugreift
-- ✅ Code an einer zentralen Stelle





Problem 2: Audit-Logging
Zweites Szenario: Sie wollen nachvollziehen, wer wann welche Preise geändert hat. Compliance-
Anforderung!

Ohne Trigger:

Mit einem Trigger passiert das Logging automatisch – transparent, konsistent, fehlerfrei.

Mit Trigger:

Use Cases für Functions & Trigger
Wann machen Functions und Trigger Sinn? Hier ist eine Übersicht:

 ✅ Code an einer zentralen Stelle
-- ✅ Konsistent für alle Updates

// In jedem Update manuell protokollieren
await db.query('UPDATE products SET price = $1 WHERE id = $2', [newPrice, i
await db.query(
 'INSERT INTO audit_log (table_name, action, old_value, new_value) VALUES
 $2, $3, $4)',
 ['products', 'UPDATE', oldPrice, newPrice]
);

// ❌ Zwei Queries – was bei Fehler zwischen beiden?
// ❌ Entwickler muss daran denken
// ❌ Audit-Log kann vergessen werden

CREATE TRIGGER audit_changes
AFTER UPDATE ON products
FOR EACH ROW
EXECUTE FUNCTION log_change();

-- ✅ Automatisch bei jedem Update
-- ✅ Kann nicht vergessen werden
-- ✅ Atomar: Entweder beide Operationen oder keine





Berechnungen (z.B. Steuer,
Rabatt)

✅ Wiederverwendbar
⚠️ Automatisch bei jedem
Event

Validierung (z.B. negative
Preise verhindern)

✅ Kann manuell
aufgerufen werden

✅✅ Automatisch, kann
nicht umgangen werden

Automatische Timestamps
⚠️ Muss aufgerufen
werden

✅✅ Automatisch bei
INSERT/UPDATE

Audit-Logging
⚠️ Muss explizit
aufgerufen werden

✅✅ Automatisch, konsistent

Soft Delete (Löschen =
Markieren)

⚠️ Muss implementiert
werden

✅✅ Überschreibt DELETE
automatisch

Komplexe Geschäftslogik
✅ Gut testbar,
wiederverwendbar

⚠️ Schwer zu debuggen

Faustregel:

Heute lernen Sie beide Konzepte kennen – und zwar nicht nur theoretisch, sondern mit vielen praktischen
Demos, die Sie direkt im Browser ausprobieren können!

Teil 1: Stored Functions
Beginnen wir mit Stored Functions. Das sind quasi JavaScript-Funktionen, aber in der Datenbank. Sie
schreiben sie einmal, speichern sie in der Datenbank – und können sie dann in Queries verwenden.

Was sind Stored Functions?
Eine Stored Function ist ein Stück SQL-Code, das in der Datenbank gespeichert wird und wiederverwendet
werden kann.

Vorteile:

Functions = Wiederverwendbare Logik, die Sie aktiv aufrufen

Trigger = Automatische Reaktion auf Datenbankänderungen

Use Case Functions Trigger

Nachteile:

Grundlegende Syntax
Die Syntax für CREATE FUNCTION sieht in PostgreSQL so aus:

Wichtige Bestandteile:

Demo 1: Einfache Addition
Schauen wir uns ein ganz einfaches Beispiel an: Eine Funktion, die zwei Zahlen addiert.

✅ Wiederverwendbarkeit: Einmal schreiben, überall nutzen

✅ Performance: Code läuft auf dem Datenbankserver (kein Netzwerk-Overhead)

✅ Konsistenz: Eine zentrale Definition, keine Duplikation

✅ Sicherheit: Benutzer können Funktionen aufrufen, ohne Tabellenzugriff zu haben

⚠️ Portabilität: Syntax unterscheidet sich zwischen Datenbanken

⚠️ Debugging: Schwieriger als Anwendungscode

⚠️ Testing: Unit-Tests sind komplizierter

CREATE FUNCTION function_name(parameter1 TYPE, parameter2 TYPE, ...)
RETURNS return_type AS $$
BEGIN
 -- Funktionskörper
 RETURN result;
END;
$$ LANGUAGE plpgsql;

CREATE FUNCTION function_name(...) – Name und Parameter

RETURNS return_type – Was gibt die Funktion zurück? (INT, TEXT, DECIMAL, …)

$$... $$ – String-Delimiter (statt '...'), macht Code lesbarer

BEGIN ... END; – Der eigentliche Code

LANGUAGE plpgsql – PostgreSQL's Procedural Language

CREATE FUNCTION add_numbers(a INT, b INT)
RETURNS INT AS $$
BEGIN
 RETURN a + b;
END;
$$ LANGUAGE plpgsql;

-- Aufruf
SELECT add_numbers(5, 3) as result;

1
2
3
4
5
6
7
8
9





CREATE FUNCTION add_numbers(a INT, b INT)

RETURNS INT AS $$

BEGIN

 RETURN a + b;

END;

$$ LANGUAGE plpgsql

ok

-- Aufruf

SELECT add_numbers(5, 3) as result

1 rows

Das war's! Sie sehen: Parameter in Klammern, Rückgabetyp mit RETURNS, und im Body ein einfaches
RETURN. Probieren Sie es aus – ändern Sie die Zahlen!

Demo 2: String-Verarbeitung
Functions können auch mit Strings arbeiten. Hier eine Grußfunktion:

8

CREATE FUNCTION greet(name TEXT)
RETURNS TEXT AS $$
BEGIN
 IF name IS NULL THEN
 RETURN 'Hallo Unbekannter!';
 ELSE
 RETURN 'Hallo ' || name || '!';
 END IF;
END;
$$ LANGUAGE plpgsql;

-- Aufruf
SELECT greet('Alice') as greeting;
SELECT greet('Bob') as greeting;
SELECT greet(NULL) as greeting;

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

1

result



CREATE FUNCTION greet(name TEXT)

RETURNS TEXT AS $$

BEGIN

 IF name IS NULL THEN

 RETURN 'Hallo Unbekannter!';

 ELSE

 RETURN 'Hallo ' || name || '!';

 END IF;

END;

$$ LANGUAGE plpgsql

ok

-- Aufruf

SELECT greet('Alice') as greeting

1 rows

SELECT greet('Bob') as greeting

1 rows

SELECT greet(NULL) as greeting

1 rows

Hier sehen Sie das erste Mal IF...THEN...ELSE. Schauen wir uns Kontrollstrukturen genauer an.

Kontrollstrukturen: IF & CASE

IF / THEN / ELSE
Mit IF können Sie Bedingungen prüfen – wie in jeder Programmiersprache.

Syntax:

Hallo Alice!

Hallo Bob!

Hallo Unbekannter!

IF condition THEN
 -- Code, wenn wahr

1

1

1

greeting

greeting

greeting



Wichtig:

Demo 3: Alterscheck
Ein praktisches Beispiel: Prüfen, ob jemand volljährig ist.

,
ELSE
 -- Code, wenn falsch
END IF;

THEN nach der Bedingung

END IF; zum Abschließen (nicht nur END)

CREATE FUNCTION check_age(age INT)
RETURNS TEXT AS $$
BEGIN
 IF age >= 18 THEN
 RETURN 'Volljährig';
 ELSE
 RETURN 'Minderjährig';
 END IF;
END;
$$ LANGUAGE plpgsql;

-- Testen
SELECT check_age(25) as status;
SELECT check_age(16) as status;
SELECT check_age(18) as status; -- Grenzfall
SELECT check_age(NULL) as status; -- Was passiert hier?

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16



CREATE FUNCTION check_age(age INT)

RETURNS TEXT AS $$

BEGIN

 IF age >= 18 THEN

 RETURN 'Volljährig';

 ELSE

 RETURN 'Minderjährig';

 END IF;

END;

$$ LANGUAGE plpgsql

ok

-- Testen

SELECT check_age(25) as status

1 rows

SELECT check_age(16) as status

1 rows

SELECT check_age(18) as status

1 rows

-- Grenzfall

SELECT check_age(NULL) as status

1 rows

-- Was passiert hier?

ok

Volljährig

Minderjährig

Volljährig

Minderjährig

1

1

1

1

status

status

status

status

Beachten Sie: Bei NULL gibt die Funktion auch NULL zurück – denn NULL >= 18 ist NULL, also falsch. Das ist
SQL-Logik!

CASE: Alternative zu IF
Für Mehrfachauswahl ist CASE oft eleganter als verschachtelte IFs.

Syntax:

Demo 4: Notensystem
Ein Notensystem – perfekt für CASE:

RETURN CASE
 WHEN condition1 THEN result1
 WHEN condition2 THEN result2
 ELSE default_result
END;

CREATE FUNCTION get_grade(score INT)
RETURNS TEXT AS $$
BEGIN
 RETURN CASE
 WHEN score >= 90 THEN 'Sehr gut (1)'
 WHEN score >= 80 THEN 'Gut (2)'
 WHEN score >= 70 THEN 'Befriedigend (3)'
 WHEN score >= 60 THEN 'Ausreichend (4)'
 ELSE 'Nicht bestanden (5)'
 END;
END;
$$ LANGUAGE plpgsql;

-- Testen
SELECT get_grade(95) as note;
SELECT get_grade(85) as note;
SELECT get_grade(72) as note;
SELECT get_grade(50) as note;

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18





CREATE FUNCTION get_grade(score INT)

RETURNS TEXT AS $$

BEGIN

 RETURN CASE

 WHEN score >= 90 THEN 'Sehr gut (1)'

 WHEN score >= 80 THEN 'Gut (2)'

 WHEN score >= 70 THEN 'Befriedigend (3)'

 WHEN score >= 60 THEN 'Ausreichend (4)'

 ELSE 'Nicht bestanden (5)'

 END;

END;

$$ LANGUAGE plpgsql

ok

-- Testen

SELECT get_grade(95) as note

1 rows

SELECT get_grade(85) as note

1 rows

SELECT get_grade(72) as note

1 rows

SELECT get_grade(50) as note

1 rows

CASE ist hier viel lesbarer als verschachtelte IFs. Wann nutzen Sie was? IF für komplexe Bedingungen mit
mehreren Anweisungen, CASE für einfache Wertauswahl.

Sehr gut (1)

Gut (2)

Befriedigend (3)

Nicht bestanden (5)

1

1

1

1

note

note

note

note

Fehlerbehandlung: RAISE
Was, wenn etwas schiefgeht? Mit RAISE können Sie Fehler werfen – ähnlich wie „throw“ in JavaScript.

RAISE EXCEPTION
Syntax:

Platzhalter: - % wird durch die nächste Variable ersetzt - Ähnlich wie printf in C oder String-
Interpolation

Demo 5: Division mit Fehlerbehandlung
Ein Klassiker: Division durch Null verhindern.

RAISE EXCEPTION 'Fehlermeldung: %', variable;

CREATE FUNCTION divide(a INT, b INT)
RETURNS DECIMAL AS $$
BEGIN
 IF b = 0 THEN
 RAISE EXCEPTION 'Division durch Null ist nicht erlaubt! (Divi
)', b;
 END IF;
 RETURN a::DECIMAL / b;
END;
$$ LANGUAGE plpgsql;

-- Testen: Erfolg
SELECT divide(10, 2) as result;
SELECT divide(100, 4) as result;

-- Testen: Fehler
SELECT divide(10, 0) as result; -- ❌ Wirft Exception

1
2
3
4
5

6
7
8
9
10
11
12
13
14
15
16





CREATE FUNCTION divide(a INT, b INT)

RETURNS DECIMAL AS $$

BEGIN

 IF b = 0 THEN

 RAISE EXCEPTION 'Division durch Null ist nicht erlaubt! (Divisor: %)', b;

 END IF;

 RETURN a::DECIMAL / b;

END;

$$ LANGUAGE plpgsql

ok

-- Testen: Erfolg

SELECT divide(10, 2) as result

1 rows

SELECT divide(100, 4) as result

1 rows

-- Testen: Fehler

SELECT divide(10, 0) as result

Division durch Null ist nicht erlaubt! (Divisor: 0)

Probieren Sie die letzte Zeile aus – Sie sehen eine klare Fehlermeldung! Das ist besser als ein kryptischer
Datenbankfehler.

Praxisbeispiel: Preisberechnung

Demo 6: Preisberechnung mit MwSt.
Kombinieren wir alles Gelernte in einem realistischen Beispiel: Gesamtpreis mit Steuer berechnen.

5.0000000000000000

25.0000000000000000

CREATE FUNCTION calculate_total(price DECIMAL, tax_rate DECIMAL)
RETURNS DECIMAL AS $$
BEGIN
 IF price < 0 THEN
 RAISE EXCEPTION 'Preis kann nicht negativ sein: %', price;
 END IF;

1
2
3
4
5
6

1

1

result

result



;

 IF tax_rate < 0 OR tax_rate > 1 THEN
 RAISE EXCEPTION 'Steuersatz muss zwischen 0 und 1 liegen: %',
 tax_rate;
 END IF;

 RETURN price * (1 + tax_rate);
END;
$$ LANGUAGE plpgsql;

-- Testen mit verschiedenen Szenarien
SELECT calculate_total(100, 0.19) as brutto; -- Deutschland: 19% M
SELECT calculate_total(50, 0.07) as brutto; -- Ermäßigt: 7%
SELECT calculate_total(200, 0) as brutto; -- Steuerfrei

-- Fehler provozieren:
-- SELECT calculate_total(-10, 0.19) as brutto; -- ❌ Negativer Prei
-- SELECT calculate_total(100, 1.5) as brutto; -- ❌ Ungültiger Ste

7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

CREATE FUNCTION calculate_total(price DECIMAL, tax_rate DECIMAL)

RETURNS DECIMAL AS $$

BEGIN

 IF price < 0 THEN

 RAISE EXCEPTION 'Preis kann nicht negativ sein: %', price;

 END IF;

 IF tax_rate < 0 OR tax_rate > 1 THEN

 RAISE EXCEPTION 'Steuersatz muss zwischen 0 und 1 liegen: %', tax_rate;

 END IF;

 RETURN price * (1 + tax_rate);

END;

$$ LANGUAGE plpgsql

ok

-- Testen mit verschiedenen Szenarien

SELECT calculate_total(100, 0.19) as brutto

1 rows

-- Deutschland: 19% MwSt

SELECT calculate_total(50, 0.07) as brutto

1 rows

-- Ermäßigt: 7%

SELECT calculate_total(200, 0) as brutto

1 rows

-- Steuerfrei

-- Fehler provozieren:

-- SELECT calculate_total(-10, 0.19) as brutto; -- ❌ Negativer Preis

-- SELECT calculate_total(100, 1.5) as brutto; -- ❌ Ungültiger Steuersatz

ok

119.00

53.50

200

1

1

1

brutto

brutto

brutto

Perfekt! Jetzt können Sie solide Functions schreiben. Aber was, wenn Sie wollen, dass Code automatisch
ausgeführt wird – ohne dass jemand die Funktion aufruft? Genau dafür gibt es Trigger!

Teil 2: Trigger
Trigger sind das Automatisierungs-Werkzeug der Datenbank. Sie „triggern“ – werden ausgelöst – bei
bestimmten Events: INSERT, UPDATE oder DELETE. Denken Sie an Event-Listener in JavaScript, aber auf
Datenbankebene.

Was sind Trigger?
Definition:

Ein Trigger ist eine Funktion, die automatisch ausgeführt wird, wenn ein bestimmtes Event auf einer Tabelle
passiert.

Komponenten:

Syntax:

Besonderheiten von Trigger-Functions
Trigger-Functions sind anders als normale Functions:

Spezielle Variablen:

1.

2.

Trigger-Function: Eine spezielle Function mit RETURNS TRIGGER

Trigger: Verbindet die Function mit einer Tabelle und einem Event

-- 1. Function erstellen
CREATE FUNCTION trigger_function()
RETURNS TRIGGER AS $$
BEGIN
 -- Code hier
 RETURN NEW; -- oder OLD oder NULL
END;
$$ LANGUAGE plpgsql;

-- 2. Trigger erstellen
CREATE TRIGGER trigger_name
BEFORE UPDATE ON table_name
FOR EACH ROW
EXECUTE FUNCTION trigger_function();



NEW RECORD Die neue Zeile INSERT, UPDATE

OLD RECORD Die alte Zeile UPDATE, DELETE

Beispiel:

RETURN-Werte bei BEFORE-Triggern
Bei BEFORE-Triggern ist der RETURN-Wert wichtig:

RETURN NEW; Änderungen übernehmen (bei INSERT/UPDATE)

RETURN OLD; Ursprüngliche Werte behalten (bei UPDATE)

RETURN NULL; Operation abbrechen! (bei DELETE: Zeile wird NICHT gelöscht)

Bei AFTER-Triggern: RETURN-Wert wird ignoriert, RETURN NULL; ist üblich.

CREATE TRIGGER Syntax
So erstellen Sie einen Trigger:

CREATE FUNCTION my_trigger()
RETURNS TRIGGER AS $$
BEGIN
 -- Bei INSERT: nur NEW verfügbar
 -- Bei UPDATE: OLD und NEW verfügbar
 -- Bei DELETE: nur OLD verfügbar

 RAISE NOTICE 'Alte Zeile: %, Neue Zeile: %', OLD, NEW;

 RETURN NEW; -- Gibt die (ggf. modifizierte) Zeile zurück
END;
$$ LANGUAGE plpgsql;

CREATE TRIGGER trigger_name
{ BEFORE | AFTER } { INSERT | UPDATE | DELETE [OR ...] }
ON table_name
FOR EACH ROW
EXECUTE FUNCTION function_name();

Variable Typ Beschreibung Verfügbar bei

RETURN Bedeutung





Optionen:

Genug Theorie – schauen wir uns vier praktische Beispiele an, die Sie sofort nutzen können!

Demo 7: Automatische Timestamps
Das häufigste Use Case: Timestamp-Felder automatisch aktualisieren.

Schritt 1: Tabelle vorbereiten
Zuerst erstellen wir eine Produkte-Tabelle mit Timestamp-Feldern.

BEFORE – Trigger läuft VOR der Operation (kann Daten ändern oder Operation abbrechen)

AFTER – Trigger läuft NACH der Operation (kann nicht mehr eingreifen)

FOR EACH ROW – Trigger wird für jede betroffene Zeile ausgeführt

Mehrere Events: BEFORE INSERT OR UPDATE OR DELETE

CREATE TABLE products (
 id SERIAL PRIMARY KEY,
 name TEXT NOT NULL,
 price DECIMAL(10, 2) NOT NULL,
 created_at TIMESTAMP DEFAULT NOW(),
 updated_at TIMESTAMP DEFAULT NOW()
);

-- Testdaten einfügen
INSERT INTO products (name, price) VALUES
 ('Laptop', 999.99),
 ('Maus', 29.99);

-- Ausgangszustand
SELECT id, name, price, created_at, updated_at FROM products;

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15



CREATE TABLE products (

 id SERIAL PRIMARY KEY,

 name TEXT NOT NULL,

 price DECIMAL(10, 2) NOT NULL,

 created_at TIMESTAMP DEFAULT NOW(),

 updated_at TIMESTAMP DEFAULT NOW()

)

ok

-- Testdaten einfügen

INSERT INTO products (name, price) VALUES

 ('Laptop', 999.99),

 ('Maus', 29.99)

ok

-- Ausgangszustand

SELECT id, name, price, created_at, updated_at FROM products

2 rows

Schritt 2: Trigger-Function & Trigger erstellen
Jetzt die Magie: Eine Function, die updated_at automatisch setzt.

1 Laptop 999.99 2026-02-05T15:48:14.350Z 2026-02-05T15:48:14.350Z

2 Maus 29.99 2026-02-05T15:48:14.350Z 2026-02-05T15:48:14.350Z

-- Function: Setzt updated_at auf NOW()
CREATE OR REPLACE FUNCTION update_timestamp()
RETURNS TRIGGER AS $$
BEGIN
 NEW.updated_at = NOW();
 RETURN NEW;
END;
$$ LANGUAGE plpgsql;

-- Trigger: Wird bei jedem UPDATE ausgeführt
CREATE TRIGGER set_updated_at
BEFORE UPDATE ON products
FOR EACH ROW
EXECUTE FUNCTION update_timestamp();

-- Bestätigung
SELECT 'Trigger erfolgreich erstellt!' as status;

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

1

2

id name price created_at updated_at



-- Function: Setzt updated_at auf NOW()

CREATE OR REPLACE FUNCTION update_timestamp()

RETURNS TRIGGER AS $$

BEGIN

 NEW.updated_at = NOW();

 RETURN NEW;

END;

$$ LANGUAGE plpgsql

ok

-- Trigger: Wird bei jedem UPDATE ausgeführt

CREATE TRIGGER set_updated_at

BEFORE UPDATE ON products

FOR EACH ROW

EXECUTE FUNCTION update_timestamp()

ok

-- Bestätigung

SELECT 'Trigger erfolgreich erstellt!' as status

1 rows

Schritt 3: Testen
Jetzt ändern wir Daten und schauen, ob updated_at automatisch aktualisiert wird.

Trigger erfolgreich erstellt!

-- Kurze Pause simulieren (damit Zeitunterschied sichtbar ist)
SELECT pg_sleep(1);

-- Preis ändern
UPDATE products
SET price = 899.99
WHERE name = 'Laptop';

-- Ergebnis prüfen
SELECT
 name,
 price,
 created_at,
 updated_at,
 (updated_at > created_at) as timestamp_updated
FROM products;

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

1

status



-- Kurze Pause simulieren (damit Zeitunterschied sichtbar ist)

SELECT pg_sleep(1)

1 rows

-- Preis ändern

UPDATE products

SET price = 899.99

WHERE name = 'Laptop'

ok

-- Ergebnis prüfen

SELECT

 name,

 price,

 created_at,

 updated_at,

 (updated_at > created_at) as timestamp_updated

FROM products

2 rows

Perfekt! Das updated_at-Feld wurde automatisch aktualisiert – ohne dass wir es in der UPDATE-Query
angeben mussten. Das funktioniert jetzt für jedes Update, egal aus welcher Anwendung!

Demo 8: Audit-Logging
Zweitens: Änderungen protokollieren für Compliance und Nachvollziehbarkeit.

Schritt 1: Tabellen vorbereiten
Wir brauchen eine Audit-Tabelle, um Änderungen zu protokollieren.

Maus 29.99 2026-02-

05T15:48:14.350Z

2026-02-

05T15:48:14.350Z

false

Laptop 899.99 2026-02-

05T15:48:14.350Z

2026-02-

05T15:48:16.663Z

true

-- Produkte-Tabelle
CREATE TABLE products_audit_demo (
 id SERIAL PRIMARY KEY,

name TEXT

1
2
3
4

1

1

2

pg_sleep

name price created_at updated_at timestamp_updated



 name TEXT,
 price DECIMAL(10, 2)
);

-- Audit-Tabelle
CREATE TABLE products_audit_log (
 audit_id SERIAL PRIMARY KEY,
 product_id INT,
 old_price DECIMAL(10, 2),
 new_price DECIMAL(10, 2),
 changed_at TIMESTAMP DEFAULT NOW()
);

-- Testdaten
INSERT INTO products_audit_demo (name, price) VALUES ('Laptop', 999.9

-- Ausgangszustand
SELECT * FROM products_audit_demo;
SELECT * FROM products_audit_log; -- Noch leer

4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

-- Produkte-Tabelle

CREATE TABLE products_audit_demo (

 id SERIAL PRIMARY KEY,

 name TEXT,

 price DECIMAL(10, 2)

)

ok

-- Audit-Tabelle

CREATE TABLE products_audit_log (

 audit_id SERIAL PRIMARY KEY,

 product_id INT,

 old_price DECIMAL(10, 2),

 new_price DECIMAL(10, 2),

 changed_at TIMESTAMP DEFAULT NOW()

)

ok

-- Testdaten

INSERT INTO products_audit_demo (name, price) VALUES ('Laptop', 999.99)

ok

-- Ausgangszustand

SELECT * FROM products_audit_demo

1 rows

SELECT * FROM products_audit_log

0 rows

-- Noch leer

ok

Schritt 2: Audit-Trigger erstellen
Function, die Preisänderungen protokolliert:

1 Laptop 999.991

id name price

audit_id product_id old_price new_price changed_at

-- Function: Protokolliert Preisänderungen
CREATE OR REPLACE FUNCTION log_price_change()
RETURNS TRIGGER AS $$
BEGIN
 -- Nur protokollieren, wenn sich der Preis tatsächlich geändert h
 IF OLD.price IS DISTINCT FROM NEW.price THEN
 INSERT INTO products_audit_log (product_id, old_price, new_pr
 VALUES (NEW.id, OLD.price, NEW.price);
 END IF;

 RETURN NEW;
END;
$$ LANGUAGE plpgsql;

-- Trigger: Wird NACH jedem UPDATE ausgeführt
CREATE TRIGGER audit_price_changes
AFTER UPDATE ON products_audit_demo
FOR EACH ROW
EXECUTE FUNCTION log_price_change();

SELECT 'Audit-Trigger erstellt!' as status;

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21



-- Function: Protokolliert Preisänderungen

CREATE OR REPLACE FUNCTION log_price_change()

RETURNS TRIGGER AS $$

BEGIN

 -- Nur protokollieren, wenn sich der Preis tatsächlich geändert hat

 IF OLD.price IS DISTINCT FROM NEW.price THEN

 INSERT INTO products_audit_log (product_id, old_price, new_price)

 VALUES (NEW.id, OLD.price, NEW.price);

 END IF;

 RETURN NEW;

END;

$$ LANGUAGE plpgsql

ok

-- Trigger: Wird NACH jedem UPDATE ausgeführt

CREATE TRIGGER audit_price_changes

AFTER UPDATE ON products_audit_demo

FOR EACH ROW

EXECUTE FUNCTION log_price_change()

ok

SELECT 'Audit-Trigger erstellt!' as status

1 rows

Schritt 3: Testen
Jetzt ändern wir den Preis mehrmals und schauen ins Audit-Log.

Audit-Trigger erstellt!

-- Mehrere Preisänderungen
UPDATE products_audit_demo SET price = 899.99 WHERE name = 'Laptop';
UPDATE products_audit_demo SET price = 799.99 WHERE name = 'Laptop';
UPDATE products_audit_demo SET price = 849.99 WHERE name = 'Laptop';

-- Aktueller Zustand
SELECT * FROM products_audit_demo;

-- Audit-Log: Alle Änderungen protokolliert!
SELECT
 audit_id,
 product_id,
 old_price,

1
2
3
4
5
6
7
8
9
10
11
12
13

1

status



 new_price,
 old_price - new_price as price_change,
 changed_at
FROM products_audit_log
ORDER BY changed_at;

14
15
16
17
18

-- Mehrere Preisänderungen

UPDATE products_audit_demo SET price = 899.99 WHERE name = 'Laptop'

ok

UPDATE products_audit_demo SET price = 799.99 WHERE name = 'Laptop'

ok

UPDATE products_audit_demo SET price = 849.99 WHERE name = 'Laptop'

ok

-- Aktueller Zustand

SELECT * FROM products_audit_demo

1 rows

-- Audit-Log: Alle Änderungen protokolliert!

SELECT

 audit_id,

 product_id,

 old_price,

 new_price,

 old_price - new_price as price_change,

 changed_at

FROM products_audit_log

ORDER BY changed_at

3 rows

Exzellent! Jede Preisänderung wurde automatisch protokolliert. Das ist perfekt für Compliance-
Anforderungen – die Anwendung kann das Logging nicht „vergessen“.

1 Laptop 849.99

1 1 999.99 899.99 100.00 2026-02-

05T15:48:19.805Z

2 1 899.99 799.99 100.00 2026-02-

05T15:48:19.808Z

3 1 799.99 849.99 -50.00 2026-02-

05T15:48:19.808Z

1

1

2

3

id name price

audit_id product_id old_price new_price price_change changed_at

Demo 9: Validierung
Drittens: Datenintegrität mit Triggern erzwingen – z.B. negative Preise verhindern.

Schritt 1: Tabelle & Trigger erstellen
Wir erstellen eine Tabelle und einen Trigger, der negative Preise verhindert.

-- Tabelle
CREATE TABLE products_validation (
 id SERIAL PRIMARY KEY,
 name TEXT,
 price DECIMAL(10, 2)
);

-- Function: Prüft, ob Preis gültig ist
CREATE OR REPLACE FUNCTION prevent_negative_price()
RETURNS TRIGGER AS $$
BEGIN
 IF NEW.price < 0 THEN
 RAISE EXCEPTION 'Preis % ist ungültig (negativ)!', NEW.price;
 END IF;

 RETURN NEW;
END;
$$ LANGUAGE plpgsql;

-- Trigger: Läuft bei INSERT und UPDATE
CREATE TRIGGER check_price
BEFORE INSERT OR UPDATE ON products_validation
FOR EACH ROW
EXECUTE FUNCTION prevent_negative_price();

SELECT 'Validierungs-Trigger erstellt!' as status;

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26



-- Tabelle

CREATE TABLE products_validation (

 id SERIAL PRIMARY KEY,

 name TEXT,

 price DECIMAL(10, 2)

)

ok

-- Function: Prüft, ob Preis gültig ist

CREATE OR REPLACE FUNCTION prevent_negative_price()

RETURNS TRIGGER AS $$

BEGIN

 IF NEW.price < 0 THEN

 RAISE EXCEPTION 'Preis % ist ungültig (negativ)!', NEW.price;

 END IF;

 RETURN NEW;

END;

$$ LANGUAGE plpgsql

ok

-- Trigger: Läuft bei INSERT und UPDATE

CREATE TRIGGER check_price

BEFORE INSERT OR UPDATE ON products_validation

FOR EACH ROW

EXECUTE FUNCTION prevent_negative_price()

ok

SELECT 'Validierungs-Trigger erstellt!' as status

1 rows

Schritt 2: Erfolgreiche Einfügungen
Zuerst testen wir mit gültigen Daten:

Validierungs-Trigger erstellt!

-- Gültige Inserts
INSERT INTO products_validation (name, price) VALUES ('Laptop', 999.99
INSERT INTO products_validation (name, price) VALUES ('Maus', 29.99);
INSERT INTO products_validation (name, price) VALUES ('Gratis-Ebook',

-- Alles funktioniert

1
2
3
4
5
6

1

status



-- Gültige Inserts

INSERT INTO products_validation (name, price) VALUES ('Laptop', 999.99)

ok

INSERT INTO products_validation (name, price) VALUES ('Maus', 29.99)

ok

INSERT INTO products_validation (name, price) VALUES ('Gratis-Ebook', 0.00)

ok

-- Alles funktioniert

SELECT * FROM products_validation

3 rows

Schritt 3: Ungültige Daten provozieren
Jetzt versuchen wir, einen negativen Preis einzufügen:

-- Dieser Versuch schlägt fehl!

INSERT INTO products_validation (name, price) VALUES ('Fehlerhaft', -10.00)

Preis -10.00 ist ungültig (negativ)!

Perfekt! Der Trigger hat die ungültige Operation verhindert. Die Anwendung kann diese Regel nicht umgehen
– sie ist in der Datenbank verankert.

SELECT * FROM products_validation;

1 Laptop 999.99

2 Maus 29.99

3 Gratis-Ebook 0.00

-- Dieser Versuch schlägt fehl!
INSERT INTO products_validation (name, price) VALUES ('Fehlerhaft', -1

-- ❌ ERROR: Preis -10.00 ist ungültig (negativ)!

7

1
2
3
4

1

2

3

id name price



Demo 10: Soft Delete mit Views & INSTEAD OF Trigger
Viertens: Löschen, ohne wirklich zu löschen – für Wiederherstellung und Audit-Zwecke. Diesmal mit einem
eleganten Twist: Die Anwendung arbeitet nur mit einer View und weiß gar nicht, dass Soft Delete passiert!

Schritt 1: Basis-Tabelle mit Soft-Delete-Flag
Wir erstellen die eigentliche Produkte-Tabelle mit einem deleted_at Feld:

-- Basis-Tabelle (kennt die Anwendung nicht!)
CREATE TABLE products_base (
 id SERIAL PRIMARY KEY,
 name TEXT NOT NULL,
 price DECIMAL(10, 2) NOT NULL,
 created_at TIMESTAMP DEFAULT NOW(),
 deleted_at TIMESTAMP -- NULL = aktiv, Timestamp = gelöscht
);

-- Testdaten
INSERT INTO products_base (name, price) VALUES
 ('Laptop', 999.99),
 ('Maus', 29.99),
 ('Tastatur', 79.99);

-- Alle Daten (inkl. deleted_at)
SELECT * FROM products_base;

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17



-- Basis-Tabelle (kennt die Anwendung nicht!)

CREATE TABLE products_base (

 id SERIAL PRIMARY KEY,

 name TEXT NOT NULL,

 price DECIMAL(10, 2) NOT NULL,

 created_at TIMESTAMP DEFAULT NOW(),

 deleted_at TIMESTAMP -- NULL = aktiv, Timestamp = gelöscht

)

ok

-- Testdaten

INSERT INTO products_base (name, price) VALUES

 ('Laptop', 999.99),

 ('Maus', 29.99),

 ('Tastatur', 79.99)

ok

-- Alle Daten (inkl. deleted_at)

SELECT * FROM products_base

3 rows

Schritt 2: View für aktive Produkte
Die Anwendung arbeitet nur mit dieser View – sie zeigt nur aktive Produkte:

1 Laptop 999.99 2026-02-05T15:48:26.463Z null

2 Maus 29.99 2026-02-05T15:48:26.463Z null

3 Tastatur 79.99 2026-02-05T15:48:26.463Z null

-- View: Die "öffentliche" Schnittstelle zur Datenbank
CREATE VIEW products AS
SELECT id, name, price, created_at
FROM products_base
WHERE deleted_at IS NULL; -- Filter: nur aktive Produkte

-- Anwendung sieht nur diese View
SELECT * FROM products;

1
2
3
4
5
6
7
8

1

2

3

id name price created_at deleted_at



-- View: Die "öffentliche" Schnittstelle zur Datenbank

CREATE VIEW products AS

SELECT id, name, price, created_at

FROM products_base

WHERE deleted_at IS NULL

ok

-- Filter: nur aktive Produkte

-- Anwendung sieht nur diese View

SELECT * FROM products

3 rows

—{12}}– Beachten Sie: Die View zeigt das deleted_at Feld gar nicht – die Anwendung weiß nichts von Soft
Delete!

Schritt 3: INSTEAD OF Trigger auf der View
Jetzt kommt die Magie: Ein Trigger auf der View, der DELETE-Operationen abfängt:

1 Laptop 999.99 2026-02-05T15:48:26.463Z

2 Maus 29.99 2026-02-05T15:48:26.463Z

3 Tastatur 79.99 2026-02-05T15:48:26.463Z

-- Function: Führt Soft Delete auf der Basis-Tabelle aus
CREATE OR REPLACE FUNCTION soft_delete_via_view()
RETURNS TRIGGER AS $$
BEGIN
 -- Setzt deleted_at auf der echten Tabelle
 UPDATE products_base
 SET deleted_at = NOW()
 WHERE id = OLD.id;

 -- RETURN OLD bei INSTEAD OF Triggern
 RETURN OLD;
END;
$$ LANGUAGE plpgsql;

-- INSTEAD OF Trigger: Ersetzt DELETE auf der View
CREATE TRIGGER soft_delete_products
INSTEAD OF DELETE ON products
FOR EACH ROW
EXECUTE FUNCTION soft_delete_via_view();

SELECT 'Soft-Delete-Trigger auf View erstellt!' as status;

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

1

2

3

id name price created_at



-- Function: Führt Soft Delete auf der Basis-Tabelle aus

CREATE OR REPLACE FUNCTION soft_delete_via_view()

RETURNS TRIGGER AS $$

BEGIN

 -- Setzt deleted_at auf der echten Tabelle

 UPDATE products_base

 SET deleted_at = NOW()

 WHERE id = OLD.id;

 -- RETURN OLD bei INSTEAD OF Triggern

 RETURN OLD;

END;

$$ LANGUAGE plpgsql

ok

-- INSTEAD OF Trigger: Ersetzt DELETE auf der View

CREATE TRIGGER soft_delete_products

INSTEAD OF DELETE ON products

FOR EACH ROW

EXECUTE FUNCTION soft_delete_via_view()

ok

SELECT 'Soft-Delete-Trigger auf View erstellt!' as status

1 rows

INSTEAD OF Trigger funktionieren nur auf Views und ersetzen die Operation komplett. Perfekt für unseren
Use Case!

Schritt 4: „Löschen“ über die View
Die Anwendung „löscht“ ein Produkt – aber es wird nur markiert:

S C So t elete gge au e e stellt! as status;

Soft-Delete-Trigger auf View erstellt!

-- Anwendung löscht über die View (weiß nichts von Soft Delete!)
DELETE FROM products WHERE name = 'Maus';

-- View zeigt nur noch aktive Produkte
SELECT 'Aktive Produkte (View):' as info;
SELECT * FROM products;

-- Basis-Tabelle zeigt ALLE Produkte (inkl. deleted_at)
SELECT 'Alle Produkte (Basis-Tabelle):' as info;

1
2
3
4
5
6
7
8
9

1

status



SELECT
 id,
 name,
 price,
 deleted_at,
 CASE
 WHEN deleted_at IS NULL THEN '✅ Aktiv'
 ELSE '❌ Gelöscht'
 END as status
FROM products_base
ORDER BY id;

10
11
12
13
14
15
16
17
18
19
20

-- Anwendung löscht über die View (weiß nichts von Soft Delete!)

DELETE FROM products WHERE name = 'Maus'

ok

-- View zeigt nur noch aktive Produkte

SELECT 'Aktive Produkte (View):' as info

1 rows

SELECT * FROM products

2 rows

-- Basis-Tabelle zeigt ALLE Produkte (inkl. deleted_at)

SELECT 'Alle Produkte (Basis-Tabelle):' as info

1 rows

SELECT

 id,

 name,

 price,

 deleted_at,

 CASE

 WHEN deleted_at IS NULL THEN '✅ Aktiv'

 ELSE '❌ Gelöscht'

 END as status

FROM products_base

ORDER BY id

Aktive Produkte (View):

1 Laptop 999.99 2026-02-05T15:48:26.463Z

3 Tastatur 79.99 2026-02-05T15:48:26.463Z

Alle Produkte (Basis-Tabelle):

1

1

2

1

info

id name price created_at

info

3 rows

Brilliant! Die Maus ist aus der View verschwunden – aber in der Basis-Tabelle noch vorhanden mit gesetztem
deleted_at Timestamp. Die Anwendung merkt nichts von der Implementierung!

Schritt 5: Wiederherstellung
—{{ß}}– Gelöschte Produkte können einfach wiederhergestellt werden:

-- Admin-Funktion: Produkt wiederherstellen

UPDATE products_base

SET deleted_at = NULL

WHERE name = 'Maus'

ok

-- View zeigt das Produkt wieder!

SELECT * FROM products

3 rows

Perfekt! Durch die View-Abstraktion haben Sie eine saubere Trennung: Die Anwendung arbeitet mit der View,
Admins können auf die Basis-Tabelle zugreifen.

Warum ist das elegant?

1 Laptop 999.99 null ✅ Aktiv

2 Maus 29.99 2026-02-05T15:48:28.837Z ❌ Gelöscht

3 Tastatur 79.99 null ✅ Aktiv

-- Admin-Funktion: Produkt wiederherstellen
UPDATE products_base
SET deleted_at = NULL
WHERE name = 'Maus';

-- View zeigt das Produkt wieder!
SELECT * FROM products;

1 Laptop 999.99 2026-02-05T15:48:26.463Z

3 Tastatur 79.99 2026-02-05T15:48:26.463Z

2 Maus 29.99 2026-02-05T15:48:26.463Z

1
2
3
4
5
6
7

1

2

3

1

2

3

id name price deleted_at status

id name price created_at



Schauen wir uns die Vorteile an:

Vorteile dieser Architektur:

Anwendungscode Muss Soft Delete implementieren Arbeitet normal mit DELETE

Komplexität Verteilt über viele Stellen Zentralisiert in der DB

Konsistenz Entwickler können es vergessen Automatisch garantiert

Wiederherstellung
Muss explizit implementiert
werden

Einfaches UPDATE auf Basis-
Tabelle

Migration
Anwendung muss angepasst
werden

Transparent – keine Code-
Änderung

Testen Schwierig (überall prüfen) Einfach (nur View testen)

Anwendungscode-Vergleich:

Best Practice: Diese Architektur nennt sich Database Abstraction Layer. Die View ist die öffentliche API, die
Implementierung dahinter kann sich ändern, ohne die Anwendung anzufassen.

Gefahren & Best Practices
Trigger sind mächtig – aber mit großer Macht kommt große Verantwortung! Schauen wir uns potenzielle
Probleme an.

Gefahr 1: Trigger-Kaskaden
Das größte Problem: Trigger, die andere Trigger auslösen – eine Kettenreaktion!

// Ohne View: Anwendung muss Soft Delete kennen
await db.query(
 'UPDATE products SET deleted_at = NOW() WHERE id = $1',
 [productId]
);

// Mit View: Anwendung nutzt normales DELETE
await db.query(
 'DELETE FROM products WHERE id = $1',
 [productId]
);
// ✅ Trigger macht den Rest – transparent!

Aspekt Ohne View Mit View + INSTEAD OF Trigger



Szenario:

Problem:

Lösung:

Gefahr 2: Performance-Impact
Trigger laufen bei JEDER Operation – auch bei BULK Inserts!

Problem:

Lösung:

Trigger A (on products)
 → UPDATE inventory
 → Trigger B (on inventory)
 → INSERT audit_log
 → Trigger C (on audit_log)
 → UPDATE statistics
 → Trigger D (on statistics)
 → ... 💥

❌ Schwer zu debuggen

❌ Performance-Einbruch

❌ Risiko von Endlosschleifen

❌ Unvorhersehbares Verhalten

-- NIEMALS in einem Trigger weitere Trigger auslösen!
-- Stattdessen: Komplexe Logik in eine Funktion auslagern
CREATE FUNCTION process_order()
RETURNS VOID AS $$
BEGIN
 -- Alle Operationen explizit hier
 UPDATE inventory ...;
 INSERT INTO audit_log ...;
 UPDATE statistics ...;
END;
$$ LANGUAGE plpgsql;

-- BULK INSERT von 100.000 Zeilen
INSERT INTO products SELECT * FROM imported_data;

-- Wenn ein Trigger existiert:
-- → 100.000× Trigger-Ausführung!
-- → Kann Minuten statt Sekunden dauern









Best Practice: Überlegen Sie, ob ein Batch-Job statt Trigger sinnvoller ist!

Gefahr 3: Debugging-Schwierigkeiten
Trigger sind unsichtbar für die Anwendung – Fehler sind schwer zu finden.

Problem:

Lösung:

Best Practice 1: Trigger nur wenn nötig
Viele Anforderungen können einfacher gelöst werden!

-- Trigger temporär deaktivieren (PostgreSQL)
ALTER TABLE products DISABLE TRIGGER set_updated_at;

-- BULK Operation
INSERT INTO products SELECT * FROM imported_data;

-- Trigger wieder aktivieren
ALTER TABLE products ENABLE TRIGGER set_updated_at;

// Anwendungscode
await db.query('UPDATE products SET price = 99.99 WHERE id = 1');

// ❓ Plötzlich ist die Performance schlecht
// ❓ Plötzlich gibt es unerwartete Änderungen in anderen Tabellen
// ❓ Die Anwendung weiß nicht, dass Trigger existieren!

1.

2.

3.

4.

Dokumentation: Kommentiere alle Trigger im Schema-Script

Naming Convention: trigger_<table>_<event>_<action>

Logging: RAISE NOTICE in Triggern für Debugging

Monitoring: Query-Performance überwachen

CREATE TRIGGER trigger_products_after_update_audit
AFTER UPDATE ON products
FOR EACH ROW
EXECUTE FUNCTION log_price_change();

-- Name verrät: Tabelle = products, Event = update, Aktion = audit







Validierung
CREATE TRIGGER
check_price...

CHECK (price >= 0)

Default-Werte
CREATE TRIGGER
set_default...

DEFAULT NOW()

Ref. Integrität
CREATE TRIGGER
check_fk...

FOREIGN KEY

Timestamps ✅ Trigger ist OK
Oder: DEFAULT NOW() + Trigger
für UPDATE

Audit-
Logging

✅ Trigger ist ideal Keine Alternative

Soft Delete ✅ Trigger ist gut Oder: App-seitig

Faustregel: Nutze deklarative Constraints wo möglich, Trigger nur wenn nötig!

Best Practice 2: BEFORE vs. AFTER
Wann welchen Trigger-Typ nutzen?

Daten ändern (z.B.
Timestamps)

✅ Ja ❌ Zu spät

Validierung (z.B. negative
Preise)

✅ Ja ❌ Zu spät

Operation abbrechen
✅ RETURN
NULL

❌ Nicht möglich

Audit-Logging ⚠️ Möglich
✅ Besser (Änderung ist garantiert
committed)

Andere Tabellen ändern ⚠️ Möglich ✅ Besser (Hauptoperation ist fertig)

Faustregel:

Anforderung ❌ Trigger ✅ Bessere Lösung

Use Case BEFORE AFTER

Best Practice 3: Testen, testen, testen!
Trigger sind Code – und Code muss getestet werden!

Setup: Testumgebung vorbereiten
Zuerst erstellen wir eine Testumgebung mit Produkten-Tabelle und allen Triggern:

BEFORE für Änderungen an der aktuellen Zeile

AFTER für Änderungen an anderen Tabellen oder Logging

-- Tabelle mit Timestamp-Feldern und Validierung
CREATE TABLE products (
 id SERIAL PRIMARY KEY,
 name TEXT NOT NULL,
 price DECIMAL(10, 2) NOT NULL,
 created_at TIMESTAMP DEFAULT NOW(),
 updated_at TIMESTAMP DEFAULT NOW()
);

-- Function 1: Timestamp automatisch aktualisieren
CREATE OR REPLACE FUNCTION update_timestamp()
RETURNS TRIGGER AS $$
BEGIN
 NEW.updated_at = NOW();
 RETURN NEW;
END;
$$ LANGUAGE plpgsql;

-- Trigger 1: Setzt updated_at bei jedem UPDATE
CREATE TRIGGER set_updated_at
BEFORE UPDATE ON products
FOR EACH ROW
EXECUTE FUNCTION update_timestamp();

-- Function 2: Negative Preise verhindern
CREATE OR REPLACE FUNCTION prevent_negative_price()
RETURNS TRIGGER AS $$
BEGIN
 IF NEW.price < 0 THEN
 RAISE EXCEPTION 'Preis % ist ungültig (negativ)!', NEW.price;
 END IF;
 RETURN NEW;
END;
$$ LANGUAGE plpgsql;

-- Trigger 2: Validierung bei INSERT und UPDATE
CREATE TRIGGER check_price
BEFORE INSERT OR UPDATE ON products
FOR EACH ROW
EXECUTE FUNCTION t ti i ()

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40



EXECUTE FUNCTION prevent_negative_price();

-- Testdaten
INSERT INTO products (name, price) VALUES
 ('Laptop', 999.99),
 ('Maus', 29.99);

-- Status
SELECT 'Test-Umgebung erfolgreich erstellt!' as status;
SELECT * FROM products;

40
41
42
43
44
45
46
47
48
49

-- Tabelle mit Timestamp-Feldern und Validierung

CREATE TABLE products (

 id SERIAL PRIMARY KEY,

 name TEXT NOT NULL,

 price DECIMAL(10, 2) NOT NULL,

 created_at TIMESTAMP DEFAULT NOW(),

 updated_at TIMESTAMP DEFAULT NOW()

)

ok

-- Function 1: Timestamp automatisch aktualisieren

CREATE OR REPLACE FUNCTION update_timestamp()

RETURNS TRIGGER AS $$

BEGIN

 NEW.updated_at = NOW();

 RETURN NEW;

END;

$$ LANGUAGE plpgsql

ok

-- Trigger 1: Setzt updated_at bei jedem UPDATE

CREATE TRIGGER set_updated_at

BEFORE UPDATE ON products

FOR EACH ROW

EXECUTE FUNCTION update_timestamp()

ok

-- Function 2: Negative Preise verhindern

CREATE OR REPLACE FUNCTION prevent_negative_price()

RETURNS TRIGGER AS $$

BEGIN

 IF NEW.price < 0 THEN

 RAISE EXCEPTION 'Preis % ist ungültig (negativ)!', NEW.price;

 END IF;

 RETURN NEW;

END;

$$ LANGUAGE plpgsql

ok

-- Trigger 2: Validierung bei INSERT und UPDATE

CREATE TRIGGER check_price

BEFORE INSERT OR UPDATE ON products

FOR EACH ROW

EXECUTE FUNCTION prevent_negative_price()

ok

-- Testdaten

INSERT INTO products (name, price) VALUES

 ('Laptop', 999.99),

 ('Maus', 29.99)

ok

-- Status

SELECT 'Test-Umgebung erfolgreich erstellt!' as status

1 rows

SELECT * FROM products

2 rows

Test 1: Erfolgreicher Fall (Timestamp-Update)
Testen wir, ob der Timestamp-Trigger korrekt funktioniert. Wir nutzen eine Transaktion mit ROLLBACK, um
die Testdaten nicht dauerhaft zu ändern:

Test-Umgebung erfolgreich erstellt!

1 Laptop 999.99 2026-02-05T15:48:39.634Z 2026-02-05T15:48:39.634Z

2 Maus 29.99 2026-02-05T15:48:39.634Z 2026-02-05T15:48:39.634Z

-- Test 1: Erfolgreicher Fall
-- Erwartung: updated_at wird automatisch aktualisiert

BEGIN; -- Transaktion starten

-- Vor dem Update
SELECT
 name,
 price,
 created_at,
 updated_at,
 'BEFORE UPDATE' as moment
FROM products WHERE name = 'Laptop';

-- Kurze Pause für sichtbaren Zeitunterschied
SELECT pg_sleep(0.5);

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

1

1

2

status

id name price created_at updated_at



-- Update durchführen
UPDATE products SET price = 899.99 WHERE name = 'Laptop';

-- Nach dem Update: updated_at sollte NACH created_at liegen
SELECT
 name,
 price,
 created_at,
 updated_at,
 'AFTER UPDATE' as moment,
 (updated_at > created_at) as timestamp_wurde_aktualisiert
FROM products WHERE name = 'Laptop';

-- ✅ Test erfolgreich wenn: timestamp_wurde_aktualisiert = true

ROLLBACK; -- Änderungen verwerfen, Daten bleiben unverändert

-- Prüfen: Daten sind wieder im Originalzustand
SELECT 'Nach ROLLBACK:' as info, * FROM products WHERE name = 'Laptop

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

-- Test 1: Erfolgreicher Fall

-- Erwartung: updated_at wird automatisch aktualisiert

BEGIN

ok

-- Transaktion starten

-- Vor dem Update

SELECT

 name,

 price,

 created_at,

 updated_at,

 'BEFORE UPDATE' as moment

FROM products WHERE name = 'Laptop'

1 rows

-- Kurze Pause für sichtbaren Zeitunterschied

SELECT pg_sleep(0.5)

1 rows

-- Update durchführen

UPDATE products SET price = 899.99 WHERE name = 'Laptop'

ok

-- Nach dem Update: updated_at sollte NACH created_at liegen

SELECT

 name,

 price,

 created_at,

 updated_at,

 'AFTER UPDATE' as moment,

 (updated_at > created_at) as timestamp_wurde_aktualisiert

FROM products WHERE name = 'Laptop'

Laptop 999.99 2026-02-

05T15:48:39.634Z

2026-02-

05T15:48:39.634Z

BEFORE

UPDATE

1

1

name price created_at updated_at moment

pg_sleep

1 rows

-- ✅ Test erfolgreich wenn: timestamp_wurde_aktualisiert = true

ROLLBACK

ok

-- Änderungen verwerfen, Daten bleiben unverändert

-- Prüfen: Daten sind wieder im Originalzustand

SELECT 'Nach ROLLBACK:' as info, * FROM products WHERE name = 'Laptop'

1 rows

Test 2: Fehlerfall (Negative Preise)
Jetzt testen wir die Validierung – negative Preise müssen verhindert werden. Die Transaktion wird
automatisch zurückgerollt, wenn ein Fehler auftritt:

Laptop 899.99 2026-02-

05T15:48:39.634Z

2026-02-

05T15:48:39.974Z

AFTER

UPDATE

true

Nach

ROLLBACK:

1 Laptop 999.99 2026-02-

05T15:48:39.634Z

2026-02-

05T15:48:39.634Z

-- Test 2: Fehlerfall
-- Erwartung: INSERT mit negativem Preis wird abgelehnt

BEGIN; -- Transaktion starten

-- Anzahl Produkte vor dem Test
SELECT 'Vor dem Test:' as info, COUNT(*) as anzahl_produkte FROM prod

-- Dieser Versuch MUSS fehlschlagen:
INSERT INTO products (name, price) VALUES ('Fehlerprodukt', -10.00);

-- ❌ Erwartete Fehlermeldung: "Preis -10.00 ist ungültig (negativ)!"
-- ❌ Diese Zeile wird NICHT erreicht, da vorher eine Exception gewor
 wird

ROLLBACK; -- Wird nur bei manuellem Aufruf erreicht

-- Nach dem Fehler: Prüfen, dass keine Daten eingefügt wurden
SELECT 'Nach dem fehlgeschlagenen INSERT:' as info, COUNT(*) as
 anzahl_produkte FROM products;

1
2
3
4
5
6
7
8
9
10
11
12
13

14
15
16
17
18

1

1

name price created_at updated_at moment timestamp_wurde_ak

info id name price created_at updated_at



-- Test 2: Fehlerfall

-- Erwartung: INSERT mit negativem Preis wird abgelehnt

BEGIN

ok

-- Transaktion starten

-- Anzahl Produkte vor dem Test

SELECT 'Vor dem Test:' as info, COUNT(*) as anzahl_produkte FROM products

1 rows

-- Dieser Versuch MUSS fehlschlagen:

INSERT INTO products (name, price) VALUES ('Fehlerprodukt', -10.00)

Preis -10.00 ist ungültig (negativ)!

Test 3: Edge Cases (NULL-Werte)
Edge Cases sind wichtig – was passiert mit NULL? Auch hier nutzen wir eine Transaktion:

-- ✅ Test erfolgreich wenn: Exception wird geworfen UND anzahl_produ
 bleibt gleich

Vor dem Test: 2

-- Test 3: Edge Cases
-- Erwartung: NULL-Preis wird durch NOT NULL Constraint abgelehnt

BEGIN; -- Transaktion starten

-- Aktueller Zustand vor dem Test
SELECT 'Vor dem Test:' as info, id, name, price FROM products WHERE i

-- Versuch, Preis auf NULL zu setzen
UPDATE products SET price = NULL WHERE id = 1;

-- ❌ Erwartete Fehlermeldung: NOT NULL Constraint Violation
-- ❌ Diese Zeilen werden NICHT erreicht, da vorher eine Exception ge
 wird

ROLLBACK; -- Wird nur bei manuellem Aufruf erreicht

-- Prüfen, dass Daten unverändert sind

19
20

1
2
3
4
5
6
7
8
9
10
11
12
13

14
15
16
17

1

info anzahl_produkte



-- Test 3: Edge Cases

-- Erwartung: NULL-Preis wird durch NOT NULL Constraint abgelehnt

BEGIN

current transaction is aborted, commands ignored until end of transaction block

Test-Zusammenfassung
Was haben wir getestet?

Test-Ergebnisse:

Test 1
Timestamp-
Update

updated_at >
created_at

✅
Erfolgreich

Test 2 Negative Preise Exception wird geworfen
✅
Erfolgreich

Test 3 NULL-Werte NOT NULL Constraint greift
✅
Erfolgreich

Best Practice:

Vorteile von Transaktionen beim Testen:

,
SELECT 'Nach dem fehlgeschlagenen Update:' as info, id, name, price
FROM products WHERE id = 1;

-- ✅ Test erfolgreich wenn: Update wird verhindert UND Preis bleibt
 unverändert

✅ Schreibe Test-Scripts für jeden Trigger

✅ Teste Edge Cases (NULL, 0, negative Werte)

✅ Teste sowohl Erfolgs- als auch Fehlfälle

✅ Nutze Transaktionen (BEGIN/ROLLBACK) für isolierte Tests – so bleiben Testdaten sauber!

✅ Teste Performance mit vielen Zeilen (hier nicht gezeigt)

Test Ziel Erwartetes Ergebnis Status

18
19
20
21

Erweiterte Tests (Optional):

Zusammenfassung
Was haben wir heute gelernt? Functions und Trigger sind mächtige Werkzeuge für server-seitige Logik in der
Datenbank.

Kernpunkte: Functions

Kernpunkte: Trigger

Wann was nutzen?

🔄 Tests sind wiederholbar – keine Datenverunreinigung

🔒 Tests sind isoliert – beeinflussen sich nicht gegenseitig

⚡ Tests sind schnell – ROLLBACK ist schneller als DELETE

✅ Originalzustand bleibt erhalten – Setup muss nicht wiederholt werden

Test mit 0 als Preis (sollte erlaubt sein)

Test mit sehr großen Zahlen

Test mit vielen gleichzeitigen Updates

Performance-Test mit BULK Inserts

1.

2.

3.

4.

5.

Stored Functions = Wiederverwendbare Logik in der Datenbank

Syntax: CREATE FUNCTION name(params) RETURNS type AS $$... $$ LANGUAGE
plpgsql;

Kontrollstrukturen: IF...THEN...ELSE und CASE

Fehlerbehandlung: RAISE EXCEPTION

Use Cases: Berechnungen, Validierung, String-Verarbeitung

6.

7.

8.

9.

10.

Trigger = Automatische Reaktion auf Datenbankänderungen

Trigger-Functions: RETURNS TRIGGER , nutzen OLD und NEW

Syntax: CREATE TRIGGER name BEFORE/AFTER event ON table FOR EACH ROW
EXECUTE FUNCTION func();

Use Cases: Timestamps, Audit-Logging, Validierung, Soft Delete

Gefahren: Kaskaden, Performance, Debugging-Schwierigkeiten

Einfache Validierung ✅ CHECK Constraint

Default-Werte ✅ DEFAULT Clause

Automatische Timestamps ✅ Trigger (UPDATE) + DEFAULT (INSERT)

Audit-Logging ✅ Trigger

Soft Delete ✅ Trigger oder App-Logik

Komplexe Berechnungen ✅ Function

Referentielle Integrität ✅ FOREIGN KEY

Sie haben heute 10 interaktive Demos durchgearbeitet – von einfachen Functions bis zu komplexen Triggern.
Experimentieren Sie weiter! Ändern Sie die Beispiele, brechen Sie sie, fixen Sie sie wieder. So lernt man am
besten!

Referenzen & Quellen
Offizielle Dokumentation

Bücher & Tutorials

Best Practices

Tools

PostgreSQL: PL/pgSQL Functions

PostgreSQL: Trigger Functions

PostgreSQL: CREATE TRIGGER

PGlite: Browser PostgreSQL

„PostgreSQL: Up and Running“ – Regina Obe & Leo Hsu (Kapitel zu Functions & Trigger)

„Mastering PostgreSQL“ – Hans-Jürgen Schönig

PostGIS Tutorial: Custom Functions

Use the Index, Luke: Triggers & Performance

PostgreSQL Wiki: Trigger Best Practices

Szenario Lösung

https://www.postgresql.org/docs/current/plpgsql.html
https://www.postgresql.org/docs/current/plpgsql-trigger.html
https://www.postgresql.org/docs/current/sql-createtrigger.html
https://github.com/electric-sql/pglite
https://postgis.net/workshops/postgis-intro/functions.html
https://use-the-index-luke.com/
https://wiki.postgresql.org/wiki/Triggers

pgAdmin – Trigger-Debugging

DBeaver – Cross-Platform Database Tool

PGlite – PostgreSQL im Browser

https://www.pgadmin.org/
https://dbeaver.io/
https://pglite.dev/

