
Session 14 – Transaktionen & ACID

Session-Typ: Vorlesung Dauer: 90 Minuten Lernziele: ACID verstehen, Transaktionssteuerung
anwenden, Isolation Levels vergleichen

Willkommen zu Session 14! Heute geht es um eines der fundamentalsten Konzepte relationaler
Datenbanksysteme: Transaktionen und ACID. Wir haben bisher viel über SQL-Abfragen, Modellierung und
komplexe Queries gelernt – aber was passiert, wenn mehrere Nutzer gleichzeitig auf dieselben Daten
zugreifen? Wie garantieren wir Konsistenz bei Systemausfällen? Diese Fragen beantworten Transaktionen.

Motivation: Warum Transaktionen?

Szenario: Geldüberweisung zwischen Konten
Stellen Sie sich vor, Sie überweisen 100 Euro von Konto A nach Konto B. Das klingt simpel, aber technisch
sind das zwei separate Operationen: Erst wird Konto A belastet, dann Konto B gutgeschrieben. Was passiert,
wenn zwischen diesen beiden Schritten der Server abstürzt? Oder wenn eine andere Transaktion genau in
diesem Moment auf Konto A zugreift?

Ohne Transaktionen: Probleme

Ergebnis: 100 Euro sind verschwunden! Konto A ist belastet, aber Konto B wurde nie gutgeschrieben.

Genau solche Inkonsistenzen verhindern Transaktionen. Eine Transaktion ist eine logische Arbeitseinheit, die
garantiert, dass entweder alle Operationen erfolgreich durchgeführt werden – oder gar keine. Das ist das
„Alles-oder-Nichts“-Prinzip.

Mit Transaktionen: Atomar & Sicher

-- Schritt 1: 100 Euro von Konto A abziehen
UPDATE accounts SET balance = balance - 100 WHERE id = 'A';

-- ❌ Server-Crash hier!

-- Schritt 2: 100 Euro auf Konto B gutschreiben (wird nie ausgeführt)
UPDATE accounts SET balance = balance + 100 WHERE id = 'B';

BEGIN TRANSACTION;

-- Schritt 1: 100 Euro von Konto A abziehen
UPDATE accounts SET balance = balance - 100 WHERE id = 'A';

-- Schritt 2: 100 Euro auf Konto B gutschreiben
UPDATE accounts SET balance = balance + 100 WHERE id = 'B';





Garantie: Wenn COMMIT erfolgreich ist, sind beide Änderungen persistent. Bei einem Fehler vor COMMIT
wird automatisch ROLLBACK ausgeführt – keine Änderung bleibt bestehen.
Eine Transaktion ist also ein Paket mit Garantiesiegel: Entweder kommt alles an – oder gar nichts. Damit sind
wir schon beim ersten Buchstaben von ACID.

ACID-Eigenschaften
ACID ist ein Akronym für vier fundamentale Eigenschaften, die jede Datenbanktransaktion erfüllen sollte:
Atomicity, Consistency, Isolation und Durability. Diese Eigenschaften wurden in den 1980ern von Jim Gray
definiert und sind bis heute der Goldstandard für transaktionale Systeme.

🛡️👁️‍🗨️✅⚛️

ytilibaruDnoitalosIycnetsisnoCyticimotA

esabataDDICA

A – Atomicity (Atomarität)
Atomarität bedeutet: Eine Transaktion ist eine unteilbare Einheit. Entweder werden alle Operationen
ausgeführt – oder keine. Es gibt keine Zwischenzustände, die nach außen sichtbar sind.

Metapher: Wie ein Atom (griech. „átomos“ = unteilbar) ist eine Transaktion eine Einheit, die nicht weiter
zerlegbar ist.

Beispiel:

UPDATE accounts A ✅ Erfolg ✅ Erfolg

❌ Server-Crash 💥 Inkonsistenter Zustand ✅ Automatisches ROLLBACK

UPDATE accounts B ❌ Wird nie ausgeführt ❌ Beide Updates rückgängig

C – Consistency (Konsistenz)

COMMIT; -- Erst jetzt werden beide Änderungen dauerhaft gespeichert

Aktion Ohne Atomarität Mit Atomarität

Konsistenz bedeutet: Eine Transaktion überführt die Datenbank von einem gültigen Zustand in einen
anderen gültigen Zustand. Alle Constraints, Trigger und Integritätsbedingungen werden eingehalten – vor
und nach der Transaktion.

Beispiel:

Garantie: Die Datenbank bleibt in einem konsistenten Zustand – Constraints werden immer durchgesetzt.

I – Isolation
Isolation bedeutet: Parallel laufende Transaktionen beeinflussen sich nicht gegenseitig. Jede Transaktion hat
die Illusion, als wäre sie allein auf der Datenbank. Wie stark diese Isolation ist, können wir über Isolation
Levels steuern – dazu gleich mehr.

Beispiel: Ticketbuchung

T1
SELECT * FROM tickets
WHERE seat = '12A'

T2
SELECT * FROM tickets
WHERE seat = '12A'

T3
UPDATE tickets SET
reserved = true
WHERE seat = '12A'

T4
UPDATE tickets SET
reserved = true
WHERE seat = '12A'

Ohne Isolation: Beide sehen Sitz 12A als frei → Doppelbuchung!
Mit Isolation: Nutzer B muss warten, bis Nutzer A seine Transaktion abgeschlossen hat.

D – Durability (Dauerhaftigkeit)

-- Constraint: Balance darf nie negativ werden
ALTER TABLE accounts ADD CONSTRAINT balance_positive CHECK (balance >= 0);

BEGIN TRANSACTION;
UPDATE accounts SET balance = balance - 1000 WHERE id = 'A';
-- ❌ Fehler: Constraint verletzt → automatisches ROLLBACK
COMMIT; -- wird nie erreicht

Zeitpunkt Nutzer A Nutzer B



Dauerhaftigkeit bedeutet: Sobald eine Transaktion mit COMMIT bestätigt wurde, sind die Änderungen
dauerhaft gespeichert – selbst wenn direkt danach ein Stromausfall oder Server-Crash passiert.

Technische Umsetzung:

Garantie: Nach COMMIT geht keine Änderung verloren – auch bei Hardware-Ausfällen.

Diese vier Eigenschaften zusammen machen Transaktionen zum Rückgrat relationaler Datenbanksysteme.
Aber wie steuern wir Transaktionen konkret in SQL?

Transaktionssteuerung in SQL

Basic Commands
In SQL steuern wir Transaktionen mit vier grundlegenden Befehlen: BEGIN zum Starten, COMMIT zum
Bestätigen, ROLLBACK zum Rückgängigmachen und SAVEPOINT für partielle Rollbacks.

BEGIN / START TRANSACTION

Startet eine neue Transaktion. Ab jetzt werden alle Änderungen zunächst nur temporär gespeichert.

COMMIT

Bestätigt alle Änderungen seit BEGIN. Ab jetzt sind sie dauerhaft und für andere sichtbar.

ROLLBACK

Macht alle Änderungen seit BEGIN rückgängig. Die Datenbank kehrt zum Zustand vor BEGIN zurück.

SAVEPOINT

Setzt einen Zwischenpunkt innerhalb einer Transaktion. Erlaubt partielle Rollbacks.

Write-Ahead Log (WAL): Änderungen werden zuerst in ein Log geschrieben (auf Festplatte), bevor die
Datenbank-Seiten aktualisiert werden.

Crash Recovery: Nach einem Neustart liest die Datenbank das WAL und stellt den Zustand wieder her.

BEGIN TRANSACTION;
-- oder: START TRANSACTION;

COMMIT;

ROLLBACK;

BEGIN;
UPDATE accounts SET balance = balance - 100 WHERE id = 'A';

SAVEPOINT transfer_step1;









Live-Demo: Geldüberweisung
Schauen wir uns das Ganze in Aktion an. Ich starte mit einer einfachen Konten-Tabelle und zeige, was mit
und ohne Transaktion passiert.

CREATE TABLE accounts (

 id TEXT PRIMARY KEY,

 owner TEXT,

 balance INTEGER CHECK (balance >= 0)

)

ok

INSERT INTO accounts VALUES

 ('A', 'Alice', 500),

 ('B', 'Bob', 300)

ok

SELECT * FROM accounts

2 rows

UPDATE accounts SET balance = balance + 100 WHERE id = 'B';
-- Fehler! Konto B existiert nicht

ROLLBACK TO transfer_step1; -- Nur Schritt 2 rückgängig, Schritt 1 bleibt
COMMIT;

CREATE TABLE accounts (
 id TEXT PRIMARY KEY,
 owner TEXT,
 balance INTEGER CHECK (balance >= 0)
);

INSERT INTO accounts VALUES
 ('A', 'Alice', 500),
 ('B', 'Bob', 300);

SELECT * FROM accounts;

A Alice 500

B Bob 300

1
2
3
4
5
6
7
8
9
10
11

1

2

id owner balance



Jetzt führen wir eine Überweisung ohne Transaktion durch – und simulieren einen Fehler nach dem ersten
UPDATE.

-- Ohne Transaktion: Gefährlich!

UPDATE accounts SET balance = balance - 100 WHERE id = 'A'

ok

-- ❌ Fehler: System-Crash simuliert

-- UPDATE accounts SET balance = balance + 100 WHERE id = 'B';

SELECT * FROM accounts

2 rows

-- Ergebnis: A hat 400 Euro, B hat 300 Euro → 100 Euro verschwunden!

ok

Und jetzt dasselbe mit Transaktion. Wenn ein Fehler auftritt, wird automatisch ein ROLLBACK durchgeführt.

-- Ohne Transaktion: Gefährlich!
UPDATE accounts SET balance = balance - 100 WHERE id = 'A';
-- ❌ Fehler: System-Crash simuliert
-- UPDATE accounts SET balance = balance + 100 WHERE id = 'B';

SELECT * FROM accounts;
-- Ergebnis: A hat 400 Euro, B hat 300 Euro → 100 Euro verschwunden!

B Bob 300

A Alice 400

-- Reset
UPDATE accounts SET balance = 500 WHERE id = 'A';

BEGIN TRANSACTION;

UPDATE accounts SET balance = balance - 100 WHERE id = 'A';

-- Fehler simulieren (ungültige Constraint-Verletzung)
UPDATE accounts SET balance = balance + 100 WHERE id = 'Z'; -- Konto
 existiert nicht

ROLLBACK; -- Manuell rückgängig gemacht

1
2
3
4
5
6
7

1
2
3
4
5
6
7
8
9

10
11
12

1

2

id owner balance





-- Reset

UPDATE accounts SET balance = 500 WHERE id = 'A'

ok

BEGIN TRANSACTION

ok

UPDATE accounts SET balance = balance - 100 WHERE id = 'A'

ok

-- Fehler simulieren (ungültige Constraint-Verletzung)

UPDATE accounts SET balance = balance + 100 WHERE id = 'Z'

ok

-- Konto existiert nicht

ROLLBACK

ok

-- Manuell rückgängig gemacht

SELECT * FROM accounts

2 rows

-- Ergebnis: A hat 500 Euro, B hat 300 Euro → Alles wie vorher!

ok

Perfekt! Mit Transaktionen haben wir Atomarität garantiert. Aber was passiert, wenn mehrere Transaktionen
parallel laufen? Hier kommen Isolation Levels ins Spiel.

SELECT * FROM accounts;
-- Ergebnis: A hat 500 Euro, B hat 300 Euro → Alles wie vorher!

B Bob 300

A Alice 500

13
14

1

2

id owner balance

Isolation Levels

SELECT balance FROM accounts

WHERE id = 'A'

 SELECT balance FROM accounts

WHERE id = 'A'



BnoitcasnarTAnoitcasnarTtieZ

1T

001sinbegrE

Probleme bei parallelen Transaktionen
Isolation ist die komplizierteste der vier ACID-Eigenschaften. Warum? Weil perfekte Isolation extrem teuer ist
– sie würde bedeuten, dass immer nur eine Transaktion gleichzeitig laufen darf. Deshalb gibt es verschiedene
Isolation Levels, die einen Trade-off zwischen Konsistenz und Performance erlauben.

Welche Probleme können auftreten?

Wenn Transaktionen parallel laufen, gibt es vier klassische Anomalien:

1. Dirty Read (Schmutziges Lesen)

Transaktion A liest Daten, die von Transaktion B geändert, aber noch nicht committed wurden.

T1
UPDATE accounts SET
balance = 1000
WHERE id = 'A'

T2

SELECT balance FROM
accounts
WHERE id = 'A'
→ Ergebnis: 1000

T3 ROLLBACK;

T4
– A hat 1000 gelesen, aber das war
nie committed!

Problem: A hat einen Wert gelesen, der nie existiert hat.

2. Non-Repeatable Read (Nicht-wiederholbares Lesen)

Zeit Transaktion A Transaktion B

Transaktion A liest denselben Datensatz zweimal und bekommt unterschiedliche Werte.

T1

SELECT balance FROM
accounts
WHERE id = 'A'
→ Ergebnis: 500

T2

UPDATE accounts SET
balance = 1000
WHERE id = 'A';
COMMIT;

T3

SELECT balance FROM
accounts
WHERE id = 'A'
→ Ergebnis: 1000

Problem: A liest zweimal – und bekommt unterschiedliche Ergebnisse innerhalb derselben Transaktion.
3. Phantom Read (Phantom-Lesen)

Transaktion A führt dieselbe Abfrage zweimal aus und findet beim zweiten Mal zusätzliche Zeilen.

T1
SELECT * FROM tickets
WHERE reserved = false
→ Ergebnis: 5 Tickets

T2
INSERT INTO tickets
VALUES ('12F', false);
COMMIT;

T3
SELECT * FROM tickets
WHERE reserved = false
→ Ergebnis: 6 Tickets

Problem: Plötzlich sind neue Zeilen aufgetaucht – wie ein Phantom.

4. Lost Update (Verlorenes Update)

Zwei Transaktionen lesen denselben Wert, ändern ihn parallel – und eine Änderung geht verloren.

Zeit Transaktion A Transaktion B

Zeit Transaktion A Transaktion B

T1

SELECT balance FROM
accounts
WHERE id = 'A'
→ Ergebnis: 500

SELECT balance FROM
accounts
WHERE id = 'A'
→ Ergebnis: 500

T2 balance = 500 - 100 = 400 balance = 500 + 200 = 700

T3

UPDATE accounts SET
balance = 400
WHERE id = 'A';
COMMIT;

T4

UPDATE accounts SET
balance = 700
WHERE id = 'A';
COMMIT;

Problem: A's Update (400) wurde von B's Update (700) überschrieben. Die -100 sind verloren!

Die vier Isolation Levels
Um diese Probleme zu adressieren, definiert der SQL-Standard vier Isolation Levels – von schwach (schnell,
aber unsicher) bis stark (sicher, aber langsam).

Zeit Transaktion A Transaktion B

READ
UNCOMMITT
ED

⚠️ Möglich ⚠️ Möglich ⚠️ Möglich ⚠️ Möglich

READ
COMMITTE
D

✅
Verhindert

✅
Verhindert

⚠️ Möglich ⚠️ Möglich

REPEATAB
LE READ

✅
Verhindert

✅
Verhindert

⚠️ Möglich
✅
Verhindert

SERIALIZ
ABLE

✅
Verhindert

✅
Verhindert

✅
Verhindert

✅
Verhindert

Standard in PostgreSQL: READ COMMITTED
Standard in MySQL: REPEATABLE READ

Wie setzen wir das in SQL? Mit dem SET TRANSACTION Befehl.

In der Praxis reicht READ COMMITTED für die meisten Anwendungen. Nur bei kritischen Operationen wie
Ticketbuchungen oder Finanztransaktionen brauchen wir stärkere Isolation.

Praktische Beispiele

Szenario 1: Ticketbuchung
Schauen wir uns ein klassisches Concurrency-Problem an: Zwei Nutzer wollen gleichzeitig denselben
Sitzplatz buchen.

-- Isolation Level für die nächste Transaktion setzen
SET TRANSACTION ISOLATION LEVEL SERIALIZABLE;

BEGIN TRANSACTION;
-- Alle Operationen hier laufen mit SERIALIZABLE Isolation
COMMIT;

CREATE TABLE tickets (
 seat TEXT PRIMARY KEY,
 reserved BOOLEAN DEFAULT false
);

Isolation
Level

Dirty Read
Non-
Repeatable
Read

Phantom
Read

Lost Update

1
2
3
4





);

INSERT INTO tickets VALUES ('12A', false), ('12B', false), ('12C', fa

-- Transaktion 1 (Nutzer Alice)
BEGIN TRANSACTION;
SELECT * FROM tickets WHERE seat = '12A' AND reserved = false;
-- Ergebnis: Sitz ist frei

-- 💥 Gleichzeitig startet Transaktion 2 (Nutzer Bob)
-- BEGIN TRANSACTION;
-- SELECT * FROM tickets WHERE seat = '12A' AND reserved = false;
-- Ergebnis: Sitz ist frei (falls READ COMMITTED)

UPDATE tickets SET reserved = true WHERE seat = '12A';
COMMIT;

-- Transaktion 2 würde jetzt ebenfalls versuchen:
-- UPDATE tickets SET reserved = true WHERE seat = '12A';
-- ❌ Mit SERIALIZABLE: Fehler oder Warten
-- ⚠️ Mit READ COMMITTED: Überschreibt still (Doppelbuchung!)

4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

CREATE TABLE tickets (

 seat TEXT PRIMARY KEY,

 reserved BOOLEAN DEFAULT false

)

ok

INSERT INTO tickets VALUES ('12A', false), ('12B', false), ('12C', false)

ok

-- Transaktion 1 (Nutzer Alice)

BEGIN TRANSACTION

ok

SELECT * FROM tickets WHERE seat = '12A' AND reserved = false

1 rows

-- Ergebnis: Sitz ist frei

-- 💥 Gleichzeitig startet Transaktion 2 (Nutzer Bob)

-- BEGIN TRANSACTION;

-- SELECT * FROM tickets WHERE seat = '12A' AND reserved = false;

-- Ergebnis: Sitz ist frei (falls READ COMMITTED)

UPDATE tickets SET reserved = true WHERE seat = '12A'

ok

COMMIT

ok

-- Transaktion 2 würde jetzt ebenfalls versuchen:

-- UPDATE tickets SET reserved = true WHERE seat = '12A';

-- ❌ Mit SERIALIZABLE: Fehler oder Warten

-- ⚠️ Mit READ COMMITTED: Überschreibt still (Doppelbuchung!)

ok

Lösung: Verwende SERIALIZABLE oder SELECT FOR UPDATE, um den Sitz zu locken.

12A false1

seat reserved

-- Bessere Variante: SELECT FOR UPDATE

BEGIN TRANSACTION

ok

SELECT * FROM tickets WHERE seat = '12A' AND reserved = false FOR UPDATE

0 rows

-- Sperrt die Zeile → andere Transaktionen müssen warten

UPDATE tickets SET reserved = true WHERE seat = '12A'

ok

COMMIT

ok

Szenario 2: Inventarverwaltung
Ein weiteres Beispiel: Ein Online-Shop aktualisiert den Lagerbestand, während parallel eine Bestellung
aufgegeben wird.

-- Bessere Variante: SELECT FOR UPDATE
BEGIN TRANSACTION;
SELECT * FROM tickets WHERE seat = '12A' AND reserved = false FOR UPDA
-- Sperrt die Zeile → andere Transaktionen müssen warten

UPDATE tickets SET reserved = true WHERE seat = '12A';
COMMIT;

CREATE TABLE inventory (
 product_id TEXT PRIMARY KEY,
 stock INTEGER CHECK (stock >= 0)
);

INSERT INTO inventory VALUES ('laptop_123', 5);

-- Transaktion 1: Kunde kauft 2 Laptops
BEGIN TRANSACTION;
UPDATE inventory SET stock = stock - 2 WHERE product_id = 'laptop_123
COMMIT;

-- Transaktion 2: Lieferung kommt (3 neue Laptops)
BEGIN TRANSACTION

1
2
3
4
5
6
7

1
2
3
4
5
6
7
8
9
10
11
12
13
14

seat reserved





BEGIN TRANSACTION;
UPDATE inventory SET stock = stock + 3 WHERE product_id = 'laptop_123
COMMIT;

SELECT * FROM inventory;
-- Ergebnis: stock = 6 (5 - 2 + 3)

14
15
16
17
18
19

CREATE TABLE inventory (

 product_id TEXT PRIMARY KEY,

 stock INTEGER CHECK (stock >= 0)

)

ok

INSERT INTO inventory VALUES ('laptop_123', 5)

ok

-- Transaktion 1: Kunde kauft 2 Laptops

BEGIN TRANSACTION

ok

UPDATE inventory SET stock = stock - 2 WHERE product_id = 'laptop_123'

ok

COMMIT

ok

-- Transaktion 2: Lieferung kommt (3 neue Laptops)

BEGIN TRANSACTION

ok

UPDATE inventory SET stock = stock + 3 WHERE product_id = 'laptop_123'

ok

COMMIT

ok

SELECT * FROM inventory

1 rows

-- Ergebnis: stock = 6 (5 - 2 + 3)

laptop_123 61

product_id stock

ok

Hier ist READ COMMITTED ausreichend, da beide Transaktionen unabhängig sind – keine Konflikte.

Deadlocks
Ein Deadlock entsteht, wenn zwei Transaktionen gegenseitig aufeinander warten. Klassisches Beispiel:
Transaktion A sperrt Zeile 1 und will Zeile 2, während Transaktion B Zeile 2 sperrt und Zeile 1 will.

Was ist ein Deadlock?

T1

UPDATE accounts
SET balance = balance -
100
WHERE id = 'A'
→ Sperrt Zeile A

UPDATE accounts
SET balance = balance -
50
WHERE id = 'B'
→ Sperrt Zeile B

T2

UPDATE accounts
SET balance = balance +
100
WHERE id = 'B'
⏳ Wartet auf Lock von B

UPDATE accounts
SET balance = balance +
50
WHERE id = 'A'
⏳ Wartet auf Lock von A

T3 💀 Deadlock! 💀 Deadlock!

Beide warten ewig aufeinander.

Die Datenbank erkennt Deadlocks automatisch (über einen Deadlock Detector) und bricht eine der
Transaktionen ab.

Deadlock-Erkennung

Eine Transaktion wird automatisch mit ROLLBACK abgebrochen, die andere kann fortfahren.

Wie vermeiden wir Deadlocks? Konsistente Lock-Reihenfolge!

Deadlock-Vermeidung

ERROR: deadlock detected
DETAIL: Process 1234 waits for ShareLock on transaction 5678;
 blocked by process 5678.
HINT: See server log for query details.

Zeit Transaktion A Transaktion B



Falsch (kann Deadlock verursachen):

Richtig (immer alphabetische Reihenfolge):

Regel: Immer Ressourcen in derselben Reihenfolge sperren.

Best Practices
Zum Abschluss noch ein paar praktische Tipps für den Umgang mit Transaktionen.

1. Transaktionen kurz halten

Warum? Lange Transaktionen sperren Ressourcen → andere müssen warten → Performance leidet.

Falsch:

Richtig:

-- Transaktion A
UPDATE accounts SET ... WHERE id = 'A';
UPDATE accounts SET ... WHERE id = 'B';

-- Transaktion B
UPDATE accounts SET ... WHERE id = 'B';
UPDATE accounts SET ... WHERE id = 'A';

-- Transaktion A
UPDATE accounts SET ... WHERE id = 'A';
UPDATE accounts SET ... WHERE id = 'B';

-- Transaktion B
UPDATE accounts SET ... WHERE id = 'A'; -- Wartet auf A
UPDATE accounts SET ... WHERE id = 'B';

BEGIN;
SELECT * FROM orders WHERE status = 'pending'; -- 10.000 Zeilen
-- 💤 Jetzt 5 Minuten warten, während Nutzer Eingaben macht...
UPDATE orders SET status = 'processed' WHERE id = 123;
COMMIT;

-- Lesen außerhalb der Transaktion
SELECT * FROM orders WHERE status = 'pending';

-- Transaktion nur für Updates
BEGIN;
UPDATE orders SET status = 'processed' WHERE id = 123;
COMMIT;









2. Explizites COMMIT/ROLLBACK

Warum? Autocommit ist praktisch für Ad-hoc-Queries, aber gefährlich in Produktionscode.

3. Passenden Isolation Level wählen

Faustregel:

Analytics (Read-only) READ COMMITTED

Standard CRUD READ COMMITTED

Ticketbuchung, Sitzplätze SERIALIZABLE

Finanztransaktionen SERIALIZABLE

High-throughput Logging READ UNCOMMITTED (sehr selten!)

4. Fehlerbehandlung mit ROLLBACK

-- Explizit ist besser als implizit
BEGIN TRANSACTION;
-- Operationen
COMMIT;

// Create a table with sample data
await db.exec(`
 CREATE TABLE accounts (
 id TEXT,
 name TEXT,
 balance INTEGER CHECK (balance >= 0)
);

 INSERT INTO accounts VALUES
 ('A', 'Alice', 1500),
 ('B', 'Bob', 2300);
`);

try {
 await db.exec("BEGIN TRANSACTION;");
 await db.exec("UPDATE accounts SET balance = balance - 100 WHERE
 'A';");
 // Simuliere einen Fehler
 //throw new Error("Simulierter Fehler während der Transaktion");
 await db.exec("UPDATE accounts SET balance = balance - 10000 WHER

Anwendungsfall Empfohlener Level

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

17
18
19





 'B';");
 await db.exec("COMMIT;");
} catch (error) {
 await db.exec("ROLLBACK;");
 console.error(JSON.stringify(error, null, 2) || error.message);
}

let result = await db.query("SELECT * FROM accounts;");

console.debug(JSON.stringify(result, null, 2))

20
21
22
23
24
25
26
27
28

{
 "length": 226,
 "name": "error",
 "severity": "ERROR",
 "code": "23514",
 "detail": "Failing row contains (B, Bob, -7700).",
 "schema": "public",
 "table": "accounts",
 "constraint": "accounts_balance_check",
 "file": "execMain.c",
 "line": "2039",
 "routine": "ExecConstraints",
 "query": "UPDATE accounts SET balance = balance - 10000 WHERE id =
'B';"
}
{
 "rows": [
 {
 "id": "A",
 "name": "Alice",
 "balance": 1500
 },
 {
 "id": "B",
 "name": "Bob",
 "balance": 2300
 }
],
 "fields": [
 {
 "name": "id",
 "dataTypeID": 25
 },
 {
 "name": "name",
 "dataTypeID": 25
 },
 {
 "name": "balance",
 "dataTypeID": 23
 }

],
 "affectedRows": 0
}

5. Vermeide SELECT ohne WHERE in Transaktionen

Warum? Sperrt potenziell die ganze Tabelle.

Zusammenfassung
Was haben wir heute gelernt? Transaktionen sind das Fundament für konsistente Datenbanken – sie
garantieren ACID-Eigenschaften auch bei parallelen Zugriffen und Systemausfällen.

Kernpunkte

Referenzen & Quellen
Dokumentation

-- ❌ Gefährlich
BEGIN;
SELECT * FROM orders FOR UPDATE; -- Sperrt alle Zeilen!
-- ...
COMMIT;

-- ✅ Besser
BEGIN;
SELECT * FROM orders WHERE id = 123 FOR UPDATE;
-- ...
COMMIT;

1.

2.

3.

4.

5.

6.

7.

Transaktionen = Logische Arbeitseinheit („Alles oder Nichts“)

ACID = Atomicity, Consistency, Isolation, Durability

SQL-Commands: BEGIN , COMMIT , ROLLBACK , SAVEPOINT

Isolation Levels: Trade-off zwischen Konsistenz und Performance

READ COMMITTED : Standard, verhindert Dirty Reads

SERIALIZABLE : Maximale Isolation, aber teuer

Probleme: Dirty Reads, Non-Repeatable Reads, Phantom Reads, Lost Updates

Deadlocks: Automatisch erkannt, vermeidbar durch konsistente Lock-Reihenfolge

Best Practices: Kurze Transaktionen, explizite Steuerung, passender Isolation Level



Bücher

Papers

Tools

Nächste Session: Performance Optimization – Indexe, Query Plans & Concurrency Control

PostgreSQL: Transaction Isolation

MySQL: InnoDB Locking

SQLite: Transactions

Martin Kleppmann: „Designing Data-Intensive Applications“ (Kapitel 7: Transactions)

Abraham Silberschatz et al.: „Database System Concepts“ (Kapitel 14: Transactions)

Jim Gray: „The Transaction Concept: Virtues and Limitations“ (1981)

ISO/IEC 9075: SQL Standard (Transaction Management)

PostgreSQL EXPLAIN Visualizer

SQL Fiddle – Test Isolation Levels online

https://www.postgresql.org/docs/current/transaction-iso.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-locking.html
https://www.sqlite.org/lang_transaction.html
https://explain.dalibo.com/
http://sqlfiddle.com/

