L10: Daten iiber Tabellengrenzen hinweg kombinieren - Von
Subqueries zu CTEs zu Joins

Session 10 - Lecture Dauer: 90 Minuten Lernziele: LZ 2 (Relationale DB & SQL praktisch anwenden)
Block: 2 - SQL Einflihrung & Grundlagen

Willkommen zur zehnten Session! Bisher haben Sie mit einzelnen Tabellen gearbeitet - SELECT, WHERE,
GROUP BY, alles auf einer Tabelle. Das war wichtig zum Lernen, aber die wahre Macht relationaler
Datenbanken liegt woanders: in Beziehungen.

Kunden haben Bestellungen. Bestellungen haben Positionen. Produkte gehoren zu Kategorien. All diese
Informationen leben in verschiedenen Tabellen - aber wie kombinieren wir sie? Es gibt drei Hauptansatze:
Subqueries, CTEs und Joins.

In dieser Session lernen Sie alle drei Techniken kennen - und verstehen, wann Sie welche einsetzen. Wir
beginnen mit dem intuitiven Weg (Subqueries), zeigen dessen Grenzen, verbessern ihn mit CTEs, und landen
schlief3lich bei der elegantesten Losung: Joins.

Los geht's mit der Frage: Warum miuissen wir Daten iberhaupt kombinieren?
Warum Daten kombinieren?

Stellen Sie sich vor, Sie speichern alles in einer Tabelle: Kundendaten, Bestellungen, Produktdetails - alles
zusammen. Was passiert?

Problem 1: Redundanz Sie speichern die Kundenadresse bei jeder Bestellung neu. Zieht der Kunde
um, mussen Sie Dutzende Zeilen aktualisieren.

Problem 2: Inkonsistenz Bei manchen Bestellungen steht ,,Berlin,,, bei anderen ,,Berln“ - Tippfehler.

Problem 3: Update-Anomalien Sie andern den Preis eines Produkts - aber welche Bestellungen
bekommen den neuen Preis? Die alten sollten den alten Preis behalten!

Die Lésung? Normalisierung. Wir teilen Daten in mehrere Tabellen auf. Jede Tabelle hat eine klar definierte
Verantwortung. Beziehungen werden uber Foreign Keys hergestellt.

Normalisierung fiihrt zu mehreren Tabellen.

Joins rekonstruieren die Informationen.

Unser E-Commerce-Schema

Fur alle Beispiele heute nutzen wir ein realistisches E-Commerce-Schema mit sieben normalisierten Tabellen
inklusive einer N:M-Beziehung uber eine Junction Table.

1 -- Locations: Normalisierte Orte mit PLZ
2~ CREATE TABLE locations (

3 location_id INTEGER PRIMARY KEY,

4 city TEXT NOT NULL,

5 postal_code TEXT NOT NULL,

6 country TEXT DEFAULT 'Germany'
7
8
9

)5

-- Categories: Normalisierte Produktkategorien
10 - CREATE TABLE categories (
11 category_id INTEGER PRIMARY KEY,
12 category_name TEXT NOT NULL UNIQUE,
13 description TEXT
14);
15
16 -- Customers: Erweitert mit strukturierten Adressdaten
17 - CREATE TABLE customers (
18 customer_id INTEGER PRIMARY KEY,
19 first_name TEXT NOT NULL,
20 last_name TEXT NOT NULL,
21 email TEXT UNIQUE,
22 street TEXT,
23 street_number TEXT,
24 location_id INTEGER,
25 FOREIGN KEY (location_id) REFERENCES locations(location_id)
26);
27
28 -- Orders: Unverandert
29 - CREATE TABLE orders (
30 order_id INTEGER PRIMARY KEY,
31 customer_id INTEGER,
32 order_date DATE,
33 total_amount DECIMAL(10,2),
34 status TEXT,
35 FOREIGN KEY (customer_id) REFERENCES customers(customer_id)
36);
37
38 -- Products: Ohne direkte Category-Referenz (N:M Uber Junction Tablg
39 - CREATE TABLE products (
40 product_id INTEGER PRIMARY KEY,
41 product_name TEXT NOT NULL,
42 price DECIMAL(10,2)
43)

44
45
46
a7
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81

82

83

84

85

86

87

-- Product Categories: Junction Table fir N:M-Beziehung

= CREATE TABLE product_categories (

product_id INTEGER,

category_id INTEGER,

PRIMARY KEY (product_id, category_id),

FOREIGN KEY (product_id) REFERENCES products(product_id),
FOREIGN KEY (category_id) REFERENCES categories(category_-id)

)3

-— Order Items: Unverandert

- CREATE TABLE order_items (

order_item_id INTEGER PRIMARY KEY,

order_id INTEGER,

product_id INTEGER,

quantity INTEGER,

line_total DECIMAL(10,2),

FOREIGN KEY (order_id) REFERENCES orders(order_id),
FOREIGN KEY (product_id) REFERENCES products(product_-id)

)3

-— Sample Data: Locations

INSERT INTO locations(location_id, city, postal_code, country) VALUE

(1, 'Berlin', '10115', 'Germany'),
(2, '"Hamburg', '20095', 'Germany'),
(3, '"Munich', '80331', 'Germany'),
(4, 'Cologne', '50667', 'Germany'),
(5, 'Frankfurt', '60311', 'Germany');

-— Sample Data: Categories

INSERT INTO categories(category_id, category_name, description) VALU

(1, '"Electronics', 'Electronic devices and accessories'),
(2, '"Furniture', 'Office and home furniture'),
(3, 'Stationery', 'Office supplies and paper products'),

(4, 'Office Equipment', 'Professional office tools and devices');

-— Sample Data: Customers (mit strukturierten Adressen)

INSERT INTO customers(customer_id, first_name, last_name, email, stn

street_number, location_id) VALUES

(1, 'Alice', 'Anderson', 'alice@email.com', 'Unter den Linden',

)

(2, 'Bob', 'Brown', '"bobeemail.com', 'Reeperbahn',
)

(3, 'Carol', 'Clark', 'carol@email.com', 'Marienplatz',
)

(4, 'David', 'Davis', 'david@email.com', 'Hohe Stralke',
)

mma vans emma@email.com e

(5, IE l’ IE I, ! @ "L l’ IZ "LI,
)

(99, 'Zoe', '"Zimmer', 'zoe@emailcom', '"Unter den Linden'

)3 —— Orphaned customer! No orders.

14

88
89

90

91
92
93
94
95
96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129

130
131
132

133
124

-- Sample Data: Orders (Note:

invalid customer_id!)
INSERT INTO orders(order_1id,

) VALUES

(161, 1, '2024-01-15',

(162, 1, '2024-02-20',
(103, 2, '2024-01-22',
(104, 3, '2024-03-10',
(105, 4, '2024-03-15',

(106, 99, '2023-03-20'
99 doesn't exist!

299.

149

, 19

Customer 5 has NO orders! Order 106 hg
customer_id, order_date, total_amount,

99, 'completed'),

.50, 'completed'),
499,
89.
199.

99, 'completed'),
99, 'pending'),
99, 'completed'),

.99, 'completed'); -- Orphaned order! Cu

-- Sample Data: Products (ohne direkte Category-Referenz)
INSERT INTO products(product_id, product_name, price) VALUES

(1,
(2,
(3,
(4,
(5,
(6,
(7,
(8,
(9,

'Laptop', 999.
'Mouse', 29.
'Keyboard', 79.
"Monitor', 299.
'Desk Chair', 199.
"Notebook', 9.

'USB Cable', 14.
'Desk Lamp', 49.
'Paper', 4.

-— Sample Data: Product

(1,
(1,
(2,
(2,
(3,
(3,
(4,
(4,
(5,
(5,
(6,
(7,
(8,
(8,
(9,

99),
99),
99),
99),
99),
99),
99),
99),
99);

Categories (N:M-Beziehungen)
INSERT INTO product_categories(product_id, category_id) VALUES

1), -- Laptop - Electronics

4), -- Laptop - Office Equipment

1), -- Mouse - Electronics

4), -- Mouse - Office Equipment

1), -- Keyboard - Electronics

4), -- Keyboard - Office Equipment

1), -- Monitor - Electronics

4), -- Monitor - Office Equipment

2), -- Desk Chair - Furniture

4), -- Desk Chair - Office Equipment

3), -- Notebook - Stationery (nur eine Kategorie!)
1), -- USB Cable - Electronics (nicht verkauft!)
2), -- Desk Lamp - Furniture (nicht verkauft!)
4), -- Desk Lamp - Office Equipment

3); -- Paper - Stationery (nicht verkauft!)

-— Sample Data: Order Items
INSERT INTO order_items(order_item_id, order_id, product_id, quantit
line_total) VALUES

(1,
(2,
(3,
(4,
(5.

101, 4, 1, 299.99)

102, 2, 2, 59.98)
102, 3, 1, 79.99)
103, 1, 1, 999.99)
104. 6. K. 49 .9RK)

)

)

H

)

135
136
137
138
139
140
141
142
143
144

(6, 105, 5, 1, 199.99),
(7, 106, 7, 5

-- Create orphan data for
UPDATE orders

SET customer_id = NULL
WHERE customer_id = 99;

DELETE FROM customers
WHERE customer_id = 99;

-— Orphaned order 106:

testing purposes

USB Cab'le

-- Locations: Normalisierte Orte mit PLZ
CREATE TABLE locations (
location_id INTEGER PRIMARY KEY,
city TEXT NOT NULL,
postal_code TEXT NOT NULL,
country TEXT DEFAULT 'Germany'
)

ok

-- Categories: Normalisierte Produktkategorien
CREATE TABLE categories (
category_id INTEGER PRIMARY KEY,
category name TEXT NOT NULL UNIQUE,
description TEXT
)

ok

-- Customers: Erweitert mit strukturierten Adressdaten
CREATE TABLE customers (

customer_id INTEGER PRIMARY KEY,

first_name TEXT NOT NULL,

last_name TEXT NOT NULL,

email TEXT UNIQUE,

street TEXT,

street_number TEXT,

location_id INTEGER,

FOREIGN KEY (location_id) REFERENCES locations(location_id)

-- Orders: Unverandert
CREATE TABLE orders (
order_id INTEGER PRIMARY KEY,
customer _id INTEGER,
order_date DATE,
total_amount DECIMAL(10,2),
status TEXT,
FOREIGN KEY (customer_id) REFERENCES customers(customer _id)

-- Products: Ohne direkte Category-Referenz (N:M uber Junction Table)
CREATE TABLE products (
product_id INTEGER PRIMARY KEY,

product_name TEXT NOT NULL,
price DECIMAL(10,2)
)

ok

-- Product Categories: Junction Table fiir N:M-Beziehung
CREATE TABLE product_categories (
product_id INTEGER,
category_id INTEGER,
PRIMARY KEY (product_id, category_id),
FOREIGN KEY (product_id) REFERENCES products(product_id),
FOREIGN KEY (category id) REFERENCES categories(category_id)
)

ok

-- Order Items: Unverandert
CREATE TABLE order_items (
order_item_id INTEGER PRIMARY KEY,
order_id INTEGER,
product_id INTEGER,
quantity INTEGER,
line_total DECIMAL(10,2),
FOREIGN KEY (order_id) REFERENCES orders(order_id),
FOREIGN KEY (product_id) REFERENCES products(product_id)

-- Sample Data: Locations
INSERT INTO locations(location_id, city, postal_code, country) VALUES
(1, 'Berlin’, '10115', 'Germany’),
(2, '"Hamburg', '20095', 'Germany'),
(3, 'Munich’, '80331', 'Germany'),
(4, 'Cologne’, '50667', '‘Germany'),
(5, 'Frankfurt’, '60311', 'Germany')

-- Sample Data: Categories
INSERT INTO categories(category_id, category_name, description) VALUES
(1, 'Electronics’, 'Electronic devices and accessories'),
(2, 'Furniture’, 'Office and home furniture'),
(3, 'Stationery', 'Office supplies and paper products'),
(4, 'Office Equipment’, 'Professional office tools and devices')

ok

-- Sample Data: Customers (mit strukturierten Adressen)
INSERT INTO customers(customer_id, first_name, last_ name, email, street,
street_number, location_id) VALUES

(1, 'Alice’, 'Anderson’, 'alice@email.com’, 'Unter den Linden', '42', 1),

(2, 'Bob’', 'Brown’', 'bob@email.com’', 'Reeperbahn’, '15', 2),

(3, 'Carol’, 'Clark’', ‘'carol@email.com’, 'Marienplatz’, '8', 3),

(4, 'David’, 'Davis', 'david@email.com', 'Hohe StraRe’, '123', 4),

(5, 'Emma’, 'Evans', 'emma@email.com’', 'Zeil', '99' 5),

(99, 'Zoe', 'Zimmer', 'zoe@emailcom’, ‘'Unter den Linden', '1', 1)

-- Orphaned customer! No orders.

-- Sample Data: Orders (Note: Customer 5 has NO orders! Order 106 has invalid
customer_id!)
INSERT INTO orders(order_id, customer_id, order_date, total amount, status) VALUES
(101, 1, '2024-01-15', 299.99, 'completed’),
(102, 1, '2024-02-20', 149.50, 'completed'),
(103, 2, '2024-01-22', 499.99, 'completed’),
(104, 3, '2024-03-10', 89.99, 'pending’'),
(105, 4, '2024-03-15', 199.99, '‘completed’),
(106, 99, '2023-03-20', 79.99, 'completed')

-- Orphaned order! Customer 99 doesn't exist!

-- Sample Data: Products (ohne direkte Category-Referenz)
INSERT INTO products(product_id, product_name, price) VALUES

(1, 'Laptop’, 999.99),

(2, 'Mouse’, 29.99),

(3, 'Keyboard', 79.99),

(4, 'Monitor', 299.99),

(5, 'Desk Chair', 199.99),

(6, 'Notebook', 9.99),

(7, 'USB Cable', 14.99),

(8, 'Desk Lamp’', 49.99),

(9, 'Paper’, 4.99)

-- Sample Data: Product Categories (N:M-Beziehungen)
INSERT INTO product_categories(product_id, category_id) VALUES
(1, 1), -- Laptop - Electronics
(1, 4), -- Laptop - Office Equipment
(2, 1), -- Mouse - Electronics
(2, 4), -- Mouse - Office Equipment
(3, 1), -- Keyboard - Electronics
(3, 4), -- Keyboard - Office Equipment

-- Monitor - Electronics

-- Monitor - Office Equipment

-- Desk Chair - Furniture

-- Desk Chair -» Office Equipment

-- Notebook - Stationery (nur eine Kategorie!)
-- USB Cable - Electronics (nicht verkauft!)

-- Desk Lamp — Furniture (nicht verkauft!)

-- Desk Lamp - Office Equipment

ok

-- Paper - Stationery (nicht verkauft!)

-- Sample Data: Order Items
INSERT INTO order_items(order_item_id, order_id, product_id, quantity, line_total)
VALUES

(1, 101, 4, 1, 299.99),

(2, 102, 2, 2, 59.98),

(3,102, 3,1, 79.99),

(4, 103, 1, 1, 999.99),

(5, 104, 6, 5, 49.95),

(6, 105, 5, 1, 199.99),

(7, 106, 7, 5, 74.95)

-- Orphaned order 106: USB Cable

-- Create orphan data for testing purposes
UPDATE orders

SET customer_id = NULL

WHERE customer_id = 99

ok

DELETE FROM customers
WHERE customer_id = 99

ok

Beziehungen:

N N
Incaiien id int cusinmer id & int
ity varchar W Firwi_name Wi
poaisl_cods varchar NN lawz_nams hh
counirg [earchar i
nirsa: ey
mirma i
N -
extngary 1d 2 ik
CHSEaTY_NAms varchar HH
praduce K &8 int
= = =
praduct_ i & ink
procduci nams sarchar uy
Arics]

dbdiagram.io

e Ein Ort kann viele Kunden haben (1:N)

ardarid & it
cusnmsr_id

arder_dsis

soinl_srmeam Escinal (18,3

ALy wrchar

GD dbdiagram

* Ein Produkt kann viele Kategorien haben (N:M iiber product_categories)

* Eine Kategorie kann viele Produkte haben (N:M iiber product_categories)

® Ein Kunde kann viele Bestellungen haben (1:N)

* Eine Bestellung hat viele Positionen (1:N)

Ein Produkt kann in vielen Positionen vorkommen (N:M Uber order_items)

Diese Struktur ist typisch fiir relationale Datenbanken. Aber wie kombinieren wir diese Informationen?

Schauen wir uns vier Ansatze an - beginnend mit dem altesten, aber wichtigsten zum Verstehen.

Technik 0: Verkniipfen von Tabellen iiber | FROM

arder_|i=m_h
ardar_id
produci_id £
quaniity

lina_ioral

https://dbdiagram.io/
https://dbdiagram.io/embed?c=VGFibGUgbG9jYXRpb25zIHsKICBsb2NhdGlvbl9pZCBpbnQgW3BrXQogIGNpdHkgdmFyY2hhciBbbm90IG51bGxdCiAgcG9zdGFsX2NvZGUgdmFyY2hhciBbbm90IG51bGxdCiAgY291bnRyeSB2YXJjaGFyIFtkZWZhdWx0OiAnR2VybWFueSddCn0KClRhYmxlIGNhdGVnb3JpZXMgewogIGNhdGVnb3J5X2lkIGludCBbcGtdCiAgY2F0ZWdvcnlfbmFtZSB2YXJjaGFyIFtub3QgbnVsbCwgdW5pcXVlXQogIGRlc2NyaXB0aW9uIHZhcmNoYXIKfQoKVGFibGUgY3VzdG9tZXJzIHsKICBjdXN0b21lcl9pZCBpbnQgW3BrXQogIGZpcnN0X25hbWUgdmFyY2hhciBbbm90IG51bGxdCiAgbGFzdF9uYW1lIHZhcmNoYXIgW25vdCBudWxsXQogIGVtYWlsIHZhcmNoYXIgW3VuaXF1ZV0KICBzdHJlZXQgdmFyY2hhcgogIHN0cmVldF9udW1iZXIgdmFyY2hhcgogIGxvY2F0aW9uX2lkIGludCBbcmVmOiA%2BIGxvY2F0aW9ucy5sb2NhdGlvbl9pZF0KfQoKVGFibGUgb3JkZXJzIHsKICBvcmRlcl9pZCBpbnQgW3BrXQogIGN1c3RvbWVyX2lkIGludCBbcmVmOiA%2BIGN1c3RvbWVycy5jdXN0b21lcl9pZF0KICBvcmRlcl9kYXRlIGRhdGUKICB0b3RhbF9hbW91bnQgZGVjaW1hbCgxMCwyKQogIHN0YXR1cyB2YXJjaGFyCn0KClRhYmxlIHByb2R1Y3RzIHsKICBwcm9kdWN0X2lkIGludCBbcGtdCiAgcHJvZHVjdF9uYW1lIHZhcmNoYXIgW25vdCBudWxsXQogIHByaWNlIGRlY2ltYWwoMTAsMikKfQoKVGFibGUgcHJvZHVjdF9jYXRlZ29yaWVzIHsKICBwcm9kdWN0X2lkIGludCBbcmVmOiA%2BIHByb2R1Y3RzLnByb2R1Y3RfaWRdCiAgY2F0ZWdvcnlfaWQgaW50IFtyZWY6ID4gY2F0ZWdvcmllcy5jYXRlZ29yeV9pZF0KCiAgaW5kZXhlcyB7CiAgICAocHJvZHVjdF9pZCwgY2F0ZWdvcnlfaWQpIFtwa10KICB9Cn0KClRhYmxlIG9yZGVyX2l0ZW1zIHsKICBvcmRlcl9pdGVtX2lkIGludCBbcGtdCiAgb3JkZXJfaWQgaW50IFtyZWY6ID4gb3JkZXJzLm9yZGVyX2lkXQogIHByb2R1Y3RfaWQgaW50IFtyZWY6ID4gcHJvZHVjdHMucHJvZHVjdF9pZF0KICBxdWFudGl0eSBpbnQKICBsaW5lX3RvdGFsIGRlY2ltYWwoMTAsMikKfQ%3D%3D

Bevor wir zu modernen Techniken kommen, missen wir die Basis verstehen: Wie kombiniert SQL tiberhaupt
Tabellen? Die Antwort liegt im FROM. Sie konnen mehrere Tabellen einfach durch Kommata trennen - und
erhalten das kartesische Produkt.

Das kartesische Produkt: Alle Kombinationen

Wenn Sie zwei Tabellen im FROM auflisten, verbindet SQL jede Zeile der ersten Tabelle mit jeder Zeile der
zweiten Tabelle. Das nennt man kartesisches Produkt oder Cross Product.

Konzept:

Customers (3 Zeilen) Orders (5 Zeilen)

ID Name 0ID CID

1 Alice 101 1

2 Bob 102 1

5 Emma 103 2
104 | 3
105 | 4

FROM customers, orders - 3 x 5 = 15 Kombinationen!

Jeder Kunde wird mit jeder Bestellung kombiniert - auch wenn die Bestellung gar nicht zu diesem Kunden
gehort! Das ist meist nicht das, was wir wollen.

Live-Beispiel: Kartesisches Produkt im Online-Shop

customer_id 2
first_name
last_name
email

street
street_number

location_id

int o order_id £
varchar NN = customer_id &
varchar NN order_date
varchar total_amount decimal(1
varchar status val
varchar
int

GD dbdiagram

dbdiagram.io

Experiment: Listen Sie Customers und Orders im FROM auf, ohne Bedingung.

1
2
3
4
5
6
7
8

—— VORSICHT: Kartesisches Produkt!

SELECT

c.customer_id,

c.first_name,

o.order_1id,

o.customer_id AS order_customer_id
FROM customers c, orders o

LIMIT 10;

-- Nur erste 10 Zeilen zeigen

https://dbdiagram.io/
https://dbdiagram.io/embed?c=VGFibGUgY3VzdG9tZXJzIHsKICBjdXN0b21lcl9pZCBpbnQgW3BrXQogIGZpcnN0X25hbWUgdmFyY2hhciBbbm90IG51bGxdCiAgbGFzdF9uYW1lIHZhcmNoYXIgW25vdCBudWxsXQogIGVtYWlsIHZhcmNoYXIgW3VuaXF1ZV0KICBzdHJlZXQgdmFyY2hhcgogIHN0cmVldF9udW1iZXIgdmFyY2hhcgogIGxvY2F0aW9uX2lkIGludAp9CgpUYWJsZSBvcmRlcnMgewogIG9yZGVyX2lkIGludCBbcGtdCiAgY3VzdG9tZXJfaWQgaW50IFtyZWY6ID4gY3VzdG9tZXJzLmN1c3RvbWVyX2lkXQogIG9yZGVyX2RhdGUgZGF0ZQogIHRvdGFsX2Ftb3VudCBkZWNpbWFsKDEwLDIpCiAgc3RhdHVzIHZhcmNoYXIKfQ%3D%3D

-- VORSICHT: Kartesisches Produkt!
SELECT

c.customer_id,

c.first_name,

o.order _id,

o.customer_id AS order_customer_id
FROM customers c, orders o
LIMIT 10

customer_id first_name order_id order_customer_id

1 Alice 101 1
1 Alice 102 1

Alice 103

Alice 104

Alice 105

Alice 106

Bob 101

Bob 102

Bob 103

Bob 104

-- Nur erste 10 Zeilen zeigen

ok

Fuhren Sie die Query aus. Was sehen Sie? Alice (customer_id = 1) erscheint mit allen Bestellungen - auch mit
Bestellungen von Bob und Carol! Das ist das kartesische Produkt: 5 Kunden x 5 Bestellungen = 25 Zeilen.

Problem: Die meisten dieser Kombinationen sind unsinnig! Alice sollte nur mit ihren eigenen Bestellungen
verknupft werden.

Die Losung: WHERE-Bedingung

Um nur sinnvolle Kombinationen zu bekommen, filtern wir im WHERE: Verbinde nur Zeilen, wo customer_id
Ubereinstimmt.

customer_id & int - order _id &2

first_name varchar NN = customer_id &

last_name varchar NN order_date

email varchar total_amount decimal(1
street varchar status Val
street_number varchar

location_id int

GD dbdiagram

dbdiagram.io

O oo ~NOoO U~ WN R

R e
N RO

-—- TODO: Filtern Sie das kartesische Produkt:
-- Zeigen Sie nur Kunden mit ihren eigenen Bestellungen.
-— Tipp: c.customer_id = o.customer_-id
SELECT

c.customer_id,

c.first_name,

o.order_1id,

o.order_date,

o.total_amount
FROM customers c, orders o
WHERE c.customer_id = o.customer_-id
ORDER BY c.last_name;

https://dbdiagram.io/
https://dbdiagram.io/embed?c=VGFibGUgY3VzdG9tZXJzIHsKICBjdXN0b21lcl9pZCBpbnQgW3BrXQogIGZpcnN0X25hbWUgdmFyY2hhciBbbm90IG51bGxdCiAgbGFzdF9uYW1lIHZhcmNoYXIgW25vdCBudWxsXQogIGVtYWlsIHZhcmNoYXIgW3VuaXF1ZV0KICBzdHJlZXQgdmFyY2hhcgogIHN0cmVldF9udW1iZXIgdmFyY2hhcgogIGxvY2F0aW9uX2lkIGludAp9CgpUYWJsZSBvcmRlcnMgewogIG9yZGVyX2lkIGludCBbcGtdCiAgY3VzdG9tZXJfaWQgaW50IFtyZWY6ID4gY3VzdG9tZXJzLmN1c3RvbWVyX2lkXQogIG9yZGVyX2RhdGUgZGF0ZQogIHRvdGFsX2Ftb3VudCBkZWNpbWFsKDEwLDIpCiAgc3RhdHVzIHZhcmNoYXIKfQ%3D%3D

-- TODO: Filtern Sie das kartesische Produkt:
-- Zeigen Sie nur Kunden mit ihren eigenen Bestellungen.
-- Tipp: c.customer_id = o.customer_id
SELECT

c.customer_id,

c.first_name,

o.order_id,

o.order_date,

o.total_amount
FROM customers c, orders o
WHERE c.customer_id = o.customer_id
ORDER BY c.last_name

customer_id first_name order _id order_date total_amount

1 Alice 101 2024-01-15 299.99

1 Alice 102 2024-02-20 149.50
Bob 103 2024-01-22 499.99
Carol 104 2024-03-10 89.99

David 105 2024-03-15 199.99

So funktioniert das:
1. SQL erzeugt zundchst das kartesische Produkt (5 x 5 =25 Zeilen)
2. Dannfiltert WHERE: Nur Zeilen, wo customer_id (ibereinstimmt
3. Ergebnis: Nur 5 Zeilen (Kunde mit seiner Bestellung)

Das ist die klassische Methode, Tabellen zu verbinden - und genau so wurde SQL in den 1980ern
geschrieben! Aber diese Syntax hat Nachteile.

Mehrere Tabellen kombinieren

Sie kdnnen beliebig viele Tabellen auflisten - aber die WHERE-Bedingungen werden schnell komplex.

Aufgabe: Zeigen Sie Kunde, Bestellung UND Produkt zusammen.

T e

custormer Id 2 int order_Id & ink order_tem_ld &
farsd_naeme= varchar Nkl customer_id & ink pordier_Id &
last_name varchar MR arder_date date product_id &
emall varchar #otal_amaunt decimal(1d,2} guantity

shreet varchar =katus varchar line_toda
shreet_numbsr varchar

|location_id inkt

product_id £ int
pro-duct_name varchar MM
price decimal(1e,2)

GD dbdiagram

dbdiagram.io
1 -- TODO: Verbinden Sie customers, orders, order_items, products
2 -- Hinweis: Sie brauchen 3 WHERE-Bedingungen!
3 SELECT
4 c.first_name || ' ' || c.last_name AS customer,
5 o.order_1id,
6 p.product_name,
7 oi.quantity
8 FROM customers c, orders o, order_items oi, products p
9 WHERE c.customer_id = o.customer_id
10 AND o.order_id = oi.order_1id
11 AND oi.product_id = p.product_id
12 ORDER BY o.order_1id;

https://dbdiagram.io/
https://dbdiagram.io/embed?c=VGFibGUgY3VzdG9tZXJzIHsKICBjdXN0b21lcl9pZCBpbnQgW3BrXQogIGZpcnN0X25hbWUgdmFyY2hhciBbbm90IG51bGxdCiAgbGFzdF9uYW1lIHZhcmNoYXIgW25vdCBudWxsXQogIGVtYWlsIHZhcmNoYXIgW3VuaXF1ZV0KICBzdHJlZXQgdmFyY2hhcgogIHN0cmVldF9udW1iZXIgdmFyY2hhcgogIGxvY2F0aW9uX2lkIGludAp9CgpUYWJsZSBvcmRlcnMgewogIG9yZGVyX2lkIGludCBbcGtdCiAgY3VzdG9tZXJfaWQgaW50IFtyZWY6ID4gY3VzdG9tZXJzLmN1c3RvbWVyX2lkXQogIG9yZGVyX2RhdGUgZGF0ZQogIHRvdGFsX2Ftb3VudCBkZWNpbWFsKDEwLDIpCiAgc3RhdHVzIHZhcmNoYXIKfQoKVGFibGUgcHJvZHVjdHMgewogIHByb2R1Y3RfaWQgaW50IFtwa10KICBwcm9kdWN0X25hbWUgdmFyY2hhciBbbm90IG51bGxdCiAgcHJpY2UgZGVjaW1hbCgxMCwyKQp9CgpUYWJsZSBvcmRlcl9pdGVtcyB7CiAgb3JkZXJfaXRlbV9pZCBpbnQgW3BrXQogIG9yZGVyX2lkIGludCBbcmVmOiA%2BIG9yZGVycy5vcmRlcl9pZF0KICBwcm9kdWN0X2lkIGludCBbcmVmOiA%2BIHByb2R1Y3RzLnByb2R1Y3RfaWRdCiAgcXVhbnRpdHkgaW50CiAgbGluZV90b3RhbCBkZWNpbWFsKDEwLDIpCn0%3D

-- TODO: Verbinden Sie customers, orders, order_items, products
-- Hinweis: Sie brauchen 3 WHERE-Bedingungen!
SELECT

c.first_name || ' ' || c.last_name AS customer,

o.order _id,

p.product_name,

oi.quantity
FROM customers c, orders o, order_items oi, products p
WHERE c.customer_id = o.customer_id

AND o.order_id = oi.order_id

AND oi.product_id = p.product_id
ORDER BY o.order_id

customer order_id product_name quantity

Alice Anderson 101 Monitor 1
Alice Anderson 102 Mouse P
Alice Anderson 102 Keyboard

Bob Brown 103 Laptop

Carol Clark 104 Notebook

David Davis 105 Desk Chair

Das funktioniert, aber:
¢ Die WHERE-Bedingungen mischen Join-Logik mit Filter-Logik
* Bei4 Tabellen sind das schon 3 Bedingungen - bei 10 Tabellen?
* \ergessen Sie eine Bedingung — versehentliches kartesisches Produkt!

e Unleserlich: Was ist Join, was ist Filter?

Das Problem mit der impliziten Syntax

Diese Methode wird implizite Join-Syntax genannt. Sie hat mehrere Nachteile:

Problem

Unleserlich

Beschreibung

Join-Bedingungen vermischt mit
Filter-Bedingungen

Vergessene Bedingung —

Beispiel

|WHERE a.id = b.id AND
b.status = 'active'|

| FROM t1, t2, t3 WHERE

Fehleranfallig

kartesisches Produkt tl.4d = t2.'id|(t3fehlt!)

Kein Outer Joins nicht moglich (ohne
LEFT/RIGHT

Oracle: () Notation

proprietary Syntax)

SQL-92 Standard hat explizite
JOIN-Syntax eingefiihrt

Veraltet Vor 30+ Jahren!

Deshalb gilt heute: Nutzen Sie immer die explizite JOIN-Syntax! Die ist moderner, klarer und machtiger.

Warum Sie das trotzdem kennen miissen

Warum habe ich Thnen dann die implizite Syntax gezeigt? Drei Griinde:
1. Legacy-Code verstehen

Viele alte Datenbanken und Anwendungen nutzen diese Syntax noch. Wenn Sie bestehenden Code warten,
werden Sie ihr begegnen.

2. Kartesisches Produkt verstehen

Die explizite JOIN-Syntax versteckt, was wirklich passiert. Mit FROM + WHERE sehen Sie: SQL erzeugt
zunachst alle Kombinationen, dann filtert es. Das hilft beim Performance-Verstandnis.

3. CROSS JOIN erkennen

Wenn Sie versehentlich mehrere Tabellen auflisten ohne JOIN-Bedingung, passiert ein CROSS JOIN
(kartesisches Produkt). Sie miissen das erkennen konnen!

-— X Versehentlicher CROSS JOIN (hdufiger Fehler!):
SELECT * FROM customers, orders;
-- 5 x 5 =25 Zeilen, meist ungewollt!

-- Y4 Expliziter CROSS JOIN (wenn gewollt):
SELECT * FROM customers CROSS JOIN orders;

o b~ WN B

--){ Versehentlicher CROSS JOIN (haufiger Fehler!):
SELECT * FROM customers, orders

customer_id first_name

1

Alice

Alice

Alice

Alice

Alice

Alice

Bob
Bob
Bob
Bob
Bob
Bob
Carol
Carol
Carol
Carol
Carol
Carol

David

David

David

David

David

David

E T

Anderson

Anderson

Anderson

Anderson

Anderson

Anderson

Brown
Brown
Brown
Brown
Brown
Brown
Clark
Clark
Clark
Clark
Clark
Clark

Davis

BEWIS

Davis

Davis

Davis

Davis

email

alice@email.com

alice@email.com

alice@email.com

alice@email.com

alice@email.com

alice@email.com

bob@email.com
bob@email.com
bob@email.com
bob@email.com
bob@email.com
bob@email.com
carol@email.com
carol@email.com
carol@email.com
carol@email.com
carol@email.com
carol@email.com

david@email.com

david@email.com

david@email.com

david@email.com

david@email.com

david@email.com

street

Unter den
Linden

Unter den
Linden

Unter den
Linden

Unter den
Linden

Unter den
Linden

Unter den
Linden

Reeperbahn
Reeperbahn
Reeperbahn
Reeperbahn
Reeperbahn
Reeperbahn
Marienplatz
Marienplatz
Marienplatz
Marienplatz
Marienplatz
Marienplatz

Hohe
StralRe

Hohe
StralRe

Hohe
StralRe

Hohe
StralRe

Hohe
StralRe

Hohe
StralRe

street_numbg¢

42

42

42

42

42

42

15
15
15
15

15

25
26
27
28
29
30 null

30 rows

--5 x 5 = 25 Zeilen, meist ungewollt!

-- ¥ Expliziter CROSS JOIN (wenn gewollt):

emma@email.com
emma@email.com
emma@email.com
emma@email.com
emma@email.com

emma@email.com

SELECT * FROM customers CROSS JOIN orders

customer_id first_name

1

Alice

Alice

Alice

Alice

Alice

Alice

Bob
Bob
Bob
Bob
Bob
Bob
Carol
Carol
Carol
Carol
Carol
Carol

David

David

David

David

David

David

E T

Anderson

Anderson

Anderson

Anderson

Anderson

Anderson

Brown
Brown
Brown
Brown
Brown
Brown
Clark
Clark
Clark
Clark
Clark
Clark

Davis

BEWIS

Davis

Davis

Davis

Davis

email

alice@email.com

alice@email.com

alice@email.com

alice@email.com

alice@email.com

alice@email.com

bob@email.com
bob@email.com
bob@email.com
bob@email.com
bob@email.com
bob@email.com
carol@email.com
carol@email.com
carol@email.com
carol@email.com
carol@email.com
carol@email.com

david@email.com

david@email.com

david@email.com

david@email.com

david@email.com

david@email.com

street

Unter den
Linden

Unter den
Linden

Unter den
Linden

Unter den
Linden

Unter den
Linden

Unter den
Linden

Reeperbahn
Reeperbahn
Reeperbahn
Reeperbahn
Reeperbahn
Reeperbahn
Marienplatz
Marienplatz
Marienplatz
Marienplatz
Marienplatz
Marienplatz

Hohe
StralRe

Hohe
StralRe

Hohe
StralRe

Hohe
StralRe

Hohe
StralRe

Hohe
StralRe

street_numbg¢

42

42

42

42

42

42

15
15
15
15

15

emma@email.com
emma@email.com
emma@email.com
emma@email.com

emma@email.com

null emma@email.com

30 rows

Vergleich: Implizit vs. Explizit

Schauen wir uns beide Syntaxen direkt nebeneinander an - fiir die gleiche Aufgabe.

Implizite Syntax (veraltet) Explizite Syntax (modern)

| FROM customers c INNER JOIN

|FROM customers c, orders o
orders o

‘WHERE c.customer_id = |ON c.customer_id =
o.customer_id o.customer_id |

Filter UND Join vermischt Join getrennt von Filter

Kein LEFT/RIGHT JOIN moglich Alle Join-Typen verfligbar
Kartesisches Produkt bei Fehler Fehler bei fehlender ON-Bedingung

Faustregel: Implizite Syntax = INNER JOIN ohne . Mehr geht nicht.
Ubung: Implizit

Aufgabe: Zeigen Sie Vorname, Stadt und Bestelldatum fiir alle abgeschlossenen Bestellungen.

location_id int customer _id & int order_id &
ity varchar MH first_name varchar MM customer_jid &
postal_code varchar BN last_name varchar MM order_date
cauntry B varchar emall varchar total_smount d=
street warchar status
strest_number warchar
Iocation_id & int

GD dbdiagram

dbdiagram.io
-- Gegeben (implizit):
SELECT
c.first_name,
l.city,

o.order_date
FROM customers c, locations 1, orders o
WHERE c.location_id = 1.location_id

AND c.customer_id = o.customer_id

AND o.status = 'completed';

O 00 ~NO U b~ WN R

https://dbdiagram.io/
https://dbdiagram.io/embed?c=VGFibGUgbG9jYXRpb25zIHsKICBsb2NhdGlvbl9pZCBpbnQgW3BrXQogIGNpdHkgdmFyY2hhciBbbm90IG51bGxdCiAgcG9zdGFsX2NvZGUgdmFyY2hhciBbbm90IG51bGxdCiAgY291bnRyeSB2YXJjaGFyIFtkZWZhdWx0OiAnR2VybWFueSddCn0KClRhYmxlIGN1c3RvbWVycyB7CiAgY3VzdG9tZXJfaWQgaW50IFtwa10KICBmaXJzdF9uYW1lIHZhcmNoYXIgW25vdCBudWxsXQogIGxhc3RfbmFtZSB2YXJjaGFyIFtub3QgbnVsbF0KICBlbWFpbCB2YXJjaGFyIFt1bmlxdWVdCiAgc3RyZWV0IHZhcmNoYXIKICBzdHJlZXRfbnVtYmVyIHZhcmNoYXIKICBsb2NhdGlvbl9pZCBpbnQgW3JlZjogPiBsb2NhdGlvbnMubG9jYXRpb25faWRdCn0KClRhYmxlIG9yZGVycyB7CiAgb3JkZXJfaWQgaW50IFtwa10KICBjdXN0b21lcl9pZCBpbnQgW3JlZjogPiBjdXN0b21lcnMuY3VzdG9tZXJfaWRdCiAgb3JkZXJfZGF0ZSBkYXRlCiAgdG90YWxfYW1vdW50IGRlY2ltYWwoMTAsMikKICBzdGF0dXMgdmFyY2hhcgp9

-- Gegeben (implizit):
SELECT
c.first_name,
l.city,
o.order_date
FROM customers c, locations |, orders o
WHERE c.location_id = l.location_id
AND c.customer_id = o.customer_id
AND o.status = 'completed’

first_name city order_date

Alice Berlin 2024-01-15
Alice Berlin 2024-02-20
Bob Hamburg 2024-01-22

David Cologne 2024-03-15

Zusammenfassung: FROM mit mehreren Tabellen

Was passiert intern:

1. SQL erzeugt das kartesische Produkt aller Tabellen im FROM

2. WHERE filtert dann die gewlinschten Kombinationen

3. Dasistineffizient - aber so funktioniert die logische Verarbeitung
Warum explizite JOINs besser sind:

o [¥4 Klar getrennt: Join-Bedingungen () vs. Filter ()

o [%4 Alle Join-Typen verfiigbar (| LEFT |,| RIGHT

FULL OUTER])

)

 [%4 weniger fehleranfillig (kein versehentliches kartesisches Produkt)

o [¥4 Bessere Performance-Optimierung durch Query Planner

Best Practice: Nutzen Sieimmer| JOIN ... ON |statt| FROM ..., ... WHERE]

Jetzt, wo Sie verstehen, was im Hintergrund passiert, schauen wir uns die ersten echten Abfrage-Techniken
an: Subqueries!

Technik 1: Subqueries (Verschachtelte SELECT)

Der erste Ansatz, um Daten aus verschiedenen Tabellen zu kombinieren, sind Subqueries - verschachtelte
SELECT-Statements. Das fiihlt sich natirlich an: ,,Ich brauche Daten aus Tabelle B, um Tabelle A zu filtern.“

Aber was ist eine Subquery genau? Und wo konnen wir sie Uiberall einsetzen?

Was ist eine Subquery?

Eine Subquery ist ein SELECT-Statement, das innerhalb eines anderen SQL-Statements ausgefiihrt wird. Statt
erst eine Query auszufiihren, das Ergebnis zu notieren und dann in einer zweiten Query zu verwenden,
verschachteln wir beide.

Konzept:
1 -- Ohne Subquery (zwei Schritte):
2 -- Schritt 1: Welche customer_ids haben Bestellungen?
3 SELECT DISTINCT customer_id FROM orders;
4 -- Ergebnis: 1, 2, 3, 4
5
6 -- Schritt 2: Zeige diese Kunden
7 SELECT * FROM customers WHERE customer_id IN (1, 2, 3, 4);

-- Ohne Subquery (zwei Schritte):
-- Schritt 1: Welche customer_ids haben Bestellungen?
SELECT DISTINCT customer_id FROM orders

customer_id
1
P
3

4

-- Ergebnis: 1, 2, 3, 4

-- Schritt 2: Zeige diese Kunden
SELECT * FROM customers WHERE customer_id IN (1, 2, 3, 4)

customer_id first_name Ilast_name email street

Alice Anderson alice@email.com Unter den
Linden

Bob Brown bob@email.com Reeperbahn
Carol Clark carol@email.com Marienplatz

David DEWIIS david@email.com Hohe
Strale

Mit Subquery (ein Schritt):

street_number

42

15
8

SELECT = FROM "TABLE"
WHERE id IN (
SELECT ... FROM "OTHER TABLE"

)3

customer_id & int - order _id &2

first_name varchar NN = customer_id &

last_name varchar NN order_date

email varchar total_amount decimal(1
street varchar status Val
street_number varchar

location_id int

GD dbdiagram

dbdiagram.io

w

-— TODO: Schreiben sie die Bestellung um und ermitteln sie alle Kunden
eine Bestellung haben.

SELECT =

FROM customers c, orders o

WHERE c.customer_id = o.customer_-id;

https://dbdiagram.io/
https://dbdiagram.io/embed?c=VGFibGUgY3VzdG9tZXJzIHsKICBjdXN0b21lcl9pZCBpbnQgW3BrXQogIGZpcnN0X25hbWUgdmFyY2hhciBbbm90IG51bGxdCiAgbGFzdF9uYW1lIHZhcmNoYXIgW25vdCBudWxsXQogIGVtYWlsIHZhcmNoYXIgW3VuaXF1ZV0KICBzdHJlZXQgdmFyY2hhcgogIHN0cmVldF9udW1iZXIgdmFyY2hhcgogIGxvY2F0aW9uX2lkIGludAp9CgpUYWJsZSBvcmRlcnMgewogIG9yZGVyX2lkIGludCBbcGtdCiAgY3VzdG9tZXJfaWQgaW50IFtyZWY6ID4gY3VzdG9tZXJzLmN1c3RvbWVyX2lkXQogIG9yZGVyX2RhdGUgZGF0ZQogIHRvdGFsX2Ftb3VudCBkZWNpbWFsKDEwLDIpCiAgc3RhdHVzIHZhcmNoYXIKfQ%3D%3D

-- TODO: Schreiben sie die Bestellung um und ermitteln sie alle Kunden, die eine
Bestellung haben.

SELECT *

FROM customers c, orders o

WHERE c.customer _id = o.customer_id

customer_id first_ name Ilast_ name email street street_number

1 Alice Anderson alice@email.com Unter den i
Linden

Alice Anderson alice@email.com Unter den 42
Linden

Bob Brown bob@email.com Reeperbahn 15
Carol Clark carol@email.com Marienplatz 8

David Davis david@email.com Hohe
StralRe

Die innere Query (Subquery) wird zuerst ausgefiihrt. Ihr Ergebnis wird dann von der dauReren Query
verwendet.

Subquery-Typen: Ubersicht

Je nachdem, was eine Subquery zurlickgibt, unterscheiden wir verschiedene Typen:

. Beispiel-
Subquery-Typ Riickgabewert Use Case
Operator

Scalar Ein einzelner Wert IEL ’ Durchschnitt,

Subquery Maximum vergleichen
Eine Zeile (mehrere = (coll, Selten, Multi-Column-
Row Subquery X
Spalten) col2) Vergleich
Table Mehrere Zeilen, eine IN ,-AN 5 . o
:I - Filtern mit Liste
Subquery Spalte ALL

Mehrere Komplexe
Derived Table Im| FROM P

Zeilen/Spalten Aggregationen

Referenziert aullere Mit Spalte aus .
Correlated Pro-Zeile-Berechnung

Query dullerer Q.

Schauen wir uns jetzt die wichtigsten dieser Typen im Detail an, beginnend mit dem haufigsten: WHERE
Subqueries.

WHERE Subqueries: Filtern mit Ergebnissen aus anderen
Tabellen

Die haufigste Form: Eine Subquery im WHERE liefert Werte zum Filtern.

Aufgabe: Zeigen Sie alle Kunden, die mindestens eine Bestellung haben.

-— Ohne Subquery (zwei Schritte):

-- Schritt 1: Welche customer_ids haben Bestellungen?
SELECT DISTINCT customer_id FROM orders;

-- Ergebnis: 1, 2, 3, 4

-— Schritt 2: Zeige diese Kunden
SELECT * FROM customers WHERE customer_id IN (1, 2, 3, 4);

~N~No b~ WNBRE

-- Ohne Subquery (zwei Schritte):
-- Schritt 1: Welche customer_ids haben Bestellungen?
SELECT DISTINCT customer_id FROM orders

customer_id
1
P
3

4

-- Ergebnis: 1, 2, 3, 4

-- Schritt 2: Zeige diese Kunden
SELECT * FROM customers WHERE customer_id IN (1, 2, 3, 4)

customer_id first_ name Ilast_ name email street street_number

Alice Anderson alice@email.com Unter den i
Linden

Bob Brown bob@email.com Reeperbahn 15
Carol Clark carol@email.com Marienplatz 8

David DEWIIS david@email.com Hohe
Strale

SELECT
column_1,
column_2,

FROM table_1

WHERE column_x IN (
-— Subquery
SELECT column
FROM table_n
WHERE condition

)5

customer_id 2
first_name
last_name
email

street
street_number

location_id

int

varchar NN

varchar NN

varchar

varchar

varchar

int

order _id &2

= customer_id &

order_date
total_amount decimal(l
status val

GD dbdiagram

dbdiagram.io

[

o ~No o~ WN

-— TODO: Verandern sie die folgende Query, sodass sie eine Subquerjy]/im

nutzt,
SELECT

c.customer_id,
c.first_name,
c.last_name,

c.email

FROM customers c, orders o

WHERE c.customer_id

o.customer_id;

https://dbdiagram.io/
https://dbdiagram.io/embed?c=VGFibGUgY3VzdG9tZXJzIHsKICBjdXN0b21lcl9pZCBpbnQgW3BrXQogIGZpcnN0X25hbWUgdmFyY2hhciBbbm90IG51bGxdCiAgbGFzdF9uYW1lIHZhcmNoYXIgW25vdCBudWxsXQogIGVtYWlsIHZhcmNoYXIgW3VuaXF1ZV0KICBzdHJlZXQgdmFyY2hhcgogIHN0cmVldF9udW1iZXIgdmFyY2hhcgogIGxvY2F0aW9uX2lkIGludAp9CgpUYWJsZSBvcmRlcnMgewogIG9yZGVyX2lkIGludCBbcGtdCiAgY3VzdG9tZXJfaWQgaW50IFtyZWY6ID4gY3VzdG9tZXJzLmN1c3RvbWVyX2lkXQogIG9yZGVyX2RhdGUgZGF0ZQogIHRvdGFsX2Ftb3VudCBkZWNpbWFsKDEwLDIpCiAgc3RhdHVzIHZhcmNoYXIKfQ%3D%3D

-- TODO: Verandern sie die folgende Query, sodass sie eine Subquery im WHERE

nutzt,

SELECT
c.customer_id,
c.first_ name,
c.last_name,
c.email

FROM customers c, orders o
WHERE c.customer_id = o.customer_id

customer_id
1

1

first_name
Alice

Alice

Bob

Carol

David

last_name
Anderson
Anderson
Brown
Clark

Davis

email
alice@email.com
alice@email.com
bob@email.com
carol@email.com

david@email.com

Wie funktioniert das?

1. Dieinnere Query (Subquery) wird zuerstausgerhrt:|SELECT customer_id FROM orders|

2. Ergebnis: Liste von customer_ids, die Bestellungen haben:| (1, 1, 2, 3, 4)|

3. DieéiufSereQueryfiltertdamit:|WHERE customer_id IN (1, 1, 2, 3, 4)|

Das ist einfach zu lesen und zu verstehen. Aber Emma (customer_id = 5) fehlt - die hat keine Bestellung.
Subqueries im WHERE sind gut flr ,,zeige mir nur die mit...“

Scalar Subqueries: Einzelwerte berechnen

Eine Subquery kann auch einen einzelnen Wert zuriickgeben - zum Vergleichen oder Berechnen.

SELECT
column_a,
column_b,
ceey
(
-— Subquery: liefert einen Wert (z. B. Durchschnitt)
SELECT AGG(target_column)
FROM source_table
) AS computed_value
FROM main_table
WHERE filter_column > (
—— Sithniierve derceelhe Wert fiir die WHFRF—-Rad-Ainociinc

i R R R T " - IR M vnene e gy

S - -
SELECT AGG(target_column)
FROM source_table

)5

Aufgabe: Zeigen Sie alle Produkte, die teurer sind als der Durchschnittspreis.

product_id & int
product_name varchar NN
price decimal{1@,2)
=D dbdiagram
dbdiagram.io

SELECT

product_-id,

product_name,

price,

(SELECT AVG(price) FROM products) AS avg_price
FROM products
WHERE price > (SELECT AVG(price) FROM products);

~No o b~ wWwN B

https://dbdiagram.io/
https://dbdiagram.io/embed?c=VGFibGUgcHJvZHVjdHMgewogIHByb2R1Y3RfaWQgaW50IFtwa10KICBwcm9kdWN0X25hbWUgdmFyY2hhciBbbm90IG51bGxdCiAgcHJpY2UgZGVjaW1hbCgxMCwyKQp9

SELECT

product_id,

product_name,

price,

(SELECT AVG(price) FROM products) AS avg price
FROM products
WHERE price > (SELECT AVG(price) FROM products)

product_id product_name price avg_price

1 Laptop 999.99 187.7677777777777778
4 Monitor 299.99 187.7677777777777778

5 Desk Chair 199.99 187.7677777777777778

Problem: Wir berechnen den Durchschnitt zweimal! Subquery in SELECT UND in WHERE. Das ist ineffizient
und schwer wartbar.

Scalar Subqueries sind niitzlich, aber wenn Sie denselben Wert mehrfach brauchen, wird es uniibersichtlich.
Spater sehen wir, wie CTEs dieses Problem losen.

Subqueries in SELECT: Spalten aus anderen Tabellen

Sie kdonnen Subqueries auch nutzen, um zusatzliche Spalten zu berechnen.

SELECT
column_1,
column_2,
cees
(
-— Subquery: berechnet einen Wert pro Zeile der aulleren Tabelle
SELECT AGG(*)
FROM dinner_table
WHERE -inner_table.foreign_key = outer_table.primary_key
) AS computed_value
FROM outer_table;

Aufgabe: Zeigen Sie flir jeden Kunden die Anzahl seiner Bestellungen.

customer_id 2 int order_id 2
first_name varchar NN = customer_id &
last_name varchar NN order_date
email varchar total_amount decimal(1
street varchar status val
street_number varchar
location_id int
GD dbdiagram
dbdiagram.io
1 SELECT
2 c.customer_-id,
3 c.first_name,
4 c.last_name,
5 (
6 SELECT COUNT (%)
7 FROM orders o
8 WHERE o.customer_1id c.customer_id

9) AS order_count
10 FROM customers c;

https://dbdiagram.io/
https://dbdiagram.io/embed?c=VGFibGUgY3VzdG9tZXJzIHsKICBjdXN0b21lcl9pZCBpbnQgW3BrXQogIGZpcnN0X25hbWUgdmFyY2hhciBbbm90IG51bGxdCiAgbGFzdF9uYW1lIHZhcmNoYXIgW25vdCBudWxsXQogIGVtYWlsIHZhcmNoYXIgW3VuaXF1ZV0KICBzdHJlZXQgdmFyY2hhcgogIHN0cmVldF9udW1iZXIgdmFyY2hhcgogIGxvY2F0aW9uX2lkIGludAp9CgpUYWJsZSBvcmRlcnMgewogIG9yZGVyX2lkIGludCBbcGtdCiAgY3VzdG9tZXJfaWQgaW50IFtyZWY6ID4gY3VzdG9tZXJzLmN1c3RvbWVyX2lkXQogIG9yZGVyX2RhdGUgZGF0ZQogIHRvdGFsX2Ftb3VudCBkZWNpbWFsKDEwLDIpCiAgc3RhdHVzIHZhcmNoYXIKfQ%3D%3D

SELECT
c.customer_id,
c.first_name,
c.last_name,
(
SELECT COUNT(*)
FROM orders o
WHERE o.customer_id = c.customer_id
) AS order_count
FROM customers c

customer _id first_name last_name order_count

1 Alice Anderson 2
P Bob Brown 1
Carol Clark
David Davis

Emma Evans

Das ist eine correlated Subquery - sie referenziert die duRere Query (| c.customer_-id |). Fir jeden
Kunden wird die Subquery neu ausgefiihrt.

Funktioniert, aber: Bei 10.000 Kunden wird die Subquery 10.000 Mal ausgefiihrt! Performance-Problem.

Subquery-Grenzen: Wann wird es problematisch?

Subqueries sind intuitiv, aber sie haben Grenzen:

Problem Beschreibung Beispiel
. Verschachtelte Queries sind 3+ Ebenen
Unleserlich
schwer zu verstehen Verschachtelung
Nicht Berechnete Werte konnen nicht Durchschnitt 2x
wiederverwendbar mehrfach genutzt werden berechnen
Correlated Subqueries werden oft 10.000 Kunden =10.000
Performance . . .
wiederholt ausgefiihrt Subqueries
Keine parallelen Schwierig, Spalten aus mehreren Kunde + Bestellung +

Spalten Tabellen parallel zu zeigen Produkt

Es muss einen besseren Weg geben! Und den gibt es: CTEs (Common Table Expressions).

Technik 2: CTEs (WITH) - Benannte Zwischenergebnisse

CTEs sind ,,benannte Subqueries®. Sie machen Queries lesbarer und wiederverwendbar. Statt alles in einer
verschachtelten Monster-Query zu schreiben, teilen Sie es in logische Schritte auf.

CTE-Syntax: WITH ... AS

Die Syntax ist einfach:|WITH name AS (SELECT ...) |

Aufgabe: Durchschnittspreis berechnen und wiederverwenden.

1~ WITH avg_price_cte AS (
2 SELECT AVG(price) AS avg_price FROM products
3)

4 SELECT

5 p.product_did,
6 p.product_name,

7 p.price,

8 (SELECT avg_price FROM avg_price_cte) AS avg_price,

9 p.price - (SELECT avg_price FROM avg_price_cte) AS difference
10 FROM products p

11 WHERE p.price > (SELECT avg_price FROM avg_price_cte);

WITH avg_price_cte AS (
SELECT AVG(price) AS avg_price FROM products
)
SELECT
p.product_id,
p.product_name,
p-price,
(SELECT avg_price FROM avg_price_cte) AS avg_price,
p.price - (SELECT avg_price FROM avg_price_cte) AS difference
FROM products p
WHERE p.price > (SELECT avg_price FROM avg _price_cte)

product_id product_ name price avg_price difference

Laptop 999.99 187.7677777777777778 812.2222222222222222
Monitor 299.99 187.7677777777777778 112.2222222222222222

Desk Chair 199.99 187.7677777777777778 12.2222222222222222

Vorteil: Der Durchschnitt wird nur einmal in der CTE berechnet. Die Query ist lesbar: ,Was ist avgpricecte?
Schaue am Anfang!“

Multiple CTEs: Logische Schritte

Sie kdnnen mehrere CTEs definieren - jede kann auf vorherige zugreifen.

Aufgabe: Finden Sie alle Produkte, die teurer sind als der durchschnittliche Preis in ihrer Kategorie.

1- WITH product_with_categories AS (

2 SELECT

3 p.product_id,

4 p.product_name,

5 p.price,

6 pc.category_id

7 FROM products p, product_categories pc
8 WHERE p.product_id = pc.product_id
9),

10 - category_avg_prices AS (

11 SELECT

12 category_id,

13 AVG(price) AS avg_price

14 FROM product_with_categories

15 GROUP BY category_id

16)

17 SELECT

18 pwc.product_name,
19 pwc.price,

20 pwc.category_id,

pwc.category_id) AS category_avg
22 FROM product_with_categories pwc

.category_id = pwc.category_id);

21 (SELECT avg_price FROM category_avg_prices cap WHERE cap.category_i

23 WHERE pwc.price > (SELECT avg_price FROM category_avg_prices cap WHER

WITH product_with_categories AS (
SELECT
p.product_id,
p-product_name,
p-price,
pc.category_id
FROM products p, product_categories pc
WHERE p.product_id = pc.product_id
)l
category_avg_prices AS (
SELECT
category id,
AVG(price) AS avg_price
FROM product_with_categories
GROUP BY category _id
)

SELECT
pwc.product_name,
pwc.price,
pwc.category_id,
(SELECT avg_price FROM category_avg _prices cap WHERE cap.category_id =
pwc.category_id) AS category_avg
FROM product_with_categories pwc
WHERE pwc.price > (SELECT avg_price FROM category_avg_prices cap WHERE
cap.category_id = pwc.category_id)
product_name price category _id category_avg
Laptop 999.99 1 284.9900000000000000
Laptop 999.99 4 276.6566666666666667
Monitor 299.99 284.9900000000000000
Monitor 299.99 276.6566666666666667
Desk Chair 199.99 124.9900000000000000

Notebook 9.99 7.4900000000000000

Das ist jetzt viel lesbarer!

1. |product_with_categories | Produkte mitihren Kategorien verkniipfen
2. |category_avg_prices [Durchschnittspreis pro Kategorie berechnen

3. Hauptquery: Zeigt Produkte, die teurer als der Kategorie-Durchschnitt sind

Jeder Schritt ist klar benannt. Die Logik ist in kleine, verstandliche Blocke aufgeteilt.

CTEs vs. Subqueries: Wann was?

Kriterium Subqueries CTEs

Lesbarkeit Schlecht bei Verschachtelung Gut (logische Schritte)
Wiederverwendung Nein Ja (mehrfach referenzierbar)
Performance Identisch Identisch (meist)
Komplexitat Einfache Falle ok Komplexe Queries besser

Faustregel: Bei mehr als einer Verschachtelungsebene — nutzen Sie CTEs!

CTEs: Die Grenze

CTEs sind grofRartig fiir komplexe Berechnungen und schrittweise Aggregationen, aber sie haben eine

Einschrankung: Das parallele Zusammenfiihren von Spalten aus mehreren Tabellen wird schnell
unubersichtlich.

Problem: Zeigen Sie fiir jede Bestellung den Kundennamen UND die bestellten Produkte.

1 -- Mit CTE und Subqueries: Umstandlich!
2~ WITH order_data AS (

3 SELECT

4 o.order_1id,

5 o.order_date,

6 o.customer_id

7 FROM orders o

8)

9 SELECT

10 od.order_1id,
11 od.order_date,

12~ (SELECT c.first_name || ' ' || c.last_name

13 FROM customers c

14 WHERE c.customer_id = od.customer_id) AS customer_name,
17~ (SELECT p.product_name

16 FROM order_items oi, products p

17 WHERE oi.order_id = od.order_1id

18 AND o1i.product_id = p.product_id

19 LIMIT 1) AS first_product

20 FROM order_data od;

-- Mit CTE und Subqueries: Umstandlich!
WITH order_data AS (
SELECT
o.order_id,
o.order_date,
o.customer _id
FROM orders o
)
SELECT
od.order_id,
od.order_date,
(SELECT c.first_ name || ' ' || c.last_name
FROM customers c
WHERE c.customer_id = od.customer_id) AS customer_name,
(SELECT p.product_name
FROM order_items oi, products p
WHERE oi.order_id = od.order_id
AND oi.product_id = p.product_id
LIMIT 1) AS first_product
FROM order_data od

order_id order_date customer_name first_product

101 2024-01-15 Alice Anderson Monitor
102 2024-02-20 Alice Anderson Mouse
103 2024-01-22 Bob Brown Laptop
104 2024-03-10 Carol Clark Notebook
105 2024-03-15 David Davis Desk Chair
106 2023-03-20 null USB Cable

Problem mit diesem Ansatz:
® Mehrere verschachtelte Subqueries - schwer zu lesen
® Zeigt nur das erste Produkt pro Bestellung (LIMIT 1)
* Performance: Subqueries werden fir jede Zeile neu ausgefuhrt
* Wenn eine Bestellung mehrere Produkte hat, fehlen diese

CTEs helfen bei Komplexitat und schrittweisen Berechnungen, aber fiir das elegante Zusammenfiihren von
Daten aus mehreren Tabellen brauchen wir ein besseres Werkzeug: Joins!

Zeit fir Technik 3: Joins - die Losung fiir genau dieses Problem!

Technik 3: Joins - Die elegante Losung

Joins sind das Werkzeug, um Spalten aus mehreren Tabellen parallel in einer Zeile zusammenzufiihren. Statt
verschachtelt zu denken (Subqueries) oder in Schritten (CTEs), denken Sie horizontal: ,,Flige Tabellen
nebeneinander zusammen.”

Ein Join ist wie ein ReiRverschluss: Sie haben zwei Listen und verbinden passende Eintrage. Kunden und ihre
Bestellungen. Produkte und ihre Kategorien. Das Ergebnis? Eine Zeile mit Informationen aus beiden
Tabellen.

Aber es gibt verschiedene Arten von Joins - je nachdem, was Sie mit nicht-passenden Eintragen machen
wollen. Schauen wir uns die wichtigsten an.

Die JOIN-Syntax

Moderne Joins nutzen das Schliisselwort| JOIN |mit einer —Bedingung. Das trennt die Join-Logik
sauber vom WHERE-Filter.

SELECT
spalten_aus_tabelle_a,
spalten_aus_tabelle_b
FROM tabelle_a
JOIN_TYP tabelle_b ON tabelle_a.key = tabelle_b.key
WHERE weitere_filter;

Bestandteile:

e | JOIN_TYP [INNER JOIN, LEFT JOIN, RIGHT JOIN, FULL OUTER JOIN, CROSS JOIN

. : Die Bedingung, wie Zeilen zusammenpassen (meist Foreign Key = Primary Key)

* | WHERE |: Zusatzliche Filter (optional, nach dem Join)

Wichtig: ON definiert die Beziehung, WHERE filtert das Ergebnis. Das nicht zu verwechseln macht Queries
klar und wartbar!

Uberblick: Die 5 Join-Typen

Es gibt flinf Haupt-Join-Typen. Jeder beantwortet eine andere Frage.

Join-Typ Frage Wann nutzen?

Zeige nur Eintrage, die in beiden Standard-Fall, nur Matches
INNER JOIN . L
Tabellen existieren wichtig
Zeige alle aus Tabelle A, auch ohne
LEFT JOIN . »Wer hat KEINE Bestellung?“
Match in B
Zeige alle aus Tabelle B, auch ohne Selten (meist LEFT
RIGHT JOIN .
Matchin A stattdessen)
FULL OUTER . . .
JOIN Zeige alles aus beiden Tabellen Vergleiche, Sync-Checks
Zeige alle Kombinationen (kartesisches Test-Kombinationen,
CROSS JOIN
Produkt) Kalender

In der Praxis machen INNER JOIN und LEFT JOIN etwa 95% aller Joins aus. Die anderen sind Spezialfalle.
Beginnen wir mit dem haufigsten: INNER JOIN.

INNER JOIN: Nur die Matches

INNER JOIN ist der Standard-Join. Er gibt nur Zeilen zurtlick, bei denen es in beiden Tabellen einen
passenden Eintrag gibt.

Visualisierung: Venn-Diagramm

Customers Orders

Denken Sie an die Uberschneidung zweier Kreise: Nur der griine Bereich (wo sich beide iberlappen) kommt
ins Ergebnis. Alles andere wird ignoriert.

Konzept: Wie funktioniert INNER JOIN?

Stellen Sie sich zwei Listen vor:

Customers Orders
ID | Name 0ID | customer id
1 Alice 101 1 « Passt zu Alice
2 Bob 102 1 « Passt zu Alice
3 Carol 103 2 « Passt zu Bob
5 Emma 105 4 « Passt zu David

INNER JOIN ON customer id:
Alice — Order 101 v
Alice — Order 102 v
Bob — Order 103 v
David — Order 105 v

Emma? Hat keine Bestellung - kommt NICHT ins Ergebnis!

SQL geht beide Tabellen durch und verbindet nur Zeilen, wo die customer_id libereinstimmt. Emma hat
keine Bestellung, also keine Ubereinstimmung, also kein Ergebnis.

Beispiel 1: Kunden mit ihren Bestellungen

Zeigen Sie jeden Kunden zusammen mit seinen Bestellungen.

o ~No o~ WNBRE

customer_id & int — order_id & int
first_name varchar = customer_id & int
last_name varchar order_date date
total_amount decimal
GD dbdiagram
dbdiagram.io
SELECT

c.first_name,

c.last_name,

o.order_id,

o.order_date
FROM customers c
INNER JOIN orders o ON c.customer_id =
ORDER BY c.last_name, o.order_date;

o.customer_id

https://dbdiagram.io/
https://dbdiagram.io/embed?c=VGFibGUgY3VzdG9tZXJzIHsKICBjdXN0b21lcl9pZCBpbnQgW3BrXQogIGZpcnN0X25hbWUgdmFyY2hhcgogIGxhc3RfbmFtZSB2YXJjaGFyCn0KClRhYmxlIG9yZGVycyB7CiAgb3JkZXJfaWQgaW50IFtwa10KICBjdXN0b21lcl9pZCBpbnQgW3JlZjogPiBjdXN0b21lcnMuY3VzdG9tZXJfaWRdCiAgb3JkZXJfZGF0ZSBkYXRlCiAgdG90YWxfYW1vdW50IGRlY2ltYWwKfQ%3D%3D

SELECT
c.first_name,
c.last_name,
o.order _id,
o.order_date
FROM customers c
INNER JOIN orders o ON c.customer_id = o.customer_id
ORDER BY c.last_name, o.order_date

first_name last_name order_id order_date

Alice Anderson 101 2024-01-15
Alice Anderson 102 2024-02-20
Bob Brown 103 2024-01-22
Carol Clark 104 2024-03-10

David Davis 105 2024-03-15

Was passiert hier?

1. SQL nimmt jeden Kunden aus

2. Sucht alle passenden Bestellungen in| orders |(Wo| customer_id |libereinstimmt)

3. Erstellt eine Zeile pro Match: Kunde + Bestellung
4. Emma hat keine Bestellung — erscheint nicht

Flihren Sie die Query aus. Sie sehen: Alice erscheint zweimal (hat zwei Bestellungen), Emma fehlt komplett.

Beispiel 2: Bestellungen mit Produktnamen

Zeigen Sie fir jede Bestellposition das Produkt mit Namen.

e

product_id & int — . order_item_id & in
product_name varchar order_id in
price decimal . = product_id & in

quantity in

GD dbdiagram

dbdiagram.io

o ~No o~ WNBRE

SELECT
oi.order_1id,
p.product_name,
oi.quantity,
p.price
FROM order_ditems oi
INNER JOIN products p ON oi.product_id = p.product_-id
ORDER BY o7i.order_1id;

https://dbdiagram.io/
https://dbdiagram.io/embed?c=VGFibGUgb3JkZXJfaXRlbXMgewogIG9yZGVyX2l0ZW1faWQgaW50IFtwa10KICBvcmRlcl9pZCBpbnQKICBwcm9kdWN0X2lkIGludCBbcmVmOiA%2BIHByb2R1Y3RzLnByb2R1Y3RfaWRdCiAgcXVhbnRpdHkgaW50Cn0KClRhYmxlIHByb2R1Y3RzIHsKICBwcm9kdWN0X2lkIGludCBbcGtdCiAgcHJvZHVjdF9uYW1lIHZhcmNoYXIKICBwcmljZSBkZWNpbWFsCn0%3D

SELECT
oi.order_id,
p.product_name,
oi.quantity,
p-price
FROM order_items oi
INNER JOIN products p ON oi.product_id = p.product_id
ORDER BY oi.order _id

order_id product_name quantity

101 Monitor 1
102 Mouse P
102 Keyboard

103 Laptop

104 Notebook

105 Desk Chair

106 USB Cable

Was sehen Sie?

e QOrder 101: Monitor

Order 102: Mouse (2x) + Keyboard

Order 103: Laptop

Jede Zeile kombiniert Bestellposition mit Produktdetails

Das ist die Essenz von Joins: Informationen aus verschiedenen Tabellen landen in einer Zeile. Praktisch!

Wann INNER JOIN nutzen?

INNER JOIN ist Ihre Standard-Wahl, wenn Sie nur an existierenden Beziehungen interessiert sind.

Typische Anwendungsfalle:

Bestellungen mit Kundendaten anzeigen (nur abgeschlossene Bestellungen)

Produkte mit Kategorien (nur kategorisierte Produkte)

Rechnungen mit Zahlungen (nur bezahlte Rechnungen)

Log-Eintrage mit User-Details (nur bekannte User)

Faustregel: INNER JOIN = ,Zeige mir nur, wo beides existiert”

LEFT JOIN: Alle von links + Matches

LEFT JOIN (auch LEFT OUTER JOIN genannt) gibt alle Zeilen der linken Tabelle zuriick - auch wenn es rechts
keinen Match gibt. Fehlende Matches werden mit NULL aufgefuillt.

Visualisierung: Venn-Diagramm

Customers Orders

Alle Werte aus der linken Tabelle (Customer) + deren Matches (LEFT JOIN)

Der komplette linke Kreis ist griin — das bedeutet: ALLE Eintrage aus der linken Tabelle kommen ins Ergebnis,
egal ob es rechts einen Match gibt.

Konzept: Wie funktioniert LEFT JOIN?

LEFT JOIN behalt alle Zeilen der linken Tabelle und fligt passende Daten von rechts hinzu - oder NULL, wenn
nichts passt.

Customers (links) Orders (rechts)

ID | Name O0ID | customer id
1 Alice 101 | 1 « Match
2 Bob 102 | 1 « Match
3 Carol 103 | 2 « Match
4 David 105 | 4 « Match
5 Emma (keine Bestellung)

LEFT JOIN ON customer id:

Alice — Order 101 v

Alice — Order 102 v

Bob — Order 103 v

David — Order 105 v

Emma — NULL < Emma bleibt im Ergebnis, aber Order-Felder sind NULL!

Das ist der Schlussel: Die linke Tabelle bestimmt, welche Zeilen im Ergebnis erscheinen. Die rechte Tabelle
erganzt nur.

Beispiel 1: Alle Kunden (auch ohne Bestellungen)

Zeigen Sie ALLE Kunden - egal ob sie bestellt haben oder nicht.

customer_id & int — order_id & int
first_name varchar * = customer_id & int
last_name varchar order_date date

total_amount decimal

GD dbdiagram

dbdiagram.io

O 00 ~NO U b~ WN R

SELECT
c.first_name,
c.last_name,
o.order_id,
o.order_date,
o.total_amount
FROM customers c
LEFT JOIN orders o ON c.customer_id = o.customer_id
ORDER BY c.last_name;

https://dbdiagram.io/
https://dbdiagram.io/embed?c=VGFibGUgY3VzdG9tZXJzIHsKICBjdXN0b21lcl9pZCBpbnQgW3BrXQogIGZpcnN0X25hbWUgdmFyY2hhcgogIGxhc3RfbmFtZSB2YXJjaGFyCn0KClRhYmxlIG9yZGVycyB7CiAgb3JkZXJfaWQgaW50IFtwa10KICBjdXN0b21lcl9pZCBpbnQgW3JlZjogPiBjdXN0b21lcnMuY3VzdG9tZXJfaWRdCiAgb3JkZXJfZGF0ZSBkYXRlCiAgdG90YWxfYW1vdW50IGRlY2ltYWwKfQ%3D%3D

SELECT
c.first_name,
c.last_name,
o.order _id,
o.order_date,
o.total_amount
FROM customers c
LEFT JOIN orders o ON c.customer_id = o.customer_id
ORDER BY c.last_name

first_name last_name order_id order_date total_amount

Alice Anderson 101 2024-01-15 299.99
Alice Anderson 102 2024-02-20 149.50
Bob Brown 103 2024-01-22 499.99
Carol Clark 104 2024-03-10 89.99

David Davis 105 2024-03-15 199.99

Emma Evans null null null

Was sehen Sie?

* Alice, Bob, Carol, David: Jeweils mit ihren Bestellungen

* Emma: Erscheint auch! Aber| order_-id |,| order_date |,| total_amount |sind NULL

Das ist der Unterschied zu INNER JOIN: Emma wird nicht ignoriert. Links bestimmt das Ergebnis!

Beispiel 2: Produkte mit Verkaufszahlen (auch unverkaufte)

Zeigen Sie alle Produkte - auch die, die noch nie verkauft wurden.

o ~No o~ WNBRE

product_id £ int —- order_item_id & int
product_name varchar —= product_id & int
price decimal int
GD dbdiagram
dbdiagram.io
SELECT
p.product_name,
p.price,

COUNT (o1 .order_item_1id) AS times_sold
FROM products p

LEFT JOIN order_titems oi ON p.product_did
GROUP BY p.product_id, p.product_name, p.price

ORDER BY times_sold DESC;

oi.product_did

https://dbdiagram.io/
https://dbdiagram.io/embed?c=VGFibGUgcHJvZHVjdHMgewogIHByb2R1Y3RfaWQgaW50IFtwa10KICBwcm9kdWN0X25hbWUgdmFyY2hhcgogIHByaWNlIGRlY2ltYWwKfQoKVGFibGUgb3JkZXJfaXRlbXMgewogIG9yZGVyX2l0ZW1faWQgaW50IFtwa10KICBwcm9kdWN0X2lkIGludCBbcmVmOiA%2BIHByb2R1Y3RzLnByb2R1Y3RfaWRdCiAgcXVhbnRpdHkgaW50Cn0%3D

SELECT
p.product_name,
p.price,
COUNT (oi.order_item_id) AS times_sold
FROM products p
LEFT JOIN order_items oi ON p.product_id = oi.product_id
GROUP BY p.product_id, p.product_name, p.price
ORDER BY times_sold DESC

product_name price times_sold

Laptop 999.99 1
Mouse 29.99 1
Keyboard 79.99

Monitor 299.99

Desk Chair 199.99

Notebook 9.99

USB Cable 14.99

Desk Lamp 49.99

Paper 4.99

Was passiert hier?

* Produkte mit Verkéufen:| times_sold |>O

¢ Unverkaufte Produkte:| times_sold |= 0 (COUNT zahlt NULL als 0)

LEFT JOIN ermdglicht es, fehlende Beziehungen zu finden. Das ist extrem wertvoll fir Analysen!

Wann LEFT JOIN nutzen?

LEFT JOIN ist perfekt, wenn Sie fehlende Beziehungen identifizieren wollen.
Typische Anwendungsfalle:

* Kunden ohne Bestellungen (Inaktive finden)

e Produkte ohne Verkaufe (Ladenhiiter)

* Artikel ohne Ubersetzungen (Content-Liicken)

* Rechnungen ohne Zahlung (Offene Posten)

Faustregel: LEFT JOIN =, Zeige alle von links, erganze rechts wenn moglich“

Anti-Join: Fehlende finden mit IS NULL

Eine machtige Technik: LEFT JOIN + WHERE IS NULL =, Zeige nur die OHNE Match*

Customers Orders

Nur Customers, die KEINE passenden Orders haben (LEFT ANTI JOIN)

Frage: Welche Kunden haben noch NIE bestellt?

~No o bk N B

customer_id & int — order_id &2 int
first_name varchar = customer_id & int
last_name varchar
GD dbdiagram
dbdiagram.io
SELECT

c.customer_-id,

c.first_name,

c.last_name
FROM customers c
LEFT JOIN orders o ON c.customer_id =
WHERE o.order_id IS NULL;

o.customer_id

https://dbdiagram.io/
https://dbdiagram.io/embed?c=VGFibGUgY3VzdG9tZXJzIHsKICBjdXN0b21lcl9pZCBpbnQgW3BrXQogIGZpcnN0X25hbWUgdmFyY2hhcgogIGxhc3RfbmFtZSB2YXJjaGFyCn0KClRhYmxlIG9yZGVycyB7CiAgb3JkZXJfaWQgaW50IFtwa10KICBjdXN0b21lcl9pZCBpbnQgW3JlZjogPiBjdXN0b21lcnMuY3VzdG9tZXJfaWRdCn0%3D

SELECT
c.customer_id,
c.first_name,
c.last_name
FROM customers c
LEFT JOIN orders o ON c.customer_id = o.customer_id
WHERE o.order _id IS NULL

customer_id first_name last_name

5 Emma Evans

Trick: Nach dem LEFT JOIN filtern Sie auf NULL in der rechten Tabelle. Das sind exakt die Zeilen ohne Match!

Diese Technik heif’t ,Anti-Join“ und ist in der Praxis extrem haufig. Sie finden damit Liicken in lhren Daten.

RIGHT JOIN: Alle von rechts + Matches

RIGHT JOIN ist das Spiegelbild von LEFT JOIN: Alle Zeilen der rechten Tabelle bleiben erhalten, links wird
erganzt.

Visualisierung: Venn-Diagramm

Customers Orders

RIGHT

Alle Werte aus Orders + deren Matches (RIGHT JOIN)

Der komplette rechte Kreis ist griin. Alle Bestellungen kommen ins Ergebnis — auch wenn der Kunde
unbekannt ist (was eigentlich nicht passieren sollte, aber theoretisch moglich ist).

In der Praxis: Selten genutzt

RIGHT JOIN wird in der Praxis kaum verwendet. Warum? Weil Sie fast immer eine LEFT JOIN Alternative
schreiben konnen, die leichter zu verstehen ist.

—-— RIGHT JOIN:
SELECT * FROM customers c
RIGHT JOIN orders o ON c.customer_id = o.customer_id;

-- Gleichbedeutend mit LEFT JOIN (Reihenfolge getauscht):
SELECT * FROM orders o
LEFT JOIN customers c ON o.customer_id = c.customer_id;

~No bk N

-- RIGHT JOIN:
SELECT * FROM customers c
RIGHT JOIN orders o ON c.customer_id = o.customer_id

customer_id first_ name last_ name email street street_number

1 Alice Anderson alice@email.com Unter den iy
Linden

Alice Anderson alice@email.com Unter den 42
Linden

Bob Brown bob@email.com Reeperbahn
Carol Clark carol@email.com Marienplatz

David DEWIIS david@email.com Hohe
StralRe

null null null null

-- Gleichbedeutend mit LEFT JOIN (Reihenfolge getauscht):
SELECT * FROM orders o
LEFT JOIN customers c ON o.customer_id = c.customer _id

order_id customer_id order_date total amount status customer_id

101 1 2024-01-15 299.99 completed 1

102 2024-02-20 149.50 completed

103 2024-01-22 499.99 completed
104 2024-03-10 89.99 pending

105 2024-03-15 199.99 completed

106 2023-03-20 79.99 completed

6 rows

Beide Queries liefern identische Ergebnisse! Die zweite ist aber intuitiver: Links ist die Haupttabelle.

Mein Rat: Vermeiden Sie RIGHT JOIN. Schreiben Sie stattdessen LEFT JOIN mit vertauschter Reihenfolge. Das
ist Standard in den meisten Teams.

FULL OUTER JOIN: Alles aus beiden Tabellen

FULL OUTER JOIN (oder nur FULL JOIN) kombiniert LEFT und RIGHT JOIN: Alle Zeilen aus beiden Tabellen
kommen ins Ergebnis. Matches werden verbunden, fehlende Matches mit NULL aufgefiillt.

Visualisierung: Venn-Diagramm

Customers Orders

Alle Werte aus Customers und Orders (FULL JOIN)

Beide Kreise sind komplett griin. Jede Zeile aus jeder Tabelle erscheint mindestens einmal - entweder mit
Match oder mit NULLs.

Konzept: Die vollstandige Vereinigung

FULL OUTER JOIN ist wie: ,Zeige mir alles - Matches, Nur-Links, Nur-Rechts.”

Customers Orders
1 Alice 101 1 « Match mit Alice
2 Bob 102 1 « Match mit Alice
5 Emma 106 | NULL | « Kunde wurde geloscht!

FULL OUTER JOIN:

Alice — Order 101 v

Alice — Order 102 v

Bob — NULL v (Bob hat keine Bestellung)

Emma — NULL v (Emma hat keine Bestellung)
v

NULL — Order 106 (Bestellung hat ungultigen Kunden)

Sie sehen: Sowohl Emma (Kunde ohne Bestellung) als auch Order 106 (Bestellung ohne Kunden) erscheinen
im Ergebnis. Nichts geht verloren!

Beispiel 1: Vollstandiger Datenabgleich

Zeigen Sie ALLE Kunden und ALLE Bestellungen - auch wenn Kunden keine Bestellung haben ODER
Bestellungen keinen giiltigen Kunden haben.

O o ~No ol b~ WDNBRE

customer_id & int — order_id & int

first_name varchar = customer_id & int

last_name varchar order_date date
total_amount decimal

GD dbdiagram
dbdiagram.io
SELECT
c.customer_id,
c.first_name || ' ' || c.last_name AS customer_name,

o.order_1id,

o.order_date,

o.total_amount
FROM customers c
FULL OUTER JOIN orders o ON c.customer_id =
ORDER BY c.customer_id, o.order_id;

o.customer_id

https://dbdiagram.io/
https://dbdiagram.io/embed?c=VGFibGUgY3VzdG9tZXJzIHsKICBjdXN0b21lcl9pZCBpbnQgW3BrXQogIGZpcnN0X25hbWUgdmFyY2hhcgogIGxhc3RfbmFtZSB2YXJjaGFyCn0KClRhYmxlIG9yZGVycyB7CiAgb3JkZXJfaWQgaW50IFtwa10KICBjdXN0b21lcl9pZCBpbnQgW3JlZjogPiBjdXN0b21lcnMuY3VzdG9tZXJfaWRdCiAgb3JkZXJfZGF0ZSBkYXRlCiAgdG90YWxfYW1vdW50IGRlY2ltYWwKfQ%3D%3D

SELECT
c.customer_id,
c.first_name || ' ' || c.last_name AS customer_name,
o.order _id,
o.order_date,
o.total_amount
FROM customers c
FULL OUTER JOIN orders o ON c.customer_id = o.customer _id
ORDER BY c.customer_id, o.order_id

customer_id customer_name order_id order_date total_amount

1 Alice Anderson 101 2024-01-15 299.99

1 Alice Anderson 102 2024-02-20 149.50
Bob Brown 103 2024-01-22 499.99
Carol Clark 104 2024-03-10 89.99
David Davis 105 2024-03-15 199.99
Emma Evans null null null

null 106 2023-03-20 79.99

Was sehen Sie?
* Emma (customer_id =5): Erscheint mit NULL bei Bestellungen — Kunde ohne Bestellung

* Order 106: Erscheint mit NULL bei Kundendaten — Bestellung ohne giiltigen Kunden (customer_id =
99 existiert nicht!)

¢ Alle anderen: Normale Matches

FULL OUTER JOIN ist perfekt fiir Datenqualitats-Checks: ,,Zeige mir ALLES, damit ich Inkonsistenzen
erkenne.“ Hier sehen wir beide Probleme: Emma hat nicht bestellt UND Order 106 hat einen ungultigen
Kunden.

Wann FULL OUTER JOIN nutzen?

FULL OUTER JOIN ist selten, aber fiir spezielle Aufgaben perfekt.

Typische Anwendungsfalle:

Datenbank-Sync priifen (Quelle vs. Ziel)

Soll-Ist-Vergleich (Plan vs. Realitat)

Inkonsistenzen finden (Orphaned Records auf beiden Seiten)

Audit-Reports (vollstandige Ubersicht)
Faustregel: FULL OUTER JOIN =, Zeige alles aus beiden Welten“

In der Praxis wird FULL OUTER JOIN selten genutzt - oft kann man das Problem mit zwei LEFT JOINs +
UNION l6sen. Aber wenn Sie ihn brauchen, ist er unschlagbar praktisch!

CROSS JOIN: Alle Kombinationen (Kartesisches Produkt)

CROSS JOIN ist der ungewdhnlichste Join: Er verbindet jede Zeile der ersten Tabelle mit jeder Zeile der
zweiten Tabelle. Keine Bedingung, keine Filter - alle Kombinationen.

Visualisierung: Venn-Diagramm

Customers Orders

Kartesisches Produkt: jede Zeile x jede Zeile

Die Kreise Uiberlappen nicht - weil CROSS JOIN keine Beziehung braucht. Er erzeugt einfach alle
Kombinationen. Das nennt man kartesisches Produkt.

Konzept: Alle Kombinationen

CROSS JOIN ist wie eine Tabelle mit allen moglichen Paarungen erstellen.

Sizes Colors

Size Color

Red
Blue
Green

a0y

CROSS JOIN -» 3 x 3 = 9 Kombinationen:
S — Red

S — Blue

S — Green

M — Red

M — Blue

M — Green

L — Red

L — Blue

L — Green

Jede GroRe wird mit jeder Farbe kombiniert. Kein Filter, keine Bedingung - einfach alle Moglichkeiten.

Syntax: Zwei Varianten

CROSS JOIN kann explizit oder implizit geschrieben werden.

-- Explizit (empfohlen):
SELECT * FROM customers CROSS JOIN products;

a b~ WN R

-— Implizit (veraltet):
SELECT * FROM customers, products;

-- Explizit (empfohlen):
SELECT * FROM customers CROSS JOIN products

customer_id first_name

1

Alice

Alice

Alice

Alice

Alice

Alice

Alice

Alice

Alice

Bob
Bob
Bob
Bob
Bob
Bob
Bob
Bob
Bob
Carol
Carol
Carol
Carol
Carol
Carol
Carol

Carol

E T

Anderson

Anderson

Anderson

Anderson

Anderson

Anderson

Anderson

Anderson

Anderson

Brown
Brown
Brown
Brown
Brown
Brown
Brown
Brown
Brown
Clark
Clark
Clark
Clark
Clark
Clark
Clark

Clark

email

alice@email.com

alice@email.com

alice@email.com

alice@email.com

alice@email.com

alice@email.com

alice@email.com

alice@email.com

alice@email.com

bob@email.com
bob@email.com
bob@email.com
bob@email.com
bob@email.com
bob@email.com
bob@email.com
bob@email.com
bob@email.com
carol@email.com
carol@email.com
carol@email.com
carol@email.com
carol@email.com
carol@email.com
carol@email.com

carol@email.com

street

Unter den
Linden

Unter den
Linden

Unter den
Linden

Unter den
Linden

Unter den
Linden

Unter den
Linden

Unter den
Linden

Unter den
Linden

Unter den
Linden

Reeperbahn
Reeperbahn
Reeperbahn
Reeperbahn
Reeperbahn
Reeperbahn
Reeperbahn
Reeperbahn
Reeperbahn
Marienplatz
Marienplatz
Marienplatz
Marienplatz
Marienplatz
Marienplatz
Marienplatz

Marienplatz

street_numbg¢

42

42

42

42

42

42

42

42

42

15
15
15
15
15
15
15
15

45 rows

-- Implizit (veraltet):
SELECT * FROM customers, products

carol@email.com

david@email.com

david@email.com

david@email.com

david@email.com

david@email.com

david@email.com

david@email.com

david@email.com

david@email.com

emma@email.com
emma@email.com
emma@email.com
emma@email.com
emma@email.com
emma@email.com
emma@email.com
emma@email.com

emma@email.com

Marienplatz

Hohe
StraRe

Hohe
StraRe

Hohe
StraRe

Hohe
StraRe

Hohe
StraRe

Hohe
StraRe

Hohe
StraRe

Hohe
StraRe

Hohe
StraRe

Zeil
Zeil
Zeil
Zeil
Zeil
Zeil
Zeil
Zeil

Zeil

8
123

123

123

123

123

123

123

123

123

99
99
)
99
99
)
99
99

99

customer_id first_name

1

Alice

Alice

Alice

Alice

Alice

Alice

Alice

Alice

Alice

Bob
Bob
Bob
Bob
Bob
Bob
Bob
Bob
Bob
Carol
Carol
Carol
Carol
Carol
Carol
Carol

Carol

E T

Anderson

Anderson

Anderson

Anderson

Anderson

Anderson

Anderson

Anderson

Anderson

Brown
Brown
Brown
Brown
Brown
Brown
Brown
Brown
Brown
Clark
Clark
Clark
Clark
Clark
Clark
Clark

Clark

email

alice@email.com

alice@email.com

alice@email.com

alice@email.com

alice@email.com

alice@email.com

alice@email.com

alice@email.com

alice@email.com

bob@email.com
bob@email.com
bob@email.com
bob@email.com
bob@email.com
bob@email.com
bob@email.com
bob@email.com
bob@email.com
carol@email.com
carol@email.com
carol@email.com
carol@email.com
carol@email.com
carol@email.com
carol@email.com

carol@email.com

street

Unter den
Linden

Unter den
Linden

Unter den
Linden

Unter den
Linden

Unter den
Linden

Unter den
Linden

Unter den
Linden

Unter den
Linden

Unter den
Linden

Reeperbahn
Reeperbahn
Reeperbahn
Reeperbahn
Reeperbahn
Reeperbahn
Reeperbahn
Reeperbahn
Reeperbahn
Marienplatz
Marienplatz
Marienplatz
Marienplatz
Marienplatz
Marienplatz
Marienplatz

Marienplatz

street_numbg¢

42

42

42

42

42

42

42

42

42

15
15
15
15
15
15
15
15

carol@email.com Marienplatz 8

david@email.com Hohe 123
StraRe

david@email.com Hohe 123
StraRe

david@email.com Hohe 123
StraRe

david@email.com Hohe 123
StraRe

david@email.com Hohe 123
StralRe

david@email.com Hohe 123
StralRe

david@email.com Hohe 123
StralRe

david@email.com Hohe 123
StralRe

david@email.com Hohe 123
StralRe

emma@email.com Zeil 99
emma@email.com Zeil 99
emma@email.com Zeil 99
emma@email.com Zeil 99
emma@email.com Zeil 99
emma@email.com Zeil 99
emma@email.com Zeil 99
emma@email.com Zeil 99
emma@email.com Zeil 99

45 rows

Achtung: Die implizite Syntax (| FROM a, b |)ist gefahrlich! Wenn Sie vergessen, eine WHERE-
Bedingung hinzuzufligen, passiert ein versehentlicher CROSS JOIN.

Nutzen Sie immer die explizite Syntax - dann ist klar: ,,lch WILL alle Kombinationen!“

Beispiel 1: Produktkombinationen generieren

Erstellen Sie alle moglichen Kombinationen von zwei Produkten (z.B. flir Paket-Angebote).

product_id & int
product_name varchar
price decimal
=D dbdiagram
dbdiagram.io

SELECT
pl.product_name AS product_1,
p2.product_name AS product_2,
pl.price + p2.price AS bundle_price
FROM products pl
CROSS JOIN products p2
WHERE pl.product_id < p2.product_id -- Vermeidet Duplikate (A-B vs B+
ORDER BY bundle_price
LIMIT 5;

O 0o ~NOoO U~ WNBKE

https://dbdiagram.io/
https://dbdiagram.io/embed?c=VGFibGUgcHJvZHVjdHMgewogIHByb2R1Y3RfaWQgaW50IFtwa10KICBwcm9kdWN0X25hbWUgdmFyY2hhcgogIHByaWNlIGRlY2ltYWwKfQ%3D%3D

SELECT
pl.product_name AS product_1,
p2.product_name AS product_2,
pl.price + p2.price AS bundle_price
FROM products pl
CROSS JOIN products p2
WHERE pl.product_id < p2.product_id -- Vermeidet Duplikate (A-B vs B-A)
ORDER BY bundle_price
LIMIT 5

product_1 product_2 bundle_price

Notebook Paper 14.98
USB Cable Paper 19.98
Notebook USB Cable 24.98
Mouse Paper 34.98

Mouse Notebook 39.98

Was passiert?

* Jedes Produkt wird mit jedem anderen kombiniert

o |WHERE pl.product_id < p2.product_'id|:Verhindert,dass,,Laptop+Mouse“und ~Mouse

+ Laptop“ beide erscheinen
* Ergebnis: Alle moglichen 2er-Pakete mit Gesamtpreis

Das ist praktisch flir Preis-Kombinationen, Test-Daten oder Kalender-Aufgaben!

Beispiel 2: Datumsreihen generieren

CROSS JOIN ist perfekt, um alle Kombinationen aus zwei Listen zu erzeugen - z.B. jeden Kunden mit jedem
Datum (fiir Reports).

1 -—- Simuliere eine Datumsreihe mit VALUES
2~ WITH dates AS (

3= SELECT * FROM (VALUES

4 ('2024-01-01"),

5 ('2024-01-02"),

6 ('2024-01-03")

7) AS d(date)

8)

9 SELECT

10 c.customer_1id,

11 ~ Fovmrdt nAmmA

Cel 0T DL._IICIIIIC,
dates.date
FROM customers c
CROSS JOIN dates
ORDER BY dates.date, c.customer_id
LIMIT 10;

-- Simuliere eine Datumsreihe mit VALUES
WITH dates AS (
SELECT * FROM (VALUES
('2024-01-01'),
('2024-01-02'),
('2024-01-03")
) AS d(date)
)
SELECT
c.customer_id,
c.first_ name,
dates.date
FROM customers c
CROSS JOIN dates
ORDER BY dates.date, c.customer_id
LIMIT 10

customer _id first_name
1 Alice
P Bob
Carol
David
Emma
Alice
Bob
Carol
David

Emma

date

2024-01-01
2024-01-01
2024-01-01
2024-01-01
2024-01-01
2024-01-02
2024-01-02
2024-01-02
2024-01-02

2024-01-02

10 rows

Ergebnis: Jeder Kunde erscheint fiir jedes Datum. Perfekt fiir Kalender-Grids oder A/B-Test-Setups!

Gefahr: Zeilen-Explosion!

CROSS JOIN kann schnell auRer Kontrolle geraten.

Tabelle A Tabelle B Ergebnis Status

5 6 30 v OK

100 100 10.000 I\ Vorsicht
1.000 1.000 1.000.000 X Langsam
10.000 10.000 100.000.000 3% Absturz

Best Practice: Nutzen Sie CROSS JOIN nur mit kleinen Tabellen oder mit| LIMIT |!

In Produktions-Datenbanken ist CROSS JOIN selten. Aber fiir Teszdaten-Generierung oder Kombinatorik ist
er unschlagbar.

Join-Zusammenfassung: Welchen wann?

Sie haben jetzt 5 Join-Typen kennengelernt. Hier ist ein Entscheidungsbaum:

Brauchen Sie eine Beziehung zwischen Tabellen?

— Ja, nur Matches wichtig
L— INNER JOIN

— Ja, aber ALLE von links (auch ohne Match)
L— LEFT JOIN

— Ja, aber ALLE von rechts (auch ohne Match)
L— RIGHT JOIN (oder besser: LEFT JOIN mit getauschter Reihenfolge)

— Ja, ALLES aus beiden (fir Vergleiche)
L FULL OUTER JOIN

L Nein, dich brauche ALLE Kombinationen
L— CROSS JOIN

In der Praxis machen INNER JOIN und LEFT JOIN etwa 95% aller Falle aus. Die anderen sind

Spezialwerkzeuge.

Quick Reference: Join-Cheat-Sheet

Join-Typ Ergebnis Syntax Use Case

|FROM a INNER JOIN b

INNER Nur Matches = = Standard
ON a.id = b.id|
Alle A+ Matches |FROM a LEFT JOIN b ,
LEFT = = Fehlende finden
B ON a.id = b.'|d|
RIGHT Alle B + Matches |FROM a RIGHT JOIN b Selten (nutze
A ON a.id = b.id] LEFT)
|FROM a FULL OUTER
FULL OUTER Alles aus beiden JOIN b ON a.id = Sync-Checks
b.id
Alle | FROM a CROSS JOIN Test-
CROSS L —
Kombinationen E Kombinationen

Faustregel: Wenn unsicher — starte mit INNER JOIN. Fehlt etwas? — Probiere LEFT JOIN.

Mehrere Tabellen verbinden (Multi-Table Joins)

In der Realitat joinen Sie selten nur zwei Tabellen. Oft sind es drei, vier oder mehr. Wie geht man das
systematisch an?

Die Kette: JOIN nach JOIN

Sie kdnnen beliebig viele Joins aneinanderhangen. Jeder neue JOIN baut auf dem vorherigen Ergebnis auf.

SELECT spalten
FROM tabelle_a

JOIN tabelle_b ON a.id = b.id
JOIN tabelle_c ON b.id = c.1id
JOIN tabelle_d ON c.id = d.did

-- ... und so weiter

Wichtig: Die Reihenfolge ist logisch, nicht Performance-kritisch. Der Query Optimizer kann die beste
Reihenfolge selbst wahlen.

Beispiel: Vollstandige Bestellung (4 Tabellen)

Zeigen Sie: Kunde - Bestellung — Positionen — Produkte - alles in einer Zeile.

o I
customer_id & int order_id & int order_item_id &
first_name warchar customer_id & order_id &
product_id &

product_id & int

product_name warchar

price decimal

= dbdiagram
dbdiagram.io

1 SELECT

2 c.first_name || ' ' || c.last_name AS customer,

3 o.order_1id,

4 o.order_date,

5 p.product_name,

6 oi.quantity,

7 oi.quantity * p.price AS line_total

8 FROM customers c

9 INNER JOIN orders o ON c.customer_id = o.customer_id

10 INNER JOIN order_ditems oi ON o.order_id = oi.order_-id

11 INNER JOIN products p ON oi.product_id = p.product_id

12 ORDER BY o.order_id, p.product_name;

https://dbdiagram.io/
https://dbdiagram.io/embed?c=VGFibGUgY3VzdG9tZXJzIHsKICBjdXN0b21lcl9pZCBpbnQgW3BrXQogIGZpcnN0X25hbWUgdmFyY2hhcgp9CgpUYWJsZSBvcmRlcnMgewogIG9yZGVyX2lkIGludCBbcGtdCiAgY3VzdG9tZXJfaWQgaW50IFtyZWY6ID4gY3VzdG9tZXJzLmN1c3RvbWVyX2lkXQp9CgpUYWJsZSBvcmRlcl9pdGVtcyB7CiAgb3JkZXJfaXRlbV9pZCBpbnQgW3BrXQogIG9yZGVyX2lkIGludCBbcmVmOiA%2BIG9yZGVycy5vcmRlcl9pZF0KICBwcm9kdWN0X2lkIGludCBbcmVmOiA%2BIHByb2R1Y3RzLnByb2R1Y3RfaWRdCiAgcXVhbnRpdHkgaW50Cn0KClRhYmxlIHByb2R1Y3RzIHsKICBwcm9kdWN0X2lkIGludCBbcGtdCiAgcHJvZHVjdF9uYW1lIHZhcmNoYXIKICBwcmljZSBkZWNpbWFsCn0%3D

SELECT

c.first_name || ' ' || c.last_name AS customer,

o.order_id,

o.order_date,

p.product_name,

oi.quantity,

oi.quantity * p.price AS line_total
FROM customers c
INNER JOIN orders o ON c.customer_id = o.customer_id
INNER JOIN order_items oi ON o.order_id = oi.order_id
INNER JOIN products p ON oi.product_id = p.product_id
ORDER BY o.order_id, p.product_name

customer order_id order_date product_ name quantity line_total

Alice Anderson 101 2024-01-15 Monitor 1 299.99
Alice Anderson 102 2024-02-20 Keyboard 1 79.99
Alice Anderson 102 2024-02-20 Mouse 59.98
Bob Brown 103 2024-01-22 Laptop 999.99
Carol Clark 104 2024-03-10 Notebook 49.95

David Davis 105 2024-03-15 Desk Chair 199.99

Was passiert hier?
1. customers — orders: Welcher Kunde hat welche Bestellung?
2. orders - order_items: Welche Positionen gehoren zur Bestellung?
3. order_items - products: Welches Produkt ist das?

Das Ergebnis: Jede Bestellposition mit allen relevanten Details in einer Zeile. Das ist die Power von Joins!

Best Practices fiir Multi-Table Joins

Wenn Sie viele Tabellen joinen, helfen diese Regeln:
1. Logische Reihenfolge einhalten

Joinen Sie in der Reihenfolge der Beziehungen: Kunde — Bestellung — Position — Produkt (nicht wild
durcheinander).

2. Aliase nutzen

Kurze Aliase machen Queries lesbarer:| customers c|,|orders o || products p

>

3. Joins einriicken

FROM customers c
INNER JOIN orders o ON c.customer_id = o.customer_id
INNER JOIN order_+ditems oi ON o.order_id = oi.order_id

Jeder JOIN eine eigene Zeile - so erkennen Sie die Struktur sofort!

4. Kommentare bei komplexen Joins

-- Hole Kundendaten
FROM customers c
-- Fuge Bestellungen hinzu
INNER JOIN orders o ON c.customer_id = o.customer_id

Abschluss: Joins meistern

Sie haben jetzt das wichtigste Werkzeug relationaler Datenbanken kennengelernt: Joins. Von INNER bis
CROSS, von einfachen 2-Tabellen-Joins bis zu komplexen Multi-Table-Queries.

Was Sie gelernt haben:
o [INNER JOIN: Nur Matches (Standard)
o LEFT JOIN: Alle links + Matches rechts (fehlende finden!)
o RIGHT JOIN: Alle rechts + Matches links (selten)
. FULL OUTER JOIN: Alles aus beiden (Sync-Checks)
. CROSS JOIN: Alle Kombinationen (Vorsicht!)
o Multi-Table Joins: Systematisch verketten

Nachste Schritte:
e Ubung 4: Hands-on mit komplexen Joins
* Session 11: Row-Level Functions (String/Date/Number)
® Session 12: Aggregation & Window Functions

Joins sind das Herzstuick von SQL. Mit diesem Wissen konnen Sie jetzt fast jede Abfrage in der Praxis l0sen.
Zeit, es zu liben!

