Session 14 - Transaktionen & ACID

Session-Typ: Vorlesung Dauer: 90 Minuten Lernziele: ACID verstehen, Transaktionssteuerung
anwenden, Isolation Levels vergleichen

Willkommen zu Session 14! Heute geht es um eines der fundamentalsten Konzepte relationaler
Datenbanksysteme: Transaktionen und ACID. Wir haben bisher viel iber SQL-Abfragen, Modellierung und
komplexe Queries gelernt - aber was passiert, wenn mehrere Nutzer gleichzeitig auf dieselben Daten
zugreifen? Wie garantieren wir Konsistenz bei Systemausfallen? Diese Fragen beantworten Transaktionen.

Motivation: Warum Transaktionen?

Szenario: Geldiiberweisung zwischen Konten

Stellen Sie sich vor, Sie liberweisen 100 Euro von Konto A nach Konto B. Das klingt simpel, aber technisch
sind das zwei separate Operationen: Erst wird Konto A belastet, dann Konto B gutgeschrieben. Was passiert,
wenn zwischen diesen beiden Schritten der Server abstiirzt? Oder wenn eine andere Transaktion genau in
diesem Moment auf Konto A zugreift?

Ohne Transaktionen: Probleme

-— Schritt 1: 100 Euro von Konto A abziehen
UPDATE accounts SET balance = balance - 100 WHERE id = 'A';

-- X Server-Crash hier!

—-— Schritt 2: 100 Euro auf Konto B gutschreiben (wird nie ausgefihrt)
UPDATE accounts SET balance = balance + 100 WHERE id = 'B';

Ergebnis: 100 Euro sind verschwunden! Konto A ist belastet, aber Konto B wurde nie gutgeschrieben.

Genau solche Inkonsistenzen verhindern Transaktionen. Eine Transaktion ist eine logische Arbeitseinheit, die
garantiert, dass entweder alle Operationen erfolgreich durchgefiihrt werden - oder gar keine. Das ist das
»Alles-oder-Nichts“-Prinzip.

Mit Transaktionen: Atomar & Sicher

BEGIN TRANSACTION;

-— Schritt 1: 100 Euro von Konto A abziehen
UPDATE accounts SET balance = balance - 100 WHERE -1d

1]
>

-- Schritt 2: 100 Euro auf Konto B gutschreiben
UPDATE accounts SET balance = balance + 100 WHERE -d

I
o

‘COMMIT; -- Erst jetzt werden beide Anderungen dauerhaft gespeichert ‘

Garantie: Wenn| COMMIT |erfolgreich ist, sind beide Anderungen persistent. Bei einem Fehler vor| COMMIT

wird automatisch| ROLLBACK |ausgefiihrt - keine Anderung bleibt bestehen.
Eine Transaktion ist also ein Paket mit Garantiesiegel: Entweder kommt alles an - oder gar nichts. Damit sind
wir schon beim ersten Buchstaben von ACID.

ACID-Eigenschaften

ACID ist ein Akronym fiir vier fundamentale Eigenschaften, die jede Datenbanktransaktion erfiillen sollte:
Atomicity, Consistency, Isolation und Durability. Diese Eigenschaften wurden in den 1980ern von Jim Gray
definiert und sind bis heute der Goldstandard fiir transaktionale Systeme.

® v,

Atomicity Consistency Isolation Durability

< ACID Database >

A - Atomicity (Atomaritat)

Atomaritat bedeutet: Eine Transaktion ist eine unteilbare Einheit. Entweder werden alle Operationen
ausgefuhrt - oder keine. Es gibt keine Zwischenzustande, die nach auf3en sichtbar sind.

Metapher: Wie ein Atom (griech. ,atomos“ = unteilbar) ist eine Transaktion eine Einheit, die nicht weiter
zerlegbar ist.

Beispiel:
Aktion Ohne Atomaritat Mit Atomaritat
UPDATE accounts A Erfolg Erfolg
X Server-Crash 3 Inkonsistenter Zustand Automatisches ROLLBACK
UPDATE accounts B M Wird nie ausgefiihrt X Beide Updates riickgingig

C - Consistency (Konsistenz)

Konsistenz bedeutet: Eine Transaktion tiberfiihrt die Datenbank von einem giiltigen Zustand in einen
anderen giiltigen Zustand. Alle Constraints, Trigger und Integritatsbedingungen werden eingehalten - vor
und nach der Transaktion.

Beispiel:

-- Constraint: Balance darf nie negativ werden
ALTER TABLE accounts ADD CONSTRAINT balance_positive CHECK (balance >= 0);

BEGIN TRANSACTION;

UPDATE accounts SET balance = balance - 1000 WHERE id = 'A';
-—- X Fehler: Constraint verletzt - automatisches ROLLBACK
COMMIT; -- wird nie erreicht

Garantie: Die Datenbank bleibt in einem konsistenten Zustand - Constraints werden immer durchgesetzt.

I - Isolation

Isolation bedeutet: Parallel laufende Transaktionen beeinflussen sich nicht gegenseitig. Jede Transaktion hat
die lllusion, als ware sie allein auf der Datenbank. Wie stark diese Isolation ist, kdnnen wir tiber Isolation
Levels steuern - dazu gleich mehr.

Beispiel: Ticketbuchung

Zeitpunkt Nutzer A Nutzer B

SELECT * FROM tickets |
WHERE seat = '12A'|

T1

SELECT * FROM tickets |
WHERE seat = '12A'|

T2

| UPDATE tickets SET
T3 reserved = true|
| WHERE seat = '"12A' |

|UPDATE tickets SET
T4 reserved = true
|WHERE seat = '12A'

Ohne Isolation: Beide sehen Sitz 12A als frei — Doppelbuchung!
Mit Isolation: Nutzer B muss warten, bis Nutzer A seine Transaktion abgeschlossen hat.

D - Durability (Dauerhaftigkeit)

Dauerhaftigkeit bedeutet: Sobald eine Transaktion mit COMMIT bestéatigt wurde, sind die Anderungen
dauerhaft gespeichert - selbst wenn direkt danach ein Stromausfall oder Server-Crash passiert.

Technische Umsetzung:

e Write-Ahead Log (WAL): Anderungen werden zuerst in ein Log geschrieben (auf Festplatte), bevor die
Datenbank-Seiten aktualisiert werden.

¢ Crash Recovery: Nach einem Neustart liest die Datenbank das WAL und stellt den Zustand wieder her.
Garantie: Nach | COMMIT |geht keine Anderung verloren - auch bei Hardware-Ausfallen.

Diese vier Eigenschaften zusammen machen Transaktionen zum Riickgrat relationaler Datenbanksysteme.
Aber wie steuern wir Transaktionen konkret in SQL?

Transaktionssteuerung in SQL

Basic Commands

In SQL steuern wir Transaktionen mit vier grundlegenden Befehlen: BEGIN zum Starten, COMMIT zum
Bestatigen, ROLLBACK zum Riickgangigmachen und SAVEPOINT fiir partielle Rollbacks.

| BEGIN |/| START TRANSACTION

Startet eine neue Transaktion. Ab jetzt werden alle Anderungen zunachst nur temporar gespeichert.

BEGIN TRANSACTION;
—-- oder: START TRANSACTION;

Bestatigt alle Anderungen seit BEGIN. Ab jetzt sind sie dauerhaft und fiir andere sichtbar.

COMMIT;

ROLLBACK

Macht alle Anderungen seit BEGIN riickgangig. Die Datenbank kehrt zum Zustand vor BEGIN zurtick.

ROLLBACK;

SAVEPOINT

Setzt einen Zwischenpunkt innerhalb einer Transaktion. Erlaubt partielle Rollbacks.

BEGIN;
UPDATE accounts SET balance = balance - 100 WHERE id = 'A';

SAVEPOINT transfer_stepl;

UPDATE accounts SET balance = balance + 100 WHERE 1id = 'B';
-- Fehler! Konto B existiert nicht

ROLLBACK TO transfer_stepl; -- Nur Schritt 2 rlckgangig, Schritt 1 bleibt
COMMIT;

Live-Demo: Geldiiberweisung

Schauen wir uns das Ganze in Aktion an. Ich starte mit einer einfachen Konten-Tabelle und zeige, was mit
und ohne Transaktion passiert.

CREATE TABLE accounts (

id TEXT PRIMARY KEY,

owner TEXT,

balance INTEGER CHECK (balance >= 0)

lv

2

3

4

5);
6

7 INSERT INTO accounts VALUES
8 ('"A'", '"Alice', 500),

9 ('B', 'Bob', 300);

10

11 SELECT * FROM accounts;

CREATE TABLE accounts (
id TEXT PRIMARY KEY,
owner TEXT,
balance INTEGER CHECK (balance >= 0)

INSERT INTO accounts VALUES
('A', 'Alice', 500),
('B', 'Bob’, 300)

SELECT * FROM accounts

i owner balance
Alice 1510]0]

Bob 300

Jetzt fiihren wir eine Uberweisung ohne Transaktion durch - und simulieren einen Fehler nach dem ersten
UPDATE.

—-— Ohne Transaktion: Gefahrlich!

UPDATE accounts SET balance = balance - 100 WHERE id = 'A';

-- ¥ Fehler: System-Crash simuliert

-— UPDATE accounts SET balance = balance + 100 WHERE id = 'B';

SELECT * FROM accounts;
-- Ergebnis: A hat 400 Euro, B hat 300 Euro - 100 Euro verschwunden!

~No o WNBE

-- Ohne Transaktion: Gefahrlich!
UPDATE accounts SET balance = balance - 100 WHERE id

ok

--) Fehler: System-Crash simuliert
-- UPDATE accounts SET balance = balance + 100 WHERE id = 'B';

SELECT * FROM accounts

id owner balance
B Bob 300

A Alice 400

-- Ergebnis: A hat 400 Euro, B hat 300 Euro » 100 Euro verschwunden!

ok

Und jetzt dasselbe mit Transaktion. Wenn ein Fehler auftritt, wird automatisch ein ROLLBACK durchgefiihrt.

1 -- Reset

2 UPDATE accounts SET balance = 500 WHERE +id = 'A';

3

4 BEGIN TRANSACTION;

5

6 UPDATE accounts SET balance = balance - 100 WHERE id = 'A';

-

8 -- Fehler simulieren (unglltige Constraint-Verletzung)

9 UPDATE accounts SET balance = balance + 100 WHERE id = 'Z'; -- Konto
existiert nicht

10

11 ROLLBACK; -- Manuell ruckgangig gemacht

12

13 SELECT x FROM accounts;

14 -- Ergebnis: A hat 500 Euro, B hat 300 Euro - Alles wie vorher!

-- Reset
UPDATE accounts SET balance = 500 WHERE id = 'A'
ok

BEGIN TRANSACTION

ok

UPDATE accounts SET balance = balance - 100 WHERE id = 'A'
ok

-- Fehler simulieren (ungiiltige Constraint-Verletzung)
UPDATE accounts SET balance = balance + 100 WHERE id = 'Z'

ok

-- Konto existiert nicht

ROLLBACK

ok

-- Manuell riickgangig gemacht
SELECT * FROM accounts

id owner balance

B Bob 300

A Alice 1510]0]

-- Ergebnis: A hat 500 Euro, B hat 300 Euro - Alles wie vorher!
ok

Perfekt! Mit Transaktionen haben wir Atomaritat garantiert. Aber was passiert, wenn mehrere Transaktionen
parallel laufen? Hier kommen Isolation Levels ins Spiel.

Isolation Levels

Zeit Transaction A Transaction B

Tl
SELECT balance FROM accounts SELECT balance FROM accounts
WHERE dd = 'A' WHERE did = 'A'
rgebnis —» 100

Probleme bei parallelen Transaktionen

Isolation ist die komplizierteste der vier ACID-Eigenschaften. Warum? Weil perfekte Isolation extrem teuer ist
- sie wiirde bedeuten, dass immer nur eine Transaktion gleichzeitig laufen darf. Deshalb gibt es verschiedene

Isolation Levels, die einen Trade-off zwischen Konsistenz und Performance erlauben.
Welche Probleme konnen auftreten?

Wenn Transaktionen parallel laufen, gibt es vier klassische Anomalien:

1. Dirty Read (Schmutziges Lesen)

Transaktion A liest Daten, die von Transaktion B gedandert, aber noch nicht committed wurden.

Zeit Transaktion A Transaktion B

| UPDATE accounts SET
T1 balance = 1000
|WHERE id = 'A"

| SELECT balance FROM
accounts
|WHERE id = 'A'|
— Ergebnis: 1000

T3 ROLLBACK;

- A hat 1000 gelesen, aber das war
nie committed!

T2

T4

Problem: A hat einen Wert gelesen, der nie existiert hat.

2. Non-Repeatable Read (Nicht-wiederholbares Lesen)

Transaktion A liest denselben Datensatz zweimal und bekommt unterschiedliche Werte.

Zeit Transaktion A Transaktion B

| SELECT balance FROM

accounts

T1 :
|WHERE id = 'A’
- Ergebnis: 500
|UPDATE accounts SET
- balance = 1000
WHERE id = 'A';
COMMIT;
| SELECT balance FROM
T3 accounts

|WHERE id = 'A’
— Ergebnis: 1000

Problem: A liest zweimal - und bekommt unterschiedliche Ergebnisse innerhalb derselben Transaktion.
3. Phantom Read (Phantom-Lesen)

Transaktion A flihrt dieselbe Abfrage zweimal aus und findet beim zweiten Mal zusatzliche Zeilen.

Zeit Transaktion A Transaktion B

SELECT * FROM tickets |
T1 WHERE reserved = false|
— Ergebnis: 5 Tickets

INSERT INTO tickets |
T2 VALUES ('12F', false); |

COMMIT;

SELECT * FROM tickets |
T3 WHERE reserved = false|
— Ergebnis: 6 Tickets

Problem: Pl6tzlich sind neue Zeilen aufgetaucht - wie ein Phantom.

4. Lost Update (Verlorenes Update)

Zwei Transaktionen lesen denselben Wert, &ndern ihn parallel - und eine Anderung geht verloren.

Zeit

T1

T2

T3

T4

Transaktion A

| SELECT balance FROM

accounts
|WHERE id = 'A’
- Ergebnis: 500

balance =500 - 100 =400

| UPDATE accounts SET

balance = 400
WHERE id = 'A';

COMMIT;

Transaktion B

| SELECT balance FROM
accounts
|WHERE id = 'A’
- Ergebnis: 500

balance =500 +200 =700

|UPDATE accounts SET
balance = 700|
WHERE id = 'A'; |

COMMIT;

Problem: A's Update (400) wurde von B's Update (700) liberschrieben. Die -100 sind verloren!
Die vier Isolation Levels

Um diese Probleme zu adressieren, definiert der SQL-Standard vier Isolation Levels - von schwach (schnell,

aber unsicher) bis stark (sicher, aber langsam).

Isolation . Phantom
Dirty Read Repeatable Lost Update
Level Read
Read
| READ
UNCOMMITT I\ Moglich I\ Moglich i\ Moglich i\ Moglich
ED]
|READ))
COMMITTE _ _ I\ Moglich i\ Moglich
EI— Verhindert Verhindert
[REPEATAB L
. . I\ Méglich ‘

LE READ Verhindert Verhindert Verhindert

SERIALIZ
ABLE Verhindert Verhindert Verhindert Verhindert

Non-

Standard in PostgreSQL:| READ COMMITTED |
Standard in MySQL:| REPEATABLE READ |

Wie setzen wir das in SQL? Mit dem SET TRANSACTION Befehl.

-— Isolation Level fur die nachste Transaktion setzen
SET TRANSACTION ISOLATION LEVEL SERIALIZABLE;

BEGIN TRANSACTION;
-— Alle Operationen hier laufen mit SERIALIZABLE Isolation
COMMIT;

In der Praxis reicht| READ COMMITTED |fiir die meisten Anwendungen. Nur bei kritischen Operationen wie
Ticketbuchungen oder Finanztransaktionen brauchen wir starkere Isolation.

Praktische Beispiele

Szenario 1: Ticketbuchung

Schauen wir uns ein klassisches Concurrency-Problem an: Zwei Nutzer wollen gleichzeitig denselben
Sitzplatz buchen.

~ CREATE TABLE tickets (
seat TEXT PRIMARY KEY,
reserved BOOLEAN DEFAULT false

A wWN B

O 00 ~N o U .-

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

7

INSERT INTO tickets VALUES ('12A', false), ('12B', false), ('12C', fa

-- Transaktion 1 (Nutzer Alice)

BEGIN TRANSACTION;

SELECT * FROM tickets WHERE seat = '12A' AND reserved = false;
-- Ergebnis: Sitz ist frei

-- 3% Gleichzeitig startet Transaktion 2 (Nutzer Bob)

-— BEGIN TRANSACTION;

-— SELECT * FROM tickets WHERE seat = '12A' AND reserved = false;
-- Ergebnis: Sitz ist frei (falls READ COMMITTED)

UPDATE tickets SET reserved = true WHERE seat = '12A';
COMMIT;

-— Transaktion 2 wirde jetzt ebenfalls versuchen:

-— UPDATE tickets SET reserved = true WHERE seat = '12A';

-— X Mit SERIALIZABLE: Fehler oder Warten

-— A\ Mit READ COMMITTED: Uberschreibt still (Doppelbuchung!)

CREATE TABLE tickets (
seat TEXT PRIMARY KEY,
reserved BOOLEAN DEFAULT false

INSERT INTO tickets VALUES ('12A', false), (‘12B', false), ('12C', false)

ok

-- Transaktion 1 (Nutzer Alice)
BEGIN TRANSACTION

ok

SELECT * FROM tickets WHERE seat = '12A' AND reserved = false

seat reserved

12A false

-- Ergebnis: Sitz ist frei

-- 3¥ Gleichzeitig startet Transaktion 2 (Nutzer Bob)

-- BEGIN TRANSACTION;

-- SELECT * FROM tickets WHERE seat = '12A' AND reserved = false;
-- Ergebnis: Sitz ist frei (falls READ COMMITTED)

UPDATE tickets SET reserved = true WHERE seat = '12A'

ok

COMMIT

ok

-- Transaktion 2 wiirde jetzt ebenfalls versuchen:

-- UPDATE tickets SET reserved = true WHERE seat = '12AY;

--)_ Mit SERIALIZABLE: Fehler oder Warten

-- /A Mit READ COMMITTED: Uberschreibt still (Doppelbuchung!)

ok

Losung: Verwende SERIALIZABLE oder SELECT FOR UPDATE, um den Sitz zu locken.

-— Bessere Variante: SELECT FOR UPDATE

BEGIN TRANSACTION;

SELECT * FROM tickets WHERE seat = '12A' AND reserved = false FOR UPDA
-— Sperrt die Zeile - andere Transaktionen missen warten

UPDATE tickets SET reserved = true WHERE seat = '12A';
COMMIT;

~No b~ WNBE

-- Bessere Variante: SELECT FOR UPDATE
BEGIN TRANSACTION

(0] 4

SELECT * FROM tickets WHERE seat = '12A' AND reserved = false FOR UPDATE

seat reserved

-- Sperrt die Zeile » andere Transaktionen miissen warten

UPDATE tickets SET reserved = true WHERE seat = '12A’'

ok

COMMIT

ok

Szenario 2: Inventarverwaltung

Ein weiteres Beispiel: Ein Online-Shop aktualisiert den Lagerbestand, wahrend parallel eine Bestellung
aufgegeben wird.

1~ CREATE TABLE -inventory (

2 product_id TEXT PRIMARY KEY,

3 stock INTEGER CHECK (stock >= 0)

4)3

5

6 INSERT INTO inventory VALUES ('laptop_123', 5);
7

8 -- Transaktion 1: Kunde kauft 2 Laptops

9 BEGIN TRANSACTION;

10 UPDATE -inventory SET stock = stock - 2 WHERE product_id = 'laptop_123
11 COMMIT;

12

13 -- Transaktion 2: Lieferung kommt (3 neue Laptops)

14
15
16
17
18
19

BEGLN 1KANSACILUN;
UPDATE -1inventory SET stock = stock + 3 WHERE product_id =
COMMIT;

SELECT * FROM -nventory;
-- Ergebnis: stock = 6 (5 - 2 + 3)

'"laptop_123

CREATE TABLE inventory (
product_id TEXT PRIMARY KEY,
stock INTEGER CHECK (stock >= 0)

INSERT INTO inventory VALUES ('laptop_123', 5)

ok

-- Transaktion 1: Kunde kauft 2 Laptops
BEGIN TRANSACTION

ok

UPDATE inventory SET stock = stock - 2 WHERE product_id = 'laptop_123'

ok

COMMIT

ok

-- Transaktion 2: Lieferung kommt (3 neue Laptops)
BEGIN TRANSACTION

ok

UPDATE inventory SET stock = stock + 3 WHERE product_id = 'laptop_123'

ok

COMMIT

ok

SELECT * FROM inventory

product_id

laptop 123

-- Ergebnis: stock =6 (5 - 2 + 3)

Hier ist READ COMMITTED ausreichend, da beide Transaktionen unabhangig sind - keine Konflikte.

Deadlocks

Ein Deadlock entsteht, wenn zwei Transaktionen gegenseitig aufeinander warten. Klassisches Beispiel:
Transaktion A sperrt Zeile 1 und will Zeile 2, wahrend Transaktion B Zeile 2 sperrt und Zeile 1 will.

Was ist ein Deadlock?

Zeit Transaktion A Transaktion B

UPDATE accounts| UPDATE accounts|

SET balance = balance - SET balance = balance -
T1 100 50

|WHERE id = 'A'| |WHERE id = 'B'|

- Sperrt Zeile A - Sperrt Zeile B

UPDATE accounts | UPDATE accounts |

SET balance = balance + SET balance = balance +
T2 100 50

WHERE id = 'B'| WHERE id = 'A']|

— Wartet auf Lock von B — Wartet auf Lock von A
T3 e Deadlock! e Deadlock!

Beide warten ewig aufeinander.

Die Datenbank erkennt Deadlocks automatisch (liber einen Deadlock Detector) und bricht eine der
Transaktionen ab.

Deadlock-Erkennung

ERROR: deadlock detected

DETAIL: Process 1234 waits for SharelLock on transaction 5678;
blocked by process 5678.

HINT: See server log for query details.

Eine Transaktion wird automatisch mit ROLLBACK abgebrochen, die andere kann fortfahren.
Wie vermeiden wir Deadlocks? Konsistente Lock-Reihenfolge!

Deadlock-Vermeidung

Falsch (kann Deadlock verursachen):

-- Transaktion A
UPDATE accounts SET
UPDATE accounts SET

-- Transaktion B
UPDATE accounts SET
UPDATE accounts SET

.. WHERE 1id
. WHERE -d

.. WHERE -1d
. WHERE -d

IAI
IBI

IBI
IAI

Richtig (immer alphabetische Reihenfolge):

-- Transaktion A
UPDATE accounts SET
UPDATE accounts SET

-- Transaktion B
UPDATE accounts SET
UPDATE accounts SET

. WHERE -d
. WHERE -d

.. WHERE 1id
. WHERE 1id =

IAI
lBl

IAI-

IBI

)

-- Wartet auf A

Regel: Immer Ressourcen in derselben Reihenfolge sperren.

Best Practices

Zum Abschluss noch ein paar praktische Tipps flir den Umgang mit Transaktionen.

1. Transaktionen kurz halten

Warum? Lange Transaktionen sperren Ressourcen — andere miissen warten — Performance leidet.

Falsch:

BEGIN;

COMMIT;

SELECT * FROM orders WHERE status = 'pending'; -- 10.000 Zeilen
-- 4% Jetzt 5 Minuten warten, wdhrend Nutzer Eingaben macht...
UPDATE orders SET status = 'processed' WHERE id = 123;

Richtig:

BEGIN;

COMMIT;

UPDATE orders SET status

-- Lesen aulRerhalb der Transaktion
SELECT * FROM orders WHERE status = 'pending';

-— Transaktion nur fir Updates

= 'processed' WHERE 1id = 123;

2. Explizites COMMIT/ROLLBACK

Warum? Autocommit ist praktisch fiir Ad-hoc-Queries, aber gefahrlich in Produktionscode.

-— Explizit ist besser als implizit
BEGIN TRANSACTION;

-— Operationen

COMMIT;

3. Passenden Isolation Level wahlen

Faustregel:
Anwendungsfall Empfohlener Level
Analytics (Read-only) | READ COMMITTED |
Standard CRUD | READ COMMITTED |
Ticketbuchung, Sitzplatze | SERTALIZABLE |
Finanztransaktionen | SERTALIZABLE |
High-throughput Logging |READ UNCOMMITTED|$dwseRem)

4, Fehlerbehandlung mit ROLLBACK

1 // Create a table with sample data
B 2- await db.exec("
3= CREATE TABLE accounts (

E!19 await db.exec("UPDATE accounts SET balance =

4 id TEXT,
5 name TEXT,
6 balance INTEGER CHECK (balance >= 0)
7)3
8
9 INSERT INTO accounts VALUES
10 ('A', 'Alice', 1500),
11 ('B', 'Bob', 2300);
12 °);
13
14~ try {
B15 await db.exec("BEGIN TRANSACTION;");
516 await db.exec("UPDATE accounts SET balance = balance - 100 WHERE
A ;u);
17 // Simuliere einen Fehler
18 //throw new Error("Simulierter Fehler wahrend der Transaktion");

balance - 10000 WHER

IBI;II);

B 20 await db.exec("COMMIT;");
21~ } catch (error) {
B22 await db.exec("ROLLBACK;");
23 console.error (JSON.stringify(error, null, 2) || error.message);
24 }
25
EB26 1let result = await db.query("SELECT * FROM accounts;");
27

i 28 console.debug(JSON.stringify(result, null, 2))

"rows": [

ll-idll: IlAll,
"name": "Alice",
"balance": 1500

ll-idll: IlBll’

"name": "Bob",

"balance": 2300
}

1,
"fields": [

llnamell. ll-idll
°)
"dataTypeID": 25

"name": '"name",
"dataTypeID": 25

"name": "balance",
"dataTypeID": 23

1,
"affectedRows": O

5. Vermeide SELECT ohne WHERE in Transaktionen

Warum? Sperrt potenziell die ganze Tabelle.

-- X Gefahrlich
BEGIN;
SELECT * FROM orders FOR UPDATE; -- Sperrt alle Zeilen!

COMMIT;
-= _J Besser

BEGIN;
SELECT x FROM orders WHERE id = 123 FOR UPDATE;

COMMIT;

Zusammenfassung

Was haben wir heute gelernt? Transaktionen sind das Fundament fiir konsistente Datenbanken - sie
garantieren ACID-Eigenschaften auch bei parallelen Zugriffen und Systemausfallen.

Kernpunkte
1. Transaktionen = Logische Arbeitseinheit (,Alles oder Nichts®)

2. ACID = Atomicity, Consistency, Isolation, Durability

3. SQL-Commands:| BEGIN

COMMIT |,| ROLLBACK SAVEPOINT|

b |2 4

4. lsolation Levels: Trade-off zwischen Konsistenz und Performance

 |READ COMMITTED |: Standard, verhindert Dirty Reads

e | SERTALIZABLE | Maximale Isolation, aber teuer

5. Probleme: Dirty Reads, Non-Repeatable Reads, Phantom Reads, Lost Updates
6. Deadlocks: Automatisch erkannt, vermeidbar durch konsistente Lock-Reihenfolge

7. Best Practices: Kurze Transaktionen, explizite Steuerung, passender Isolation Level

Referenzen & Quellen

Dokumentation

°
|‘U

ostgreSQL: Transaction Isolation

* MySQL: InnoDB Locking

e SQLite: Transactions

Biicher
* Martin Kleppmann: ,,Designing Data-Intensive Applications® (Kapitel 7: Transactions)
* Abraham Silberschatz et al.: ,Database System Concepts® (Kapitel 14: Transactions)
Papers
* Jim Gray: ,The Transaction Concept: Virtues and Limitations“ (1981)
* [SO/IEC9075: SQL Standard (Transaction Management)
Tools

* PostgreSQL EXPLAIN Visualizer

e SQL Fiddle - Test Isolation Levels online

Nachste Session: Performance Optimization - Indexe, Query Plans & Concurrency Control

https://www.postgresql.org/docs/current/transaction-iso.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-locking.html
https://www.sqlite.org/lang_transaction.html
https://explain.dalibo.com/
http://sqlfiddle.com/

