
Aggregationen & Window Functions

Session 16 – Lecture (90 Minuten) Block 4: Theorie, Optimierung & Polyglot Lernziel: LZ 2 – SQL-
Praxis vertiefen mit Aggregationen & Window Functions

Willkommen zur sechzehnten Vorlesung! Heute lernen Sie zwei mächtige SQL-Werkzeuge kennen:
Aggregationen und Window Functions. Mit echten Wetterdaten werden wir Durchschnitte berechnen, Trends
entdecken und gleitende Mittelwerte erstellen. Sie werden sehen, welche analytischen Möglichkeiten SQL
bietet – von einfachen Summen bis zu komplexen Zeitreihen-Analysen.

Was erwartet Sie heute?
Heute lernen Sie die wichtigsten Werkzeuge für Datenanalyse in SQL: Klassische Aggregationen und
fortgeschrittene Window Functions. Alles mit echten Wetterdaten – über 4000 Messungen aus mehreren
Monaten.

Überblick

Setup: Wetterdaten laden
Lassen Sie uns mit unseren Daten starten. Wir haben echte Wettermessungen aus den letzten Monaten –
Temperatur, Luftdruck, Windgeschwindigkeit, Luftfeuchte und mehr. Insgesamt über 4000 Zeilen.

Daten laden

Klassische Aggregationen: COUNT, SUM, AVG, MIN, MAX, GROUP BY, HAVING

Window Functions: ROW_NUMBER, RANK, LAG, LEAD, gleitende Mittelwerte

Zeitbasierte Analytics: EXTRACT, ROWS BETWEEN

Praktische Anwendungen: Trend-Erkennung, Anomalie-Suche, Vergleiche

const res = await fetch('../assets/dat/weather.csv', { cache: "no-sto
);
if (!res.ok) throw new Error(res.statusText);
const csvText = await res.text();

// als "Datei" in DuckDB registrieren
await db.registerFileText('weather.csv', csvText);

// jetzt normal aus der "lokalen" Datei lesen
await conn.query(`CREATE TABLE weather AS SELECT * FROM read_csv('wea
 .csv');`);

console.log("ready")

1

2
3
4
5
6
7
8
9

10
11



Schauen wir uns die Struktur an: Datum, Anzahl Messwerte pro Tag, dann verschiedene Sensoren.

Datenstruktur verstehen

Error executing statement: DESCRIBE weather Catalog Error: Table with
name weather does not exist!
Did you mean "pg_attrdef"?

Sie sehen: 12 Spalten, hauptsächlich numerische Werte. Perfekt für Aggregationen!

Teil 1: Klassische Aggregationen
Starten wir mit den Basics: Aggregationsfunktionen. Diese kennen Sie bereits, aber heute schauen wir
genauer hin, wie sie intern funktionieren.

COUNT, SUM, AVG, MIN, MAX
Die fundamentalen Aggregationsfunktionen – das Fundament jeder Datenanalyse. Beginnen wir mit einem
ganz einfachen Beispiel.

Beispiel: Wie viele Tage haben wir?

Error executing statement: SELECT COUNT(*) as anzahl_tage
FROM weather Catalog Error: Table with name weather does not exist!
Did you mean "pg_attrdef"?
LINE 2: FROM weather
 ^

Syntax-Erklärung: COUNT(*) zählt alle Zeilen in der Tabelle. Das Sternchen * bedeutet „alle Zeilen“. Mit
as anzahl_tage geben wir der Spalte einen lesbaren Namen.

Jetzt kombinieren wir mehrere Aggregationen in einer Query:

Mehrere Aggregationen gleichzeitig

console.log(ready)

DESCRIBE weather;

SELECT COUNT(*) as anzahl_tage
FROM weather;

SELECT
 COUNT(*) as anzahl_tage,
 AVG(Temp_2m) as durchschnitts_temp,
 MIN(Temp_2m) as min_temp,
 MAX(Temp_2m) as max_temp

11

1

1
2

1
2
3
4
5







Error executing statement: SELECT
 COUNT(*) as anzahl_tage,
 AVG(Temp_2m) as durchschnitts_temp,
 MIN(Temp_2m) as min_temp,
 MAX(Temp_2m) as max_temp
FROM weather Catalog Error: Table with name weather does not exist!
Did you mean "pg_attrdef"?
LINE 6: FROM weather
 ^

Syntax-Erklärung: - AVG(Temp_2m) berechnet den Durchschnitt aller Temperatur-Werte -
MIN(Temp_2m) findet die niedrigste Temperatur - MAX(Temp_2m) findet die höchste Temperatur -

Alle vier Werte werden in einer Zeile ausgegeben!
Die Zahlen haben viele Nachkommastellen. Mit ROUND machen wir sie lesbarer:

Zahlen runden mit ROUND

Error executing statement: SELECT
 COUNT(*) as anzahl_tage,
 ROUND(AVG(Temp_2m), 2) as durchschnitts_temp,
 ROUND(MIN(Temp_2m), 2) as min_temp,
 ROUND(MAX(Temp_2m), 2) as max_temp
FROM weather Catalog Error: Table with name weather does not exist!
Did you mean "pg_attrdef"?
LINE 6: FROM weather
 ^

Syntax-Erklärung: ROUND(wert, 2) rundet auf 2 Nachkommastellen. Statt 7.123456 bekommen
Sie 7.12 . Das ist viel lesbarer!

GROUP BY – Gruppierte Aggregationen
Jetzt wird es spannender: Gruppierungen! Statt einen Durchschnitt für alle Daten zu berechnen, wollen wir
Durchschnitte pro Monat. Dafür brauchen wir GROUP BY.

FROM weather;

SELECT
 COUNT(*) as anzahl_tage,
 ROUND(AVG(Temp_2m), 2) as durchschnitts_temp,
 ROUND(MIN(Temp_2m), 2) as min_temp,
 ROUND(MAX(Temp_2m), 2) as max_temp
FROM weather;

6

1
2
3
4
5
6



Nach Monat gruppieren

Error executing statement: SELECT
 EXTRACT(MONTH FROM Datum) as monat,
 ROUND(AVG(Temp_2m), 2) as avg_temp,
 COUNT(*) as anzahl_tage
FROM weather
GROUP BY EXTRACT(MONTH FROM Datum)
ORDER BY monat Catalog Error: Table with name weather does not exist!
Did you mean "pg_attrdef"?
LINE 5: FROM weather
 ^

Syntax-Erklärung: - EXTRACT(MONTH FROM Datum) holt die Monatszahl aus dem Datum (1 für Januar,
2 für Februar, usw.) - GROUP BY gruppiert alle Zeilen mit dem gleichen Monat zusammen -
AVG(Temp_2m) berechnet dann den Durchschnitt pro Gruppe (also pro Monat) - ORDER BY monat

sortiert von Januar (1) bis Dezember (12)

Wir sehen jetzt 12 Zeilen – eine für jeden Monat! Aber Moment: Was, wenn wir nur kalte Monate sehen
wollen?

HAVING – Filterung nach Aggregation

SELECT
 EXTRACT(MONTH FROM Datum) as monat,
 ROUND(AVG(Temp_2m), 2) as avg_temp,
 COUNT(*) as anzahl_tage
FROM weather
GROUP BY EXTRACT(MONTH FROM Datum)
ORDER BY monat;

SELECT
 EXTRACT(MONTH FROM Datum) as monat,
 ROUND(AVG(Temp_2m), 2) as avg_temp,
 COUNT(*) as anzahl_tage
FROM weather
GROUP BY EXTRACT(MONTH FROM Datum)
HAVING AVG(Temp_2m) < 5
ORDER BY avg_temp;

1
2
3
4
5
6
7

1
2
3
4
5
6
7
8





Error executing statement: SELECT
 EXTRACT(MONTH FROM Datum) as monat,
 ROUND(AVG(Temp_2m), 2) as avg_temp,
 COUNT(*) as anzahl_tage
FROM weather
GROUP BY EXTRACT(MONTH FROM Datum)
HAVING AVG(Temp_2m) < 5
ORDER BY avg_temp Catalog Error: Table with name weather does not
exist!
Did you mean "pg_attrdef"?
LINE 5: FROM weather
 ^

Syntax-Erklärung: - HAVING AVG(Temp_2m) < 5 filtert nach der Aggregation - Nur Monate mit
Durchschnittstemperatur unter 5°C werden angezeigt - Wichtig: WHERE filtert vor GROUP BY, HAVING filtert
nach GROUP BY!
Der Unterschied zwischen WHERE und HAVING verwirrt oft. Hier ein Vergleich:

WHERE vs. HAVING:

Teil 2: Window Functions
Jetzt kommen wir zu den mächtigen Window Functions – ein Game-Changer für Analytics. Window
Functions erlauben es Ihnen, Berechnungen über Zeilen-Bereiche durchzuführen, ohne zu gruppieren.

Grundkonzept: OVER
Window Functions sind anders als GROUP BY: Sie behalten alle Zeilen bei, fügen aber trotzdem aggregierte
Werte hinzu. Das klingt kompliziert? Schauen wir uns ein Beispiel an!

Schritt 1: GROUP BY kollabiert Zeilen

WHERE: Filtert einzelne Zeilen vor der Gruppierung (z.B. WHERE Temp_2m > 0)

HAVING: Filtert Gruppen nach der Aggregation (z.B. HAVING AVG(Temp_2m) < 5)

SELECT
 EXTRACT(MONTH FROM Datum) as monat,
 ROUND(AVG(Temp_2m), 2) as avg_temp
FROM weather
GROUP BY EXTRACT(MONTH FROM Datum)
ORDER BY monat;

1
2
3
4
5
6



Error executing statement: SELECT
 EXTRACT(MONTH FROM Datum) as monat,
 ROUND(AVG(Temp_2m), 2) as avg_temp
FROM weather
GROUP BY EXTRACT(MONTH FROM Datum)
ORDER BY monat Catalog Error: Table with name weather does not exist!
Did you mean "pg_attrdef"?
LINE 4: FROM weather
 ^

Was passiert: Aus tausenden Zeilen werden nur 12 (eine pro Monat). Wir verlieren die einzelnen Tage!
Aber was, wenn wir die einzelnen Tage behalten wollen, aber trotzdem den Monats-Durchschnitt sehen?

Schritt 2: Window Function behält alle Zeilen

Error executing statement: SELECT
 Datum,
 Temp_2m,
 ROUND(AVG(Temp_2m) OVER (
 PARTITION BY EXTRACT(MONTH FROM Datum)
), 2) as monats_durchschnitt
FROM weather
ORDER BY Datum DESC
LIMIT 10 Catalog Error: Table with name weather does not exist!
Did you mean "pg_attrdef"?
LINE 7: FROM weather
 ^

Syntax-Erklärung: - AVG(Temp_2m) OVER (...) ist eine Window Function - OVER sagt: „Berechne
über ein Fenster“ - PARTITION BY EXTRACT(MONTH FROM Datum) teilt die Daten in Gruppen (hier:
Monate) - Wichtig: Alle Zeilen bleiben erhalten! Jede Zeile bekommt den Durchschnitt ihres Monats dazu.

Jetzt können wir die Abweichung vom Monatsdurchschnitt berechnen:

Abweichung vom Monatsdurchschnitt

SELECT
 Datum,
 Temp_2m,
 ROUND(AVG(Temp_2m) OVER (
 PARTITION BY EXTRACT(MONTH FROM Datum)
), 2) as monats_durchschnitt
FROM weather
ORDER BY Datum DESC
LIMIT 10;

1
2
3
4
5
6
7
8
9



Error executing statement: SELECT
 Datum,
 ROUND(Temp_2m, 2) as temp,
 ROUND(AVG(Temp_2m) OVER (
 PARTITION BY EXTRACT(MONTH FROM Datum)
), 2) as monats_avg,
 ROUND(
 Temp_2m - AVG(Temp_2m) OVER (
 PARTITION BY EXTRACT(MONTH FROM Datum)
), 2
) as abweichung
FROM weather
ORDER BY Datum DESC
LIMIT 10 Catalog Error: Table with name weather does not exist!
Did you mean "pg_attrdef"?
LINE 12: FROM weather
 ^

Was wir sehen: Jeder Tag zeigt seine Temperatur, den Monatsdurchschnitt und die Abweichung. Positive
Werte = wärmer als Durchschnitt, negative = kälter.

ROW_NUMBER, RANK, DENSE_RANK
Manchmal wollen Sie die Top 10 finden – die kältesten Tage, die heißesten Tage, etc. Dafür gibt es Ranking-
Funktionen!

Die 5 kältesten Tage finden

SELECT
 Datum,
 ROUND(Temp_2m, 2) as temp,
 ROUND(AVG(Temp_2m) OVER (
 PARTITION BY EXTRACT(MONTH FROM Datum)
), 2) as monats_avg,
 ROUND(
 Temp_2m - AVG(Temp_2m) OVER (
 PARTITION BY EXTRACT(MONTH FROM Datum)
), 2
) as abweichung
FROM weather
ORDER BY Datum DESC
LIMIT 10;

SELECT
 Datum,

1
2
3
4
5
6
7
8
9
10
11
12
13
14

1
2





Error executing statement: SELECT
 Datum,
 ROUND(Temp_2m, 2) as temp,
 ROW_NUMBER() OVER (ORDER BY Temp_2m) as position
FROM weather
ORDER BY temp
LIMIT 5 Catalog Error: Table with name weather does not exist!
Did you mean "pg_attrdef"?
LINE 5: FROM weather
 ^

Syntax-Erklärung: - ROW_NUMBER() OVER (ORDER BY Temp_2m) gibt jeder Zeile eine Nummer -
ORDER BY Temp_2m sortiert vom kältesten zum wärmsten - Position 1 = kältester Tag, Position 2 =

zweitkältester, usw. - Wichtig: Jede Position kommt genau einmal vor!
Aber was, wenn zwei Tage die exakt gleiche Temperatur haben? Sollten beide Platz 1 bekommen?

Drei Ranking-Funktionen im Vergleich

 ROUND(Temp_2m, 2) as temp,
 ROW_NUMBER() OVER (ORDER BY Temp_2m) as position
FROM weather
ORDER BY temp
LIMIT 5;

SELECT
 Datum,
 ROUND(Temp_2m, 2) as temp,
 ROW_NUMBER() OVER (ORDER BY Temp_2m) as row_num,
 RANK() OVER (ORDER BY Temp_2m) as rank,
 DENSE_RANK() OVER (ORDER BY Temp_2m) as dense_rank
FROM weather
ORDER BY temp
LIMIT 8;

3
4
5
6
7

1
2
3
4
5
6
7
8
9



Error executing statement: SELECT
 Datum,
 ROUND(Temp_2m, 2) as temp,
 ROW_NUMBER() OVER (ORDER BY Temp_2m) as row_num,
 RANK() OVER (ORDER BY Temp_2m) as rank,
 DENSE_RANK() OVER (ORDER BY Temp_2m) as dense_rank
FROM weather
ORDER BY temp
LIMIT 8 Catalog Error: Table with name weather does not exist!
Did you mean "pg_attrdef"?
LINE 7: FROM weather
 ^

Unterschiede: - ROW_NUMBER: Durchnummeriert einfach durch (1, 2, 3, 4, …) – auch bei gleichen Werten! -
RANK: Gleiche Werte bekommen gleiche Platzierung, danach wird übersprungen (1, 1, 3, 4, …) -
DENSE_RANK: Gleiche Werte bekommen gleiche Platzierung, aber kein Sprung (1, 1, 2, 3, …)
Welche sollten Sie verwenden? Das hängt vom Kontext ab:

Wann welche Funktion?

LAG & LEAD – Zugriff auf Nachbarzeilen
Jetzt wird es wirklich praktisch! LAG und LEAD erlauben Ihnen, auf vorherige oder nächste Zeilen
zuzugreifen. Perfekt für die Frage: „Wie viel wärmer war es heute als gestern?“

Schritt 1: Die Temperatur von gestern holen

ROW_NUMBER: Wenn Sie eindeutige Positionen brauchen (z.B. Paginierung)

RANK: Klassisches Ranking mit Sprüngen (wie bei Sportplatzierungen)

DENSE_RANK: Ranking ohne Lücken (z.B. für „Top 10 unterschiedliche Temperaturen“)

SELECT
 Datum,
 ROUND(Temp_2m, 2) as temp_heute,
 ROUND(LAG(Temp_2m, 1) OVER (ORDER BY Datum), 2) as temp_gestern
FROM weather
ORDER BY Datum DESC
LIMIT 10;

1
2
3
4
5
6
7



Error executing statement: SELECT
 Datum,
 ROUND(Temp_2m, 2) as temp_heute,
 ROUND(LAG(Temp_2m, 1) OVER (ORDER BY Datum), 2) as temp_gestern
FROM weather
ORDER BY Datum DESC
LIMIT 10 Catalog Error: Table with name weather does not exist!
Did you mean "pg_attrdef"?
LINE 5: FROM weather
 ^

Syntax-Erklärung: - LAG(Temp_2m, 1) holt den Wert aus der vorherigen Zeile - Die 1 bedeutet: „1
Zeile zurück“ (also gestern) - OVER (ORDER BY Datum) sortiert nach Datum, damit „vorherige Zeile“ =
„vorheriger Tag“ bedeutet - Erste Zeile: Hat keine vorherige Zeile → NULL
Jetzt können wir die Veränderung berechnen:

Schritt 2: Temperatur-Veränderung berechnen

Error executing statement: SELECT
 Datum,
 ROUND(Temp_2m, 2) as temp_heute,
 ROUND(LAG(Temp_2m, 1) OVER (ORDER BY Datum), 2) as temp_gestern,
 ROUND(
 Temp_2m - LAG(Temp_2m, 1) OVER (ORDER BY Datum),
 2
) as veraenderung
FROM weather
ORDER BY Datum DESC
LIMIT 10 Catalog Error: Table with name weather does not exist!
Did you mean "pg_attrdef"?
LINE 9: FROM weather
 ^

SELECT
 Datum,
 ROUND(Temp_2m, 2) as temp_heute,
 ROUND(LAG(Temp_2m, 1) OVER (ORDER BY Datum), 2) as temp_gestern,
 ROUND(
 Temp_2m - LAG(Temp_2m, 1) OVER (ORDER BY Datum),
 2
) as veraenderung
FROM weather
ORDER BY Datum DESC
LIMIT 10;

1
2
3
4
5
6
7
8
9
10
11



Was wir sehen: - Positive Werte = wärmer als gestern - Negative Werte = kälter als gestern - NULL = erster
Tag (kein Vergleich möglich)
LEAD funktioniert genau umgekehrt – es schaut in die Zukunft!

LEAD – Vorausschau auf morgen

Error executing statement: SELECT
 Datum,
 ROUND(Temp_2m, 2) as temp_heute,
 ROUND(LEAD(Temp_2m, 1) OVER (ORDER BY Datum), 2) as temp_morgen
FROM weather
ORDER BY Datum DESC
LIMIT 10 Catalog Error: Table with name weather does not exist!
Did you mean "pg_attrdef"?
LINE 5: FROM weather
 ^

Syntax-Erklärung: - LEAD(Temp_2m, 1) holt den Wert aus der nächsten Zeile - Ansonsten funktioniert
es genau wie LAG - Letzte Zeile: Hat keine nächste Zeile → NULL

Sie können auch weiter zurück oder voraus schauen:

Tipp: Mit LAG(Temp_2m, 7) bekommen Sie die Temperatur von vor 7 Tagen! Nützlich für
Wochen-Vergleiche!

Gleitende Mittelwerte – Der Analytics-Klassiker
Jetzt kommt etwas sehr Praktisches: Gleitende Mittelwerte! Stellen Sie sich vor: Temperaturen schwanken
täglich wild. Mit einem gleitenden Durchschnitt sehen Sie den echten Trend!

Schritt 1: Das Problem verstehen

SELECT
 Datum,
 ROUND(Temp_2m, 2) as temp_heute,
 ROUND(LEAD(Temp_2m, 1) OVER (ORDER BY Datum), 2) as temp_morgen
FROM weather
ORDER BY Datum DESC
LIMIT 10;

SELECT
 Datum,
 ROUND(Temp_2m, 2) as temp
FROM weather
ORDER BY Datum DESC

1
2
3
4
5
6
7

1
2
3
4
5





Error executing statement: SELECT
 Datum,
 ROUND(Temp_2m, 2) as temp
FROM weather
ORDER BY Datum DESC
LIMIT 10 Catalog Error: Table with name weather does not exist!
Did you mean "pg_attrdef"?
LINE 4: FROM weather
 ^

Das Problem: Die Temperatur springt von Tag zu Tag. Heute 8°C, morgen 3°C, übermorgen 11°C. Wo ist der
Trend? Schwer zu sehen!
Lösung: Ein 3-Tages-Durchschnitt! Wir nehmen immer die letzten 3 Tage.

Schritt 2: 3-Tages-Gleitender Durchschnitt

ORDER BY Datum DESC
LIMIT 10;

SELECT
 Datum,
 ROUND(Temp_2m, 2) as temp,
 ROUND(
 AVG(Temp_2m) OVER (
 ORDER BY Datum
 ROWS BETWEEN 2 PRECEDING AND CURRENT ROW
),
 2
) as temp_3tage_avg
FROM weather
ORDER BY Datum DESC
LIMIT 10;

5
6

1
2
3
4
5
6
7
8
9
10
11
12
13



Error executing statement: SELECT
 Datum,
 ROUND(Temp_2m, 2) as temp,
 ROUND(
 AVG(Temp_2m) OVER (
 ORDER BY Datum
 ROWS BETWEEN 2 PRECEDING AND CURRENT ROW
),
 2
) as temp_3tage_avg
FROM weather
ORDER BY Datum DESC
LIMIT 10 Catalog Error: Table with name weather does not exist!
Did you mean "pg_attrdef"?
LINE 11: FROM weather
 ^

Syntax-Erklärung Schritt für Schritt: 1. AVG(Temp_2m) OVER (...) = berechne Durchschnitt in
einem Fenster 2. ORDER BY Datum = sortiere nach Datum 3. ROWS BETWEEN 2 PRECEDING AND
CURRENT ROW = das Fenster umfasst: - 2 PRECEDING = die 2 Zeilen davor - AND CURRENT ROW =
plus die aktuelle Zeile - Insgesamt: 3 Zeilen!
Die erste und zweite Zeile haben weniger als 3 Werte – was passiert da?

Automatische Anpassung: - Zeile 1: Nur 1 Wert verfügbar → Durchschnitt von 1 Wert - Zeile 2: Nur 2
Werte verfügbar → Durchschnitt von 2 Werten - Ab Zeile 3: Volle 3 Werte verfügbar → echter 3-Tages-
Durchschnitt

SQL passt das Fenster automatisch an!

Jetzt machen wir einen längeren Durchschnitt:

Schritt 3: 7-Tages-Gleitender Durchschnitt

SELECT
 Datum,
 ROUND(Temp_2m, 2) as temp,
 ROUND(
 AVG(Temp_2m) OVER (
 ORDER BY Datum
 ROWS BETWEEN 6 PRECEDING AND CURRENT ROW
),
 2
) as temp_7tage_avg
FROM weather
ORDER BY Datum DESC

1
2
3
4
5
6
7
8
9
10
11
12



Error executing statement: SELECT
 Datum,
 ROUND(Temp_2m, 2) as temp,
 ROUND(
 AVG(Temp_2m) OVER (
 ORDER BY Datum
 ROWS BETWEEN 6 PRECEDING AND CURRENT ROW
),
 2
) as temp_7tage_avg
FROM weather
ORDER BY Datum DESC
LIMIT 15 Catalog Error: Table with name weather does not exist!
Did you mean "pg_attrdef"?
LINE 11: FROM weather
 ^

Warum 6 PRECEDING? Weil wir 7 Tage wollen: - 6 Tage davor + 1 aktueller Tag = 7 Tage insgesamt - Bei 3
Tagen war es 2 PRECEDING (2 + 1 = 3) - Bei 30 Tagen wäre es 29 PRECEDING (29 + 1 = 30)
Vergleichen Sie mal die beiden Spalten: temp springt wild, temp7tageavg ist viel glatter. Genau das wollen
wir!

Anwendung: Gleitende Durchschnitte werden überall verwendet: - Aktienkurse (50-Tage-
Durchschnitt) - Infektionszahlen (7-Tage-Inzidenz) - Temperatur-Trends - Verkaufszahlen

FIRST_VALUE & LAST_VALUE
Zum Abschluss der Window Functions: FIRST_VALUE und LAST_VALUE . Diese Funktionen holen den
ersten oder letzten Wert aus einem sortierten Fenster. Perfekt, um kälteste und wärmste Tage zu finden!

Kältester und wärmster Tag pro Monat

ORDER BY Datum DESC
LIMIT 15;

SELECT DISTINCT
 EXTRACT(MONTH FROM Datum) as monat,
 ROUND(
 FIRST_VALUE(Temp_2m) OVER (
 PARTITION BY EXTRACT(MONTH FROM Datum)
 ORDER BY Temp_2m ASC
 ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING
), 2

) as kaeltester tag

12
13

1
2
3
4
5
6
7
8
9



Error executing statement: SELECT DISTINCT
 EXTRACT(MONTH FROM Datum) as monat,
 ROUND(
 FIRST_VALUE(Temp_2m) OVER (
 PARTITION BY EXTRACT(MONTH FROM Datum)
 ORDER BY Temp_2m ASC
 ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING
), 2
) as kaeltester_tag,
 ROUND(
 LAST_VALUE(Temp_2m) OVER (
 PARTITION BY EXTRACT(MONTH FROM Datum)
 ORDER BY Temp_2m ASC
 ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING
), 2
) as waermster_tag
FROM weather
ORDER BY monat Catalog Error: Table with name weather does not exist!
Did you mean "pg_attrdef"?
LINE 17: FROM weather
 ^

Syntax-Erklärung: - FIRST_VALUE(Temp_2m) nimmt den ersten Wert aus dem sortierten Fenster -
LAST_VALUE(Temp_2m) nimmt den letzten Wert aus dem sortierten Fenster - ORDER BY Temp_2m
ASC sortiert von kalt (first) nach warm (last) - PARTITION BY EXTRACT(MONTH FROM Datum) teilt
in Monate auf - ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING definiert
das komplette Fenster (wichtig für LAST_VALUE!) - DISTINCT entfernt Duplikate (sonst hätten wir eine
Zeile pro Tag mit den gleichen Werten)
Das ROWS BETWEEN ist bei LAST_VALUE wichtig – ohne diese Angabe würde SQL nur bis zur aktuellen Zeile
schauen!

Alternative mit MIN/MAX (einfacher)

) as kaeltester_tag,
 ROUND(
 LAST_VALUE(Temp_2m) OVER (
 PARTITION BY EXTRACT(MONTH FROM Datum)
 ORDER BY Temp_2m ASC
 ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING
), 2
) as waermster_tag
FROM weather
ORDER BY monat;

SELECT DISTINCT
 EXTRACT(MONTH FROM Datum) as monat,

9
10
11
12
13
14
15
16
17
18

1
2



Error executing statement: SELECT DISTINCT
 EXTRACT(MONTH FROM Datum) as monat,
 ROUND(MIN(Temp_2m) OVER (
 PARTITION BY EXTRACT(MONTH FROM Datum)
), 2) as kaeltester_tag,
 ROUND(MAX(Temp_2m) OVER (
 PARTITION BY EXTRACT(MONTH FROM Datum)
), 2) as waermster_tag
FROM weather
ORDER BY monat Catalog Error: Table with name weather does not exist!
Did you mean "pg_attrdef"?
LINE 9: FROM weather
 ^

Vergleich: - MIN / MAX sind einfacher und reichen für Min/Max-Werte - FIRST_VALUE / LAST_VALUE
sind flexibler – Sie können nach beliebigen Kriterien sortieren (z.B. Datum)
Wann ist FIRST_VALUE besser? Wenn Sie z.B. die Temperatur des ersten Tages im Monat brauchen – dann
sortieren Sie nach Datum!

Praxis-Tipp: Für simple Min/Max nutzen Sie MIN/MAX. Für „ersten/letzten nach Sortierung X“ nutzen
Sie FIRSTVALUE/LASTVALUE!

Teil 3: Praktische Anwendungen
Jetzt kombinieren wir alles: Gleitende Mittelwerte und Anomalie-Erkennung – praktische Analytics!

Anomalie-Erkennung mit Window Functions
Jetzt bauen wir etwas Praktisches: Wir finden Tage, an denen die Temperatur stark vom Durchschnitt
abweicht – mögliche Wetterextreme!

Schritt 1: Abweichung berechnen

() ,
 ROUND(MIN(Temp_2m) OVER (
 PARTITION BY EXTRACT(MONTH FROM Datum)
), 2) as kaeltester_tag,
 ROUND(MAX(Temp_2m) OVER (
 PARTITION BY EXTRACT(MONTH FROM Datum)
), 2) as waermster_tag
FROM weather
ORDER BY monat;

SELECT
Datum

3
4
5
6
7
8
9
10

1
2



Error executing statement: SELECT
 Datum,
 ROUND(Temp_2m, 2) as temp,
 ROUND(
 AVG(Temp_2m) OVER (
 ORDER BY Datum
 ROWS BETWEEN 6 PRECEDING AND CURRENT ROW
),
 2
) as temp_7tage_avg,
 ROUND(
 Temp_2m - AVG(Temp_2m) OVER (
 ORDER BY Datum
 ROWS BETWEEN 6 PRECEDING AND CURRENT ROW
),
 2
) as abweichung
FROM weather
ORDER BY Datum DESC
LIMIT 10 Catalog Error: Table with name weather does not exist!
Did you mean "pg_attrdef"?
LINE 18: FROM weather
 ^

Was wir sehen: Die Abweichung zeigt, wie sehr ein Tag vom 7-Tage-Durchschnitt abweicht. +5°C = viel
wärmer, -5°C = viel kälter.

 Datum,
 ROUND(Temp_2m, 2) as temp,
 ROUND(
 AVG(Temp_2m) OVER (
 ORDER BY Datum
 ROWS BETWEEN 6 PRECEDING AND CURRENT ROW
),
 2
) as temp_7tage_avg,
 ROUND(
 Temp_2m - AVG(Temp_2m) OVER (
 ORDER BY Datum
 ROWS BETWEEN 6 PRECEDING AND CURRENT ROW
),
 2
) as abweichung
FROM weather
ORDER BY Datum DESC
LIMIT 10;

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

Jetzt filtern wir nur große Abweichungen – potenzielle Anomalien:

Schritt 2: Nur große Abweichungen anzeigen

WITH temp_analyse AS (
 SELECT
 Datum,
 ROUND(Temp_2m, 2) as temp,
 ROUND(
 AVG(Temp_2m) OVER (
 ORDER BY Datum
 ROWS BETWEEN 6 PRECEDING AND CURRENT ROW
),
 2
) as temp_7tage_avg,
 ROUND(
 Temp_2m - AVG(Temp_2m) OVER (
 ORDER BY Datum
 ROWS BETWEEN 6 PRECEDING AND CURRENT ROW
),
 2
) as abweichung
 FROM weather
)
SELECT *
FROM temp_analyse
WHERE abweichung > 4 OR abweichung < -4
ORDER BY abweichung DESC
LIMIT 15;

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25



Error executing statement: WITH temp_analyse AS (
 SELECT
 Datum,
 ROUND(Temp_2m, 2) as temp,
 ROUND(
 AVG(Temp_2m) OVER (
 ORDER BY Datum
 ROWS BETWEEN 6 PRECEDING AND CURRENT ROW
),
 2
) as temp_7tage_avg,
 ROUND(
 Temp_2m - AVG(Temp_2m) OVER (
 ORDER BY Datum
 ROWS BETWEEN 6 PRECEDING AND CURRENT ROW
),
 2
) as abweichung
 FROM weather
)
SELECT *
FROM temp_analyse
WHERE abweichung > 4 OR abweichung < -4
ORDER BY abweichung DESC
LIMIT 15 Catalog Error: Table with name weather does not exist!
Did you mean "pg_attrdef"?
LINE 19: FROM weather
 ^

Syntax-Erklärung: - WITH temp_analyse AS (...) erstellt eine temporäre Tabelle (CTE = Common
Table Expression) - WHERE abweichung > 4 OR abweichung < -4 filtert Tage mit Abweichung
größer als 4°C (in beide Richtungen) - Das sind die Ausreißer – ungewöhnlich warme oder kalte Tage!
Wir können auch Kategorien vergeben:

Schritt 3: Kategorien mit CASE

WITH temp_analyse AS (
 SELECT
 Datum,
 ROUND(Temp_2m, 2) as temp,
 ROUND(
 AVG(Temp_2m) OVER (
 ORDER BY Datum
 ROWS BETWEEN 6 PRECEDING AND CURRENT ROW

),

1
2
3
4
5
6
7
8
9



),
 2
) as temp_7tage_avg,
 ROUND(
 Temp_2m - AVG(Temp_2m) OVER (
 ORDER BY Datum
 ROWS BETWEEN 6 PRECEDING AND CURRENT ROW
),
 2
) as abweichung
 FROM weather
)
SELECT
 Datum,
 temp,
 temp_7tage_avg,
 abweichung,
 CASE
 WHEN abweichung > 5 THEN 'Sehr warm'
 WHEN abweichung < -5 THEN 'Sehr kalt'
 WHEN abweichung > 3 THEN 'Warm'
 WHEN abweichung < -3 THEN 'Kalt'
 ELSE 'Normal'
 END as kategorie
FROM temp_analyse
WHERE abweichung > 3 OR abweichung < -3
ORDER BY abweichung DESC
LIMIT 15;

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

Error executing statement: WITH temp_analyse AS (
 SELECT
 Datum,
 ROUND(Temp_2m, 2) as temp,
 ROUND(
 AVG(Temp_2m) OVER (
 ORDER BY Datum
 ROWS BETWEEN 6 PRECEDING AND CURRENT ROW
),
 2
) as temp_7tage_avg,
 ROUND(
 Temp_2m - AVG(Temp_2m) OVER (
 ORDER BY Datum
 ROWS BETWEEN 6 PRECEDING AND CURRENT ROW
),
 2
) as abweichung
 FROM weather
)
SELECT
 Datum,
 temp,
 temp_7tage_avg,
 abweichung,
 CASE
 WHEN abweichung > 5 THEN 'Sehr warm'
 WHEN abweichung < -5 THEN 'Sehr kalt'
 WHEN abweichung > 3 THEN 'Warm'
 WHEN abweichung < -3 THEN 'Kalt'
 ELSE 'Normal'
 END as kategorie
FROM temp_analyse
WHERE abweichung > 3 OR abweichung < -3
ORDER BY abweichung DESC
LIMIT 15 Catalog Error: Table with name weather does not exist!
Did you mean "pg_attrdef"?
LINE 19: FROM weather
 ^

CASE-Syntax: - CASE WHEN bedingung THEN wert ELSE anderer_wert END - Prüft
Bedingungen von oben nach unten - Erste erfüllte Bedingung gewinnt - ELSE ist der Standard-Wert, wenn
keine Bedingung zutrifft

Zusammenfassung: Monatliche Statistiken
Zum Abschluss kombinieren wir alles: Ein kompletter Monats-Überblick mit allen wichtigen Kennzahlen!

Alle Monats-Statistiken auf einen Blick

Error executing statement: SELECT
 EXTRACT(MONTH FROM Datum) as monat,
 COUNT(*) as anzahl_tage,
 ROUND(AVG(Temp_2m), 2) as durchschnitt,
 ROUND(MIN(Temp_2m), 2) as minimum,
 ROUND(MAX(Temp_2m), 2) as maximum
FROM weather
GROUP BY EXTRACT(MONTH FROM Datum)
ORDER BY monat Catalog Error: Table with name weather does not exist!
Did you mean "pg_attrdef"?
LINE 7: FROM weather
 ^

Was wir kombiniert haben: - GROUP BY für Gruppierung nach Monat - COUNT(*) für Anzahl Tage -
AVG() , MIN() , MAX() für Statistiken - ROUND() für Lesbarkeit - Alles in einer einzigen Query!

So bekommen Sie einen perfekten Überblick über das ganze Jahr!

Das haben Sie gelernt: Aus tausenden Zeilen haben Sie mit ein paar Zeilen SQL aussagekräftige
Monats-Statistiken erstellt!

SELECT
 EXTRACT(MONTH FROM Datum) as monat,
 COUNT(*) as anzahl_tage,
 ROUND(AVG(Temp_2m), 2) as durchschnitt,
 ROUND(MIN(Temp_2m), 2) as minimum,
 ROUND(MAX(Temp_2m), 2) as maximum
FROM weather
GROUP BY EXTRACT(MONTH FROM Datum)
ORDER BY monat;

1
2
3
4
5
6
7
8
9



Zusammenfassung & Reflexion
Was für eine Session! Lassen Sie uns zusammenfassen, was Sie heute gelernt haben.

Was Sie heute gelernt haben

Praktische Übung für Sie
Zum Abschluss eine Aufgabe: Nutzen Sie das Gelernte, um eine eigene Analyse zu bauen!

🎯 Ihre Aufgabe

Erstellen Sie eine Query, die:

Starter-Code:

1.

2.

3.

4.

5.

6.

Klassische Aggregationen: COUNT , SUM , AVG , MIN , MAX , GROUP BY , HAVING

Window Functions: ROW_NUMBER , RANK , LAG , LEAD , FIRST_VALUE , LAST_VALUE

Gleitende Mittelwerte: ROWS BETWEEN für flexible Fenster

Zeitbasierte Analytics: DATE_TRUNC , Monats-Aggregationen

Praktische Anwendungen: Anomalie-Erkennung, Trend-Analyse

CTEs & CASE: Kombinierte Analytics-Queries

1.

2.

3.

4.

Gleitenden 14-Tages-Durchschnitt für Luftfeuchte berechnet

Tage findet, an denen Luftfeuchte > 95% (Nebel/Regen-Kandidaten)

Rangfolge der feuchtesten Tage ausgibt (mit RANK)

Abweichung vom Monatsdurchschnitt zeigt

WITH humidity_analysis AS (
 SELECT
 Datum,
 Luftfeuchte,
 AVG(Luftfeuchte) OVER (
 ORDER BY Datum
 ROWS BETWEEN 13 PRECEDING AND CURRENT ROW
) as feuchte_14tage_avg,
 -- Ihre Erweiterungen hier!
 FROM weather
)
SELECT * FROM humidity_analysis
WHERE Luftfeuchte > 95
ORDER BY Datum DESC
LIMIT 10;

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15



Error executing statement: WITH humidity_analysis AS (
 SELECT
 Datum,
 Luftfeuchte,
 AVG(Luftfeuchte) OVER (
 ORDER BY Datum
 ROWS BETWEEN 13 PRECEDING AND CURRENT ROW
) as feuchte_14tage_avg,
 -- Ihre Erweiterungen hier!
 FROM weather
)
SELECT * FROM humidity_analysis
WHERE Luftfeuchte > 95
ORDER BY Datum DESC
LIMIT 10 Catalog Error: Table with name weather does not exist!
Did you mean "pg_attrdef"?
LINE 10: FROM weather
 ^

Tipp: Kombinieren Sie Window Functions, RANK und Abweichungs-Berechnungen!

Referenzen & Weiterführende Links
Zum Abschluss noch Ressourcen für Ihr Selbststudium.

Aggregationen & Window Functions

DuckDB

Praktische Tutorials

🎓 Ende der Lecture 16

PostgreSQL Window Functions Tutorial

Modern SQL: Window Functions

SQL Window Functions Cheat Sheet

DuckDB Official Docs

DuckDB SQL Functions

DuckDB Window Functions

Window Functions Explained

SQL for Data Analysis

https://www.postgresql.org/docs/current/tutorial-window.html
https://modern-sql.com/feature/over
https://learnsql.com/blog/sql-window-functions-cheat-sheet/
https://duckdb.org/docs/
https://duckdb.org/docs/sql/functions/overview
https://duckdb.org/docs/sql/window_functions
https://www.windowfunctions.com/
https://mode.com/sql-tutorial/

Vielen Dank! Sie haben heute mächtige SQL-Werkzeuge kennengelernt. Nutzen Sie Aggregationen und
Window Functions für Ihre eigenen Datenanalysen – sie sind in fast jedem Szenario nützlich!

Bis zur nächsten Vorlesung! 🚀 Tipp: Experimentieren Sie mit eigenen Daten und Window Functions
– die Möglichkeiten sind endlos!

