Aggregationen & Window Functions

Session 16 - Lecture (90 Minuten) Block 4: Theorie, Optimierung & Polyglot Lernziel: LZ 2 - SQL-
Praxis vertiefen mit Aggregationen & Window Functions

Willkommen zur sechzehnten Vorlesung! Heute lernen Sie zwei machtige SQL-Werkzeuge kennen:
Aggregationen und Window Functions. Mit echten Wetterdaten werden wir Durchschnitte berechnen, Trends
entdecken und gleitende Mittelwerte erstellen. Sie werden sehen, welche analytischen Moglichkeiten SQL
bietet - von einfachen Summen bis zu komplexen Zeitreihen-Analysen.

Was erwartet Sie heute?

Heute lernen Sie die wichtigsten Werkzeuge fiir Datenanalyse in SQL: Klassische Aggregationen und
fortgeschrittene Window Functions. Alles mit echten Wetterdaten - tiber 4000 Messungen aus mehreren
Monaten.

Uberblick

Klassische Aggregationen: COUNT, SUM, AVG, MIN, MAX, GROUP BY, HAVING

Window Functions: ROW_NUMBER, RANK, LAG, LEAD, gleitende Mittelwerte

Zeitbasierte Analytics: EXTRACT, ROWS BETWEEN

Praktische Anwendungen: Trend-Erkennung, Anomalie-Suche, Vergleiche

Setup: Wetterdaten laden

Lassen Sie uns mit unseren Daten starten. Wir haben echte Wettermessungen aus den letzten Monaten -
Temperatur, Luftdruck, Windgeschwindigkeit, Luftfeuchte und mehr. Insgesamt tiber 4000 Zeilen.

Daten laden

x| 1 const res = await fetch('../assets/dat/weather.csv', { cache: "no-sto

)5

2 1if (!res.ok) throw new Error(res.statusText);
El 3 const csvText = await res.text();
4
5 // als "Datei" in DuckDB registrieren
Bl 6 await db.registerFileText('weather.csv', csvText);
7
8 // jetzt normal aus der "lokalen" Datei lesen
%] 9 await conn.query(CREATE TABLE weather AS SELECT * FROM read_csv('wea
.csv');)
10

i 11 consale.lTas("readv™)

Schauen wir uns die Struktur an: Datum, Anzahl Messwerte pro Tag, dann verschiedene Sensoren.

Datenstruktur verstehen

1 DESCRIBE weather;

Sie sehen: 12 Spalten, hauptsachlich numerische Werte. Perfekt fiir Aggregationen!

Teil 1: Klassische Aggregationen

Starten wir mit den Basics: Aggregationsfunktionen. Diese kennen Sie bereits, aber heute schauen wir
genauer hin, wie sie intern funktionieren.

COUNT, SUM, AVG, MIN, MAX

Die fundamentalen Aggregationsfunktionen - das Fundament jeder Datenanalyse. Beginnen wir mit einem
ganz einfachen Beispiel.

Beispiel: Wie viele Tage haben wir?

1 SELECT COUNT(x) as anzahl_tage
2 FROM weather;

Syntax-Erklarung:| COUNT (*) |zahlt alle Zeilen in der Tabelle. Das Sternchen bedeutet ,alle Zeilen“. Mit

| as anzahl_tage |geben wir der Spalte einen lesbaren Namen.

Jetzt kombinieren wir mehrere Aggregationen in einer Query:

Mehrere Aggregationen gleichzeitig

1 SELECT

COUNT(*) as anzahl_tage,
AVG(Temp_2m) as durchschnitts_temp,
MIN(Temp_2m) as min_temp,
MAX(Temp_2m) as max_temp

a b wWwN

6 FROM weather;

Syntax-Erklarung: | AVG (Temp_2m) |berechnet den Durchschnitt aller Temperatur-Werte -

| MIN(Temp_2m) |findet die niedrigste Temperatur | MAX (Temp_2m) |ﬂndet die hochste Temperatur -

Alle vier Werte werden in einer Zeile ausgegeben!
Die Zahlen haben viele Nachkommastellen. Mit ROUND machen wir sie lesbarer:

Zahlen runden mit ROUND

SELECT
COUNT(*) as anzahl_tage,
ROUND (AVG(Temp_2m), 2) as durchschnitts_temp,
ROUND (MIN(Temp_2m), 2) as min_temp,
ROUND (MAX(Temp_2m), 2) as max_temp
FROM weather;

o U WN B

Syntax-Erkléirung:| ROUND (wert, 2) |rundet auf 2 Nachkommastellen. Statt| 7.123456 |bekommen

Sie . Das ist viel lesbarer!

GROUP BY - Gruppierte Aggregationen

Jetzt wird es spannender: Gruppierungen! Statt einen Durchschnitt fiir alle Daten zu berechnen, wollen wir
Durchschnitte pro Monat. Daflir brauchen wir GROUP BY.

Nach Monat gruppieren

SELECT
EXTRACT (MONTH FROM Datum) as monat,
ROUND (AVG(Temp_2m), 2) as avg_temp,
COUNT(*) as anzahl_tage

FROM weather

GROUP BY EXTRACT(MONTH FROM Datum)

ORDER BY monat;

~No bk WN R

Syntax-Erklarung: | EXTRACT (MONTH FROM Datum) |holt die Monatszahl aus dem Datum (1 fiir Januar,
2 fur Februar, usw.) -| GROUP BY |gruppiert alle Zeilen mit dem gleichen Monat zusammen -
|AVG(Temp_2m)|bm@chnetdanndenDumﬁwchnhtproGruppe(abopnaMonaﬂ-|ORDER BY monat

sortiert von Januar (1) bis Dezember (12)

Wir sehen jetzt 12 Zeilen - eine fiir jeden Monat! Aber Moment: Was, wenn wir nur kalte Monate sehen
wollen?

HAVING - Filterung nach Aggregation

SELECT
EXTRACT (MONTH FROM Datum) as monat,
ROUND (AVG(Temp_2m), 2) as avg_temp,
COUNT(*) as anzahl_tage

FROM weather

GROUP BY EXTRACT(MONTH FROM Datum)

HAVING AVG(Temp_2m) < 5

ORDER BY avg_temp;

co~NOoO Ul WNBRE

Syntax-Erklarung: -| HAVING AVG(Temp_2m) < 5 |filtert nach der Aggregation - Nur Monate mit

Durchschnittstemperatur unter 5°C werden angezeigt - Wichtig: WHERE filtert vor GROUP BY, HAVING filtert
nach GROUP BY!
Der Unterschied zwischen WHERE und HAVING verwirrt oft. Hier ein Vergleich:

WHERE vs. HAVING:

e WHERE: FilterteinzelneZeilenvorderGruppierung(z.B.|WHERE Temp_2m > O|)

* HAVING: Filtert Gruppen nach der Aggregation (z.B. | HAVING AVG(Temp_2m) < 5 |)

Teil 2: Window Functions

Jetzt kommen wir zu den machtigen Window Functions - ein Game-Changer fiir Analytics. Window
Functions erlauben es Ihnen, Berechnungen uiber Zeilen-Bereiche durchzufiihren, ohne zu gruppieren.

Grundkonzept: OVER

Window Functions sind anders als GROUP BY: Sie behalten alle Zeilen bei, fligen aber trotzdem aggregierte
Werte hinzu. Das klingt kompliziert? Schauen wir uns ein Beispiel an!

Schritt 1: GROUP BY kollabiert Zeilen

SELECT
EXTRACT (MONTH FROM Datum) as monat,
ROUND (AVG(Temp_2m), 2) as avg_temp
FROM weather
GROUP BY EXTRACT(MONTH FROM Datum)
ORDER BY monat;

O Ul h WN K

Was passiert: Aus tausenden Zeilen werden nur 12 (eine pro Monat). Wir verlieren die einzelnen Tage!
Aber was, wenn wir die einzelnen Tage behalten wollen, aber trotzdem den Monats-Durchschnitt sehen?

Schritt 2: Window Function behalt alle Zeilen

1 SELECT

2 Datum,

3 Temp_2m,

4+~ ROUND(AVG(Temp_2m) OVER (

5 PARTITION BY EXTRACT(MONTH FROM Datum)
6), 2) as monats_durchschnitt

7 FROM weather

8 ORDER BY Datum DESC

9 LIMIT 10;

Syntax—Erkléirung:-| AVG(Temp_2m) OVER (...) |ist eine Window Function -| OVER |sagt: ,Berechne

Uberanenﬁeﬁ—|PARTITION BY EXTRACT(MONTH FROM Datum)|mﬂtmeDawninGmmpen(men
Monate) - Wichtig: Alle Zeilen bleiben erhalten! Jede Zeile bekommt den Durchschnitt ihres Monats dazu.

Jetzt konnen wir die Abweichung vom Monatsdurchschnitt berechnen:

Abweichung vom Monatsdurchschnitt

1 SELECT

2 Datum,

3 ROUND(Temp_2m, 2) as temp,

4~ ROUND (AVG(Temp_2m) OVER (

5 PARTITION BY EXTRACT(MONTH FROM Datum)
6), 2) as monats_avg,

7+ ROUND(

8- Temp_2m - AVG(Temp_2m) OVER (

9 PARTITION BY EXTRACT(MONTH FROM Datum)
10), 2

11) as abweichung

12 FROM weather

13 ORDER BY Datum DESC

14 LIMIT 10;

Was wir sehen: Jeder Tag zeigt seine Temperatur, den Monatsdurchschnitt und die Abweichung. Positive
Werte = warmer als Durchschnitt, negative = kalter.

ROW_NUMBER, RANK, DENSE_RANK

Manchmal wollen Sie die Top 10 finden - die kaltesten Tage, die heillesten Tage, etc. Daflir gibt es Ranking-
Funktionen!

Die 5 kaltesten Tage finden

1 SELECT
2 Datum,

ROUND (Temp_2m, 2) as temp,

ROW_NUMBER() OVER (ORDER BY Temp_2m) as position
FROM weather
ORDER BY temp
LIMIT 5;

~N o o b~ Ww

Swﬂaxfrménmgr|ROW_NUMBER() OVER (ORDER BY Temp_2m)|gbﬂedm?kﬂedneNumnwr—

ORDER BY Temp_2m|awﬁeﬁvowﬂéheﬁenzunwwénnﬁen—Poﬁﬁonl:kéheﬂerTm;PoﬁﬁonZ:

zweitkaltester, usw. - Wichtig: Jede Position kommt genau einmal vor!
Aber was, wenn zwei Tage die exakt gleiche Temperatur haben? Sollten beide Platz 1 bekommen?

Drei Ranking-Funktionen im Vergleich

1 SELECT

2 Datum,

3 ROUND (Temp_2m, 2) as temp,

4 ROW_NUMBER() OVER (ORDER BY Temp_2m) as row_num,

5 RANK() OVER (ORDER BY Temp_2m) as rank,

6 DENSE_RANK() OVER (ORDER BY Temp_2m) as dense_rank
7 FROM weather
8 ORDER BY temp
9 LIMIT 8;

Unterschiede: - ROW_NUMBER: Durchnummeriert einfach durch (1, 2, 3, 4, ...) - auch bei gleichen Werten! -
RANK: Gleiche Werte bekommen gleiche Platzierung, danach wird ibersprungen (1, 1, 3,4, ...) -
DENSE_RANK: Gleiche Werte bekommen gleiche Platzierung, aber kein Sprung (1, 1, 2,3, ...)

Welche sollten Sie verwenden? Das hangt vom Kontext ab:

Wann welche Funktion?
* ROW_NUMBER: Wenn Sie eindeutige Positionen brauchen (z.B. Paginierung)
* RANK: Klassisches Ranking mit Spriingen (wie bei Sportplatzierungen)

* DENSE_RANK: Ranking ohne Liicken (z.B. fiir ,Top 10 unterschiedliche Temperaturen®)

LAG & LEAD - Zugriff auf Nachbarzeilen

Jetzt wird es wirklich praktisch! LAG und LEAD erlauben lhnen, auf vorherige oder nachste Zeilen
zuzugreifen. Perfekt fur die Frage: ,Wie viel warmer war es heute als gestern?“

Schritt 1: Die Temperatur von gestern holen

1 SELECT

2 Datum,

3 ROUND(Temp_2m, 2) as temp_heute,

4 ROUND(LAG(Temp_2m, 1) OVER (ORDER BY Datum), 2) as temp_gestern
5 FROM weather

6 ORDER BY Datum DESC

7 LIMIT 10;

Syntax-Erklarung: | LAG(Temp_2m, 1) |holt den Wert aus der vorherigen Zeile - Die bedeutet: ,1
ZeHezwﬁcKWaBogeﬁenﬂ-|OVER (ORDER BY Datum)|awﬁennachDannn,damh”voﬁmﬁgeZeHe“z
svorheriger Tag® bedeutet - Erste Zeile: Hat keine vorherige Zeile —

Jetzt konnen wir die Veranderung berechnen:

Schritt 2: Temperatur-Veranderung berechnen

1 SELECT

2 Datum,

3 ROUND(Temp_2m, 2) as temp_heute,

4 ROUND(LAG(Temp_2m, 1) OVER (ORDER BY Datum), 2) as temp_gestern,
5+ ROUND(

6 Temp_2m - LAG(Temp_2m, 1) OVER (ORDER BY Datum),
7 2

8) as veraenderung

9 FROM weather

10 ORDER BY Datum DESC

11 LIMIT 10;

Was wir sehen: - Positive Werte = warmer als gestern - Negative Werte = kalter als gestern -| NULL |=erster
Tag (kein Vergleich moglich)
LEAD funktioniert genau umgekehrt - es schaut in die Zukunft!

LEAD - Vorausschau auf morgen

1 SELECT

2 Datum,

3 ROUND(Temp_2m, 2) as temp_heute,

4 ROUND(LEAD(Temp_2m, 1) OVER (ORDER BY Datum), 2) as temp_morgen
5 FROM weather

6 ORDER BY Datum DESC

-

LIMIT 10;

SwﬁawEﬂd&ungh|LEAD(Temp_2m, 1)|houdenWeﬂausdmwﬁchﬁenme-AnﬂmsmnﬂMmUOMeﬁ
es genau wie LAG - Letzte Zeile: Hat keine nachste Zeile — | NULL

Sie konnen auch weiter zurtick oder voraus schauen:

Tipp: Mit| LAG(Temp_2m, 7) | bekommen Sie die Temperatur von vor 7 Tagen! Niitzlich fiir

Wochen-Vergleiche!

Gleitende Mittelwerte — Der Analytics-Klassiker

Jetzt kommt etwas sehr Praktisches: Gleitende Mittelwerte! Stellen Sie sich vor: Temperaturen schwanken
taglich wild. Mit einem gleitenden Durchschnitt sehen Sie den echten Trend!

Schritt 1: Das Problem verstehen

1 SELECT

2 Datum,

3 ROUND(Temp_2m, 2) as temp
4 FROM weather

[ANArFN P\ N_ol.... Nrcr

o] URVECK DY UdLlUlll vCdL

6 LIMIT 10;

Das Problem: Die Temperatur springt von Tag zu Tag. Heute 8°C, morgen 3°C, ubermorgen 11°C. Wo ist der

Trend? Schwer zu sehen!
Losung: Ein 3-Tages-Durchschnitt! Wir nehmen immer die letzten 3 Tage.

Schritt 2: 3-Tages-Gleitender Durchschnitt

1 SELECT

2 Datum,

3 ROUND (Temp_2m, 2) as temp,
4~ ROUND(

5~ AVG(Temp_2m) OVER (

6 ORDER BY Datum

7 ROWS BETWEEN 2 PRECEDING AND CURRENT ROW
8)

9 2

10) as temp_3tage_avg

11 FROM weather

12 ORDER BY Datum DESC

13 LIMIT 10;

Syntax-Erklarung Schritt fiir Schritt: l.| AVG(Temp_2m) OVER (...) |: berechne Durchschnitt in

einem Fenster 2.| ORDER BY Datum |=sortiere nach Datum 3.| ROWS BETWEEN 2 PRECEDING AND
CURRENT ROW |= das Fenster umfasst:-| 2 PRECEDING |= die 2 Zeilen davor-| AND CURRENT ROW |=
plus die aktuelle Zeile - Insgesamt: 3 Zeilen!

Die erste und zweite Zeile haben weniger als 3 Werte — was passiert da?

Automatische Anpassung: - Zeile 1: Nur 1 Wert verfligbar — Durchschnitt von 1 Wert - Zeile 2: Nur 2
Werte verfligbar — Durchschnitt von 2 Werten - Ab Zeile 3: Volle 3 Werte verfligbar — echter 3-Tages-
Durchschnitt

SQL passt das Fenster automatisch an!

Jetzt machen wir einen langeren Durchschnitt:

Schritt 3: 7-Tages-Gleitender Durchschnitt

1 SELECT

2 Datum,

3 ROUND(Temp_2m, 2) as temp,
4~ ROUND(

5= AVG(Temp_2m) OVER (

6 ORDER BY Datum

7 ROWS BETWEEN 6 PRECEDING AND CURRENT ROW
8)

9 2

10) as temp_7tage_avg

11 FROM weather

12 NPNEFP RV Na+iim NEQCr

E P ViINw LIy vULUIlll LU

13 LIMIT 15;

Warum 6 PRECEDING? Weil wir 7 Tage wollen: - 6 Tage davor + 1 aktueller Tag = 7 Tage insgesamt - Bei 3
Tagenwares|2 PRECEDING |(2+1=3)- Bei30 Tagen wére es| 29 PRECEDING | (29 +1=30)
Vergleichen Sie mal die beiden Spalten: temp springt wild, temp 7tageavg ist viel glatter. Genau das wollen

wir!

Anwendung: Gleitende Durchschnitte werden liberall verwendet: - Aktienkurse (50-Tage-
Durchschnitt) - Infektionszahlen (7-Tage-Inzidenz) - Temperatur-Trends - Verkaufszahlen

FIRST_VALUE & LAST_VALUE

Zum Abschluss der Window Functions:| FIRST_VALUE |und | LAST_VALUE | Diese Funktionen holen den
ersten oder letzten Wert aus einem sortierten Fenster. Perfekt, um kalteste und warmste Tage zu finden!

Kaltester und warmster Tag pro Monat

1 SELECT DISTINCT

2 EXTRACT (MONTH FROM Datum) as monat,

B ROUND (

4~ FIRST_VALUE(Temp_2m) OVER (

5 PARTITION BY EXTRACT(MONTH FROM Datum)

6 ORDER BY Temp_2m ASC

7 ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING
8), 2

q

Y ac kaeltecter t+ac

- A L =P S)

10~ ROUND(

11~ LAST_VALUE (Temp_2m) OVER (

12 PARTITION BY EXTRACT(MONTH FROM Datum)

13 ORDER BY Temp_2m ASC

14 ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING
15), 2

16) as waermster_tag

17 FROM weather
18 ORDER BY monat;

SwﬂaxErHénmgr|FIRST_VALUE(Temp_Zm)|nhnmtdenennm1WemausdemsoﬁmnenFenﬁer

|LAST_VALUE(Temp_2m)|nhnmtdenlm:unnNenausden1awﬂeﬂenFenﬁerﬁORDER BY Temp_2m
ASC awﬂemvonkmtﬁwﬁ)nadwwann(bsﬂ—|PARTITION BY EXTRACT(MONTH FROM Datum)|tdh
inMonmeauﬂWROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING|deﬁMeﬂ
das komplette Fenster (wichtig flir LAST_VALUE!) -| DISTINCT |entfernt Duplikate (sonst hatten wir eine
Zeile pro Tag mit den gleichen Werten)

Das ROWS BETWEEN ist bei LAST_VALUE wichtig - ohne diese Angabe wiirde SQL nur bis zur aktuellen Zeile
schauen!

Alternative mit MIN/MAX (einfacher)

1 SELECT DISTINCT
2 EXTRACT (MONTH FROM Datum) as monat,

= ROUND (MIN(Temp_2m) OVER (
PARTITION BY EXTRACT(MONTH FROM Datum)
), 2) as kaeltester_tag,
v ROUND (MAX (Temp_2m) OVER (
PARTITION BY EXTRACT(MONTH FROM Datum)
8), 2) as waermster_tag
9 FROM weather
10 ORDER BY monat;

~No o bW

Vergleich: - / sind einfacher und reichen fiir Min/Max-Werte | FIRST_VALUE |/| LAST_VALUE

sind flexibler - Sie kdnnen nach beliebigen Kriterien sortieren (z.B. Datum)
Wann ist FIRST_VALUE besser? Wenn Sie z.B. die Temperatur des ersten Tages im Monat brauchen - dann
sortieren Sie nach Datum!

Praxis-Tipp: Fur simple Min/Max nutzen Sie MIN/MAX. Fiir ,,ersten/letzten nach Sortierung X nutzen
Sie FIRST VALUE/LASTVALUE!

Teil 3: Praktische Anwendungen
Jetzt kombinieren wir alles: Gleitende Mittelwerte und Anomalie-Erkennung - praktische Analytics!
Anomalie-Erkennung mit Window Functions

Jetzt bauen wir etwas Praktisches: Wir finden Tage, an denen die Temperatur stark vom Durchschnitt
abweicht - mogliche Wetterextreme!

Schritt 1: Abweichung berechnen

1 SELECT

~ [o W BN

L vdadeul,

3 ROUND (Temp_2m, 2) as temp,

4~ ROUND(

5~ AVG(Temp_2m) OVER (

6 ORDER BY Datum

7 ROWS BETWEEN 6 PRECEDING AND CURRENT ROW
8)

9 2

10) as temp_T7tage_avg,

11+~ ROUND(

12~ Temp_2m - AVG(Temp_2m) OVER (

13 ORDER BY Datum

14 ROWS BETWEEN 6 PRECEDING AND CURRENT ROW
15)

16 2

17) as abweichung

18 FROM weather
19 ORDER BY Datum DESC
20 LIMIT 10;

Was wir sehen: Die Abweichung zeigt, wie sehr ein Tag vom 7-Tage-Durchschnitt abweicht. +5°C = viel

warmer, -5°C = viel kalter.

Jetzt filtern wir nur grofte Abweichungen - potenzielle Anomalien:

Schritt 2: Nur grofRe Abweichungen anzeigen

1~ WITH temp_analyse AS (

2 SELECT

3 Datum,

4 ROUND(Temp_2m, 2) as temp,

5~ ROUND (

6~ AVG(Temp_2m) OVER (

7 ORDER BY Datum

8 ROWS BETWEEN 6 PRECEDING AND CURRENT ROW
g)
10 2

11) as temp_T7tage_avg,

12~ ROUND (

13 - Temp_2m - AVG(Temp_2m) OVER (

14 ORDER BY Datum

15 ROWS BETWEEN 6 PRECEDING AND CURRENT ROW
16)

17 2

18) as abweichung

19 FROM weather
20)

21 SELECT =

22 FROM temp_analyse

23 WHERE abweichung > 4 OR abweichung < -4
24 ORDER BY abweichung DESC

25 LIMIT 15;

SwﬂaxfrHénmgr|WITH temp_analyse AS (...)|em&MtemetempoﬁweTamﬂm(CTE:Comnum

TaMeExpWSQOM—|WHERE abweichung > 4 OR abweichung < —4|ﬁhen1bgenﬂtAbwekhung

grofer als 4°C (in beide Richtungen) - Das sind die Ausreifder - ungewohnlich warme oder kalte Tage!
Wir konnen auch Kategorien vergeben:

Schritt 3: Kategorien mit CASE

1- WITH temp_analyse AS (

2 SELECT
3 Datum,
4 ROUND(Temp_2m, 2) as temp,

4

5 ROUND (

6 AVG(Temp_2m) OVER (
7 ORDER BY Datum
8

9

4

ROWS BETWEEN 6 PRECEDING AND CURRENT ROW

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

7 7

2
) as temp_7tage_avg,
ROUND (
Temp_2m - AVG(Temp_2m) OVER (
ORDER BY Datum
ROWS BETWEEN 6 PRECEDING AND CURRENT ROW
)
2
) as abweichung
FROM weather
)
SELECT
Datum,
temp,
temp_7tage_avg,
abweichung,
CASE
WHEN abweichung
WHEN abweichung
WHEN abweichung
WHEN abweichung
ELSE 'Normal'
END as kategorie
FROM temp_analyse
WHERE abweichung > 3 OR abweichung < -3
ORDER BY abweichung DESC
LIMIT 15;

5 THEN 'Sehr warm'
-5 THEN 'Sehr kalt'
3 THEN 'Warm'
-3 THEN 'Kalt'

CASE-Syntax: -| CASE WHEN bedingung THEN wert ELSE anderer_wert END |- Prift
Bedingungen von oben nach unten - Erste erfillte Bedingung gewinnt -| ELSE |ist der Standard-Wert, wenn

keine Bedingung zutrifft

Zusammenfassung: Monatliche Statistiken

Zum Abschluss kombinieren wir alles: Ein kompletter Monats-Uberblick mit allen wichtigen Kennzahlen!

Alle Monats-Statistiken auf einen Blick

1 SELECT

2 EXTRACT (MONTH FROM Datum) as monat,

3 COUNT(*) as anzahl_tage,

4 ROUND (AVG(Temp_2m), 2) as durchschnitt,
5 ROUND(MIN(Temp_2m), 2) as minimum,

6 ROUND (MAX (Temp_2m), 2) as maximum

7 FROM weather

8 GROUP BY EXTRACT(MONTH FROM Datum)

9 ORDER BY monat;

Was wir kombiniert haben: -| GROUP BY |flir Gruppierung nach Monat -| COUNT (*) |flir Anzahl Tage -

MAX () |fL’|r Statistiken -| ROUND () |fur Lesbarkeit - Alles in einer einzigen Query!

So bekommen Sie einen perfekten Uberblick iber das ganze Jahr!

|AVG () |,[MINQ)

) 2

Das haben Sie gelernt: Aus tausenden Zeilen haben Sie mit ein paar Zeilen SQL aussagekraftige
Monats-Statistiken erstellt!

Zusammenfassung & Reflexion

Was fiir eine Session! Lassen Sie uns zusammenfassen, was Sie heute gelernt haben.

Was Sie heute gelernt haben

1.

2.

5.

6.

KlassischeAggregationen:|COUNT SUM |, | AVG |,| MIN |,| MAX |,| GROUP BY

i 4 P) H |2

RANK |,| LAG |,| LEAD

Window Functions: | ROW_NUMBER FIRST_VALUE

P) i i 4

LAST_VALUE |

Gleitende Mittelwerte:| ROWS BETWEEN |fUrflexible Fenster

Zeitbasierte Analytics: | DATE_TRUNC |, Monats-Aggregationen

Praktische Anwendungen: Anomalie-Erkennung, Trend-Analyse

CTEs & CASE: Kombinierte Analytics-Queries

Praktische Ubung fiir Sie

Zum Abschluss eine Aufgabe: Nutzen Sie das Gelernte, um eine eigene Analyse zu bauen!

@ lhre Aufgabe

Erstellen Sie eine Query, die:

1.

2.

3.

4,

Gleitenden 14-Tages-Durchschnitt fiir Luftfeuchte berechnet
Tage findet, an denen Luftfeuchte > 95% (Nebel/Regen-Kandidaten)
Rangfolge der feuchtesten Tage ausgibt (mit RANK)

Abweichung vom Monatsdurchschnitt zeigt

Starter-Code:

lv
2
3
4
5v
6
7
8
9

10
11
12
13
14
15

WITH humidity_analysis AS (
SELECT
Datum,
Luftfeuchte,
AVG (Luftfeuchte) OVER (
ORDER BY Datum
ROWS BETWEEN 13 PRECEDING AND CURRENT ROW
) as feuchte_l4tage_avg,
-— Ihre Erweiterungen hier!
FROM weather
)
SELECT * FROM humidity_analysis
WHERE Luftfeuchte > 95
ORDER BY Datum DESC
LIMIT 10;

Tipp: Kombinieren Sie Window Functions, RANK und Abweichungs-Berechnungen!

Referenzen & Weiterfithrende Links

Zum Abschluss noch Ressourcen fur lhr Selbststudium.

Aggregationen & Window Functions

® PostgreSQL Window Functions Tutorial

e Modern SQL: Window Functions

e SQL Window Functions Cheat Sheet

DuckDB

e DuckDB Official Docs

e DuckDB SQL Functions

e DuckDB Window Functions

Praktische Tutorials

e Window Functions Explained

e SQL for Data Analysis

@ Ende der Lecture 16

https://www.postgresql.org/docs/current/tutorial-window.html
https://modern-sql.com/feature/over
https://learnsql.com/blog/sql-window-functions-cheat-sheet/
https://duckdb.org/docs/
https://duckdb.org/docs/sql/functions/overview
https://duckdb.org/docs/sql/window_functions
https://www.windowfunctions.com/
https://mode.com/sql-tutorial/

Vielen Dank! Sie haben heute machtige SQL-Werkzeuge kennengelernt. Nutzen Sie Aggregationen und
Window Functions fiir Ihre eigenen Datenanalysen - sie sind in fast jedem Szenario niitzlich!

Bis zur nachsten Vorlesung! < Tipp: Experimentieren Sie mit eigenen Daten und Window Functions
- die Moglichkeiten sind endlos!

