
L10: Daten über Tabellengrenzen hinweg kombinieren – Von
Subqueries zu CTEs zu Joins

Session 10 – Lecture Dauer: 90 Minuten Lernziele: LZ 2 (Relationale DB & SQL praktisch anwenden)
Block: 2 – SQL Einführung & Grundlagen

Willkommen zur zehnten Session! Bisher haben Sie mit einzelnen Tabellen gearbeitet – SELECT, WHERE,
GROUP BY, alles auf einer Tabelle. Das war wichtig zum Lernen, aber die wahre Macht relationaler
Datenbanken liegt woanders: in Beziehungen.

Kunden haben Bestellungen. Bestellungen haben Positionen. Produkte gehören zu Kategorien. All diese
Informationen leben in verschiedenen Tabellen – aber wie kombinieren wir sie? Es gibt drei Hauptansätze:
Subqueries, CTEs und Joins.

In dieser Session lernen Sie alle drei Techniken kennen – und verstehen, wann Sie welche einsetzen. Wir
beginnen mit dem intuitiven Weg (Subqueries), zeigen dessen Grenzen, verbessern ihn mit CTEs, und landen
schließlich bei der elegantesten Lösung: Joins.

Los geht's mit der Frage: Warum müssen wir Daten überhaupt kombinieren?

Warum Daten kombinieren?
Stellen Sie sich vor, Sie speichern alles in einer Tabelle: Kundendaten, Bestellungen, Produktdetails – alles
zusammen. Was passiert?

Problem 1: Redundanz Sie speichern die Kundenadresse bei jeder Bestellung neu. Zieht der Kunde
um, müssen Sie Dutzende Zeilen aktualisieren.

Problem 2: Inkonsistenz Bei manchen Bestellungen steht „Berlin„, bei anderen „Berln“ – Tippfehler.

Problem 3: Update-Anomalien Sie ändern den Preis eines Produkts – aber welche Bestellungen
bekommen den neuen Preis? Die alten sollten den alten Preis behalten!

Die Lösung? Normalisierung. Wir teilen Daten in mehrere Tabellen auf. Jede Tabelle hat eine klar definierte
Verantwortung. Beziehungen werden über Foreign Keys hergestellt.

Normalisierung führt zu mehreren Tabellen.

Joins rekonstruieren die Informationen.

Unser E-Commerce-Schema
Für alle Beispiele heute nutzen wir ein realistisches E-Commerce-Schema mit sieben normalisierten Tabellen
inklusive einer N:M-Beziehung über eine Junction Table.

-- Locations: Normalisierte Orte mit PLZ
CREATE TABLE locations (
 location_id INTEGER PRIMARY KEY,
 city TEXT NOT NULL,
 postal_code TEXT NOT NULL,
 country TEXT DEFAULT 'Germany'
);

-- Categories: Normalisierte Produktkategorien
CREATE TABLE categories (
 category_id INTEGER PRIMARY KEY,
 category_name TEXT NOT NULL UNIQUE,
 description TEXT
);

-- Customers: Erweitert mit strukturierten Adressdaten
CREATE TABLE customers (
 customer_id INTEGER PRIMARY KEY,
 first_name TEXT NOT NULL,
 last_name TEXT NOT NULL,
 email TEXT UNIQUE,
 street TEXT,
 street_number TEXT,
 location_id INTEGER,
 FOREIGN KEY (location_id) REFERENCES locations(location_id)
);

-- Orders: Unverändert
CREATE TABLE orders (
 order_id INTEGER PRIMARY KEY,
 customer_id INTEGER,
 order_date DATE,
 total_amount DECIMAL(10,2),
 status TEXT,
 FOREIGN KEY (customer_id) REFERENCES customers(customer_id)
);

-- Products: Ohne direkte Category-Referenz (N:M über Junction Table
CREATE TABLE products (
 product_id INTEGER PRIMARY KEY,
 product_name TEXT NOT NULL,
 price DECIMAL(10,2)
);

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44



-- Product Categories: Junction Table für N:M-Beziehung
CREATE TABLE product_categories (
 product_id INTEGER,
 category_id INTEGER,
 PRIMARY KEY (product_id, category_id),
 FOREIGN KEY (product_id) REFERENCES products(product_id),
 FOREIGN KEY (category_id) REFERENCES categories(category_id)
);

-- Order Items: Unverändert
CREATE TABLE order_items (
 order_item_id INTEGER PRIMARY KEY,
 order_id INTEGER,
 product_id INTEGER,
 quantity INTEGER,
 line_total DECIMAL(10,2),
 FOREIGN KEY (order_id) REFERENCES orders(order_id),
 FOREIGN KEY (product_id) REFERENCES products(product_id)
);

-- Sample Data: Locations
INSERT INTO locations(location_id, city, postal_code, country) VALUE
 (1, 'Berlin', '10115', 'Germany'),
 (2, 'Hamburg', '20095', 'Germany'),
 (3, 'Munich', '80331', 'Germany'),
 (4, 'Cologne', '50667', 'Germany'),
 (5, 'Frankfurt', '60311', 'Germany');

-- Sample Data: Categories
INSERT INTO categories(category_id, category_name, description) VALU
 (1, 'Electronics', 'Electronic devices and accessories'),
 (2, 'Furniture', 'Office and home furniture'),
 (3, 'Stationery', 'Office supplies and paper products'),
 (4, 'Office Equipment', 'Professional office tools and devices');

-- Sample Data: Customers (mit strukturierten Adressen)
INSERT INTO customers(customer_id, first_name, last_name, email, str
 street_number, location_id) VALUES
 (1, 'Alice', 'Anderson', 'alice@email.com', 'Unter den Linden', '4
),
 (2, 'Bob', 'Brown', 'bob@email.com', 'Reeperbahn', '1
),
 (3, 'Carol', 'Clark', 'carol@email.com', 'Marienplatz', '
),
 (4, 'David', 'Davis', 'david@email.com', 'Hohe Straße', '12
),
 (5, 'Emma', 'Evans', 'emma@email.com', 'Zeil', '9
),
 (99, 'Zoe', 'Zimmer', 'zoe@emailcom', 'Unter den Linden', '
); -- Orphaned customer! No orders.

44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81

82

83

84

85

86

87

-- Sample Data: Orders (Note: Customer 5 has NO orders! Order 106 ha
 invalid customer_id!)
INSERT INTO orders(order_id, customer_id, order_date, total_amount,
) VALUES
 (101, 1, '2024-01-15', 299.99, 'completed'),
 (102, 1, '2024-02-20', 149.50, 'completed'),
 (103, 2, '2024-01-22', 499.99, 'completed'),
 (104, 3, '2024-03-10', 89.99, 'pending'),
 (105, 4, '2024-03-15', 199.99, 'completed'),
 (106, 99, '2023-03-20', 79.99, 'completed'); -- Orphaned order! Cu
 99 doesn't exist!

-- Sample Data: Products (ohne direkte Category-Referenz)
INSERT INTO products(product_id, product_name, price) VALUES
 (1, 'Laptop', 999.99),
 (2, 'Mouse', 29.99),
 (3, 'Keyboard', 79.99),
 (4, 'Monitor', 299.99),
 (5, 'Desk Chair', 199.99),
 (6, 'Notebook', 9.99),
 (7, 'USB Cable', 14.99),
 (8, 'Desk Lamp', 49.99),
 (9, 'Paper', 4.99);

-- Sample Data: Product Categories (N:M-Beziehungen)
INSERT INTO product_categories(product_id, category_id) VALUES
 (1, 1), -- Laptop → Electronics
 (1, 4), -- Laptop → Office Equipment
 (2, 1), -- Mouse → Electronics
 (2, 4), -- Mouse → Office Equipment
 (3, 1), -- Keyboard → Electronics
 (3, 4), -- Keyboard → Office Equipment
 (4, 1), -- Monitor → Electronics
 (4, 4), -- Monitor → Office Equipment
 (5, 2), -- Desk Chair → Furniture
 (5, 4), -- Desk Chair → Office Equipment
 (6, 3), -- Notebook → Stationery (nur eine Kategorie!)
 (7, 1), -- USB Cable → Electronics (nicht verkauft!)
 (8, 2), -- Desk Lamp → Furniture (nicht verkauft!)
 (8, 4), -- Desk Lamp → Office Equipment
 (9, 3); -- Paper → Stationery (nicht verkauft!)

-- Sample Data: Order Items
INSERT INTO order_items(order_item_id, order_id, product_id, quantit
 line_total) VALUES
 (1, 101, 4, 1, 299.99),
 (2, 102, 2, 2, 59.98),
 (3, 102, 3, 1, 79.99),
 (4, 103, 1, 1, 999.99),

(5, 104, 6, 5, 49.95),

88
89

90

91
92
93
94
95
96

97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129

130
131
132
133
134

 (5, 104, 6, 5, 49.95),
 (6, 105, 5, 1, 199.99),
 (7, 106, 7, 5, 74.95); -- Orphaned order 106: USB Cable

-- Create orphan data for testing purposes
UPDATE orders
SET customer_id = NULL
WHERE customer_id = 99;

DELETE FROM customers
WHERE customer_id = 99;

134
135
136
137
138
139
140
141
142
143
144

-- Locations: Normalisierte Orte mit PLZ

CREATE TABLE locations (

 location_id INTEGER PRIMARY KEY,

 city TEXT NOT NULL,

 postal_code TEXT NOT NULL,

 country TEXT DEFAULT 'Germany'

)

ok

-- Categories: Normalisierte Produktkategorien

CREATE TABLE categories (

 category_id INTEGER PRIMARY KEY,

 category_name TEXT NOT NULL UNIQUE,

 description TEXT

)

ok

-- Customers: Erweitert mit strukturierten Adressdaten

CREATE TABLE customers (

 customer_id INTEGER PRIMARY KEY,

 first_name TEXT NOT NULL,

 last_name TEXT NOT NULL,

 email TEXT UNIQUE,

 street TEXT,

 street_number TEXT,

 location_id INTEGER,

 FOREIGN KEY (location_id) REFERENCES locations(location_id)

)

ok

-- Orders: Unverändert

CREATE TABLE orders (

 order_id INTEGER PRIMARY KEY,

 customer_id INTEGER,

 order_date DATE,

 total_amount DECIMAL(10,2),

 status TEXT,

 FOREIGN KEY (customer_id) REFERENCES customers(customer_id)

)

ok

-- Products: Ohne direkte Category-Referenz (N:M über Junction Table)

CREATE TABLE products (

 product_id INTEGER PRIMARY KEY,

 product_name TEXT NOT NULL,

 price DECIMAL(10,2)

)

ok

-- Product Categories: Junction Table für N:M-Beziehung

CREATE TABLE product_categories (

 product_id INTEGER,

 category_id INTEGER,

 PRIMARY KEY (product_id, category_id),

 FOREIGN KEY (product_id) REFERENCES products(product_id),

 FOREIGN KEY (category_id) REFERENCES categories(category_id)

)

ok

-- Order Items: Unverändert

CREATE TABLE order_items (

 order_item_id INTEGER PRIMARY KEY,

 order_id INTEGER,

 product_id INTEGER,

 quantity INTEGER,

 line_total DECIMAL(10,2),

 FOREIGN KEY (order_id) REFERENCES orders(order_id),

 FOREIGN KEY (product_id) REFERENCES products(product_id)

)

ok

-- Sample Data: Locations

INSERT INTO locations(location_id, city, postal_code, country) VALUES

 (1, 'Berlin', '10115', 'Germany'),

 (2, 'Hamburg', '20095', 'Germany'),

 (3, 'Munich', '80331', 'Germany'),

 (4, 'Cologne', '50667', 'Germany'),

 (5, 'Frankfurt', '60311', 'Germany')

ok

-- Sample Data: Categories

INSERT INTO categories(category_id, category_name, description) VALUES

 (1, 'Electronics', 'Electronic devices and accessories'),

 (2, 'Furniture', 'Office and home furniture'),

 (3, 'Stationery', 'Office supplies and paper products'),

 (4, 'Office Equipment', 'Professional office tools and devices')

ok

-- Sample Data: Customers (mit strukturierten Adressen)

INSERT INTO customers(customer_id, first_name, last_name, email, street,

street_number, location_id) VALUES

 (1, 'Alice', 'Anderson', 'alice@email.com', 'Unter den Linden', '42', 1),

 (2, 'Bob', 'Brown', 'bob@email.com', 'Reeperbahn', '15', 2),

 (3, 'Carol', 'Clark', 'carol@email.com', 'Marienplatz', '8', 3),

 (4, 'David', 'Davis', 'david@email.com', 'Hohe Straße', '123', 4),

 (5, 'Emma', 'Evans', 'emma@email.com', 'Zeil', '99', 5),

 (99, 'Zoe', 'Zimmer', 'zoe@emailcom', 'Unter den Linden', '1', 1)

ok

-- Orphaned customer! No orders.

-- Sample Data: Orders (Note: Customer 5 has NO orders! Order 106 has invalid

customer_id!)

INSERT INTO orders(order_id, customer_id, order_date, total_amount, status) VALUES

 (101, 1, '2024-01-15', 299.99, 'completed'),

 (102, 1, '2024-02-20', 149.50, 'completed'),

 (103, 2, '2024-01-22', 499.99, 'completed'),

 (104, 3, '2024-03-10', 89.99, 'pending'),

 (105, 4, '2024-03-15', 199.99, 'completed'),

 (106, 99, '2023-03-20', 79.99, 'completed')

ok

-- Orphaned order! Customer 99 doesn't exist!

-- Sample Data: Products (ohne direkte Category-Referenz)

INSERT INTO products(product_id, product_name, price) VALUES

 (1, 'Laptop', 999.99),

 (2, 'Mouse', 29.99),

 (3, 'Keyboard', 79.99),

 (4, 'Monitor', 299.99),

 (5, 'Desk Chair', 199.99),

 (6, 'Notebook', 9.99),

 (7, 'USB Cable', 14.99),

 (8, 'Desk Lamp', 49.99),

 (9, 'Paper', 4.99)

ok

-- Sample Data: Product Categories (N:M-Beziehungen)

INSERT INTO product_categories(product_id, category_id) VALUES

 (1, 1), -- Laptop → Electronics

 (1, 4), -- Laptop → Office Equipment

 (2, 1), -- Mouse → Electronics

 (2, 4), -- Mouse → Office Equipment

 (3, 1), -- Keyboard → Electronics

 (3, 4), -- Keyboard → Office Equipment

 (4, 1), -- Monitor → Electronics

 (4, 4), -- Monitor → Office Equipment

 (5, 2), -- Desk Chair → Furniture

 (5, 4), -- Desk Chair → Office Equipment

 (6, 3), -- Notebook → Stationery (nur eine Kategorie!)

 (7, 1), -- USB Cable → Electronics (nicht verkauft!)

 (8, 2), -- Desk Lamp → Furniture (nicht verkauft!)

 (8, 4), -- Desk Lamp → Office Equipment

 (9, 3)

ok

-- Paper → Stationery (nicht verkauft!)

-- Sample Data: Order Items

INSERT INTO order_items(order_item_id, order_id, product_id, quantity, line_total)

VALUES

 (1, 101, 4, 1, 299.99),

 (2, 102, 2, 2, 59.98),

 (3, 102, 3, 1, 79.99),

 (4, 103, 1, 1, 999.99),

 (5, 104, 6, 5, 49.95),

 (6, 105, 5, 1, 199.99),

 (7, 106, 7, 5, 74.95)

ok

-- Orphaned order 106: USB Cable

-- Create orphan data for testing purposes

UPDATE orders

SET customer_id = NULL

WHERE customer_id = 99

ok

DELETE FROM customers

WHERE customer_id = 99

ok

Beziehungen:

dbdiagram.io

Diese Struktur ist typisch für relationale Datenbanken. Aber wie kombinieren wir diese Informationen?
Schauen wir uns vier Ansätze an – beginnend mit dem ältesten, aber wichtigsten zum Verstehen.

Technik 0: Verknüpfen von Tabellen über FROM

Ein Ort kann viele Kunden haben (1:N)

Ein Produkt kann viele Kategorien haben (N:M über product_categories)

Eine Kategorie kann viele Produkte haben (N:M über product_categories)

Ein Kunde kann viele Bestellungen haben (1:N)

Eine Bestellung hat viele Positionen (1:N)

Ein Produkt kann in vielen Positionen vorkommen (N:M über order_items)

https://dbdiagram.io/
https://dbdiagram.io/embed?c=VGFibGUgbG9jYXRpb25zIHsKICBsb2NhdGlvbl9pZCBpbnQgW3BrXQogIGNpdHkgdmFyY2hhciBbbm90IG51bGxdCiAgcG9zdGFsX2NvZGUgdmFyY2hhciBbbm90IG51bGxdCiAgY291bnRyeSB2YXJjaGFyIFtkZWZhdWx0OiAnR2VybWFueSddCn0KClRhYmxlIGNhdGVnb3JpZXMgewogIGNhdGVnb3J5X2lkIGludCBbcGtdCiAgY2F0ZWdvcnlfbmFtZSB2YXJjaGFyIFtub3QgbnVsbCwgdW5pcXVlXQogIGRlc2NyaXB0aW9uIHZhcmNoYXIKfQoKVGFibGUgY3VzdG9tZXJzIHsKICBjdXN0b21lcl9pZCBpbnQgW3BrXQogIGZpcnN0X25hbWUgdmFyY2hhciBbbm90IG51bGxdCiAgbGFzdF9uYW1lIHZhcmNoYXIgW25vdCBudWxsXQogIGVtYWlsIHZhcmNoYXIgW3VuaXF1ZV0KICBzdHJlZXQgdmFyY2hhcgogIHN0cmVldF9udW1iZXIgdmFyY2hhcgogIGxvY2F0aW9uX2lkIGludCBbcmVmOiA%2BIGxvY2F0aW9ucy5sb2NhdGlvbl9pZF0KfQoKVGFibGUgb3JkZXJzIHsKICBvcmRlcl9pZCBpbnQgW3BrXQogIGN1c3RvbWVyX2lkIGludCBbcmVmOiA%2BIGN1c3RvbWVycy5jdXN0b21lcl9pZF0KICBvcmRlcl9kYXRlIGRhdGUKICB0b3RhbF9hbW91bnQgZGVjaW1hbCgxMCwyKQogIHN0YXR1cyB2YXJjaGFyCn0KClRhYmxlIHByb2R1Y3RzIHsKICBwcm9kdWN0X2lkIGludCBbcGtdCiAgcHJvZHVjdF9uYW1lIHZhcmNoYXIgW25vdCBudWxsXQogIHByaWNlIGRlY2ltYWwoMTAsMikKfQoKVGFibGUgcHJvZHVjdF9jYXRlZ29yaWVzIHsKICBwcm9kdWN0X2lkIGludCBbcmVmOiA%2BIHByb2R1Y3RzLnByb2R1Y3RfaWRdCiAgY2F0ZWdvcnlfaWQgaW50IFtyZWY6ID4gY2F0ZWdvcmllcy5jYXRlZ29yeV9pZF0KCiAgaW5kZXhlcyB7CiAgICAocHJvZHVjdF9pZCwgY2F0ZWdvcnlfaWQpIFtwa10KICB9Cn0KClRhYmxlIG9yZGVyX2l0ZW1zIHsKICBvcmRlcl9pdGVtX2lkIGludCBbcGtdCiAgb3JkZXJfaWQgaW50IFtyZWY6ID4gb3JkZXJzLm9yZGVyX2lkXQogIHByb2R1Y3RfaWQgaW50IFtyZWY6ID4gcHJvZHVjdHMucHJvZHVjdF9pZF0KICBxdWFudGl0eSBpbnQKICBsaW5lX3RvdGFsIGRlY2ltYWwoMTAsMikKfQ%3D%3D

Bevor wir zu modernen Techniken kommen, müssen wir die Basis verstehen: Wie kombiniert SQL überhaupt
Tabellen? Die Antwort liegt im FROM. Sie können mehrere Tabellen einfach durch Kommata trennen – und
erhalten das kartesische Produkt.

Das kartesische Produkt: Alle Kombinationen
Wenn Sie zwei Tabellen im FROM auflisten, verbindet SQL jede Zeile der ersten Tabelle mit jeder Zeile der
zweiten Tabelle. Das nennt man kartesisches Produkt oder Cross Product.

Konzept:

)nelieZ5(sredrO)nelieZ3(sremotsuC

DICDIOemaNDI

1101ecilA1

1201boB2

2301ammE5

3401

4501

!nenoitanibmoK51=5×3→sredro,sremotsucMORF

Jeder Kunde wird mit jeder Bestellung kombiniert – auch wenn die Bestellung gar nicht zu diesem Kunden
gehört! Das ist meist nicht das, was wir wollen.

Live-Beispiel: Kartesisches Produkt im Online-Shop

dbdiagram.io

Experiment: Listen Sie Customers und Orders im FROM auf, ohne Bedingung.

-- VORSICHT: Kartesisches Produkt!
SELECT
 c.customer_id,
 c.first_name,
 o.order_id,
 o.customer_id AS order_customer_id
FROM customers c, orders o
LIMIT 10; -- Nur erste 10 Zeilen zeigen

1
2
3
4
5
6
7
8



https://dbdiagram.io/
https://dbdiagram.io/embed?c=VGFibGUgY3VzdG9tZXJzIHsKICBjdXN0b21lcl9pZCBpbnQgW3BrXQogIGZpcnN0X25hbWUgdmFyY2hhciBbbm90IG51bGxdCiAgbGFzdF9uYW1lIHZhcmNoYXIgW25vdCBudWxsXQogIGVtYWlsIHZhcmNoYXIgW3VuaXF1ZV0KICBzdHJlZXQgdmFyY2hhcgogIHN0cmVldF9udW1iZXIgdmFyY2hhcgogIGxvY2F0aW9uX2lkIGludAp9CgpUYWJsZSBvcmRlcnMgewogIG9yZGVyX2lkIGludCBbcGtdCiAgY3VzdG9tZXJfaWQgaW50IFtyZWY6ID4gY3VzdG9tZXJzLmN1c3RvbWVyX2lkXQogIG9yZGVyX2RhdGUgZGF0ZQogIHRvdGFsX2Ftb3VudCBkZWNpbWFsKDEwLDIpCiAgc3RhdHVzIHZhcmNoYXIKfQ%3D%3D

-- VORSICHT: Kartesisches Produkt!

SELECT

 c.customer_id,

 c.first_name,

 o.order_id,

 o.customer_id AS order_customer_id

FROM customers c, orders o

LIMIT 10

10 rows

-- Nur erste 10 Zeilen zeigen

ok

Führen Sie die Query aus. Was sehen Sie? Alice (customer_id = 1) erscheint mit allen Bestellungen – auch mit
Bestellungen von Bob und Carol! Das ist das kartesische Produkt: 5 Kunden × 5 Bestellungen = 25 Zeilen.

Problem: Die meisten dieser Kombinationen sind unsinnig! Alice sollte nur mit ihren eigenen Bestellungen
verknüpft werden.

Die Lösung: WHERE-Bedingung
Um nur sinnvolle Kombinationen zu bekommen, filtern wir im WHERE: Verbinde nur Zeilen, wo customer_id
übereinstimmt.

1 Alice 101 1

1 Alice 102 1

1 Alice 103 2

1 Alice 104 3

1 Alice 105 4

1 Alice 106 null

2 Bob 101 1

2 Bob 102 1

2 Bob 103 2

2 Bob 104 3

1

2

3

4

5

6

7

8

9

10

customer_id first_name order_id order_customer_id

dbdiagram.io

-- TODO: Filtern Sie das kartesische Produkt:
-- Zeigen Sie nur Kunden mit ihren eigenen Bestellungen.
-- Tipp: c.customer_id = o.customer_id
SELECT
 c.customer_id,
 c.first_name,
 o.order_id,
 o.order_date,
 o.total_amount
FROM customers c, orders o
WHERE c.customer_id = o.customer_id
ORDER BY c.last_name;

1
2
3
4
5
6
7
8
9
10
11
12



https://dbdiagram.io/
https://dbdiagram.io/embed?c=VGFibGUgY3VzdG9tZXJzIHsKICBjdXN0b21lcl9pZCBpbnQgW3BrXQogIGZpcnN0X25hbWUgdmFyY2hhciBbbm90IG51bGxdCiAgbGFzdF9uYW1lIHZhcmNoYXIgW25vdCBudWxsXQogIGVtYWlsIHZhcmNoYXIgW3VuaXF1ZV0KICBzdHJlZXQgdmFyY2hhcgogIHN0cmVldF9udW1iZXIgdmFyY2hhcgogIGxvY2F0aW9uX2lkIGludAp9CgpUYWJsZSBvcmRlcnMgewogIG9yZGVyX2lkIGludCBbcGtdCiAgY3VzdG9tZXJfaWQgaW50IFtyZWY6ID4gY3VzdG9tZXJzLmN1c3RvbWVyX2lkXQogIG9yZGVyX2RhdGUgZGF0ZQogIHRvdGFsX2Ftb3VudCBkZWNpbWFsKDEwLDIpCiAgc3RhdHVzIHZhcmNoYXIKfQ%3D%3D

-- TODO: Filtern Sie das kartesische Produkt:

-- Zeigen Sie nur Kunden mit ihren eigenen Bestellungen.

-- Tipp: c.customer_id = o.customer_id

SELECT

 c.customer_id,

 c.first_name,

 o.order_id,

 o.order_date,

 o.total_amount

FROM customers c, orders o

WHERE c.customer_id = o.customer_id

ORDER BY c.last_name

5 rows

So funktioniert das:

Das ist die klassische Methode, Tabellen zu verbinden – und genau so wurde SQL in den 1980ern
geschrieben! Aber diese Syntax hat Nachteile.

Mehrere Tabellen kombinieren
Sie können beliebig viele Tabellen auflisten – aber die WHERE-Bedingungen werden schnell komplex.

Aufgabe: Zeigen Sie Kunde, Bestellung UND Produkt zusammen.

1 Alice 101 2024-01-15 299.99

1 Alice 102 2024-02-20 149.50

2 Bob 103 2024-01-22 499.99

3 Carol 104 2024-03-10 89.99

4 David 105 2024-03-15 199.99

1.

2.

3.

SQL erzeugt zunächst das kartesische Produkt (5 × 5 = 25 Zeilen)

Dann filtert WHERE: Nur Zeilen, wo customer_id übereinstimmt

Ergebnis: Nur 5 Zeilen (Kunde mit seiner Bestellung)

1

2

3

4

5

customer_id first_name order_id order_date total_amount

dbdiagram.io

-- TODO: Verbinden Sie customers, orders, order_items, products
-- Hinweis: Sie brauchen 3 WHERE-Bedingungen!
SELECT
 c.first_name || ' ' || c.last_name AS customer,
 o.order_id,
 p.product_name,
 oi.quantity
FROM customers c, orders o, order_items oi, products p
WHERE c.customer_id = o.customer_id
 AND o.order_id = oi.order_id
 AND oi.product_id = p.product_id
ORDER BY o.order_id;

1
2
3
4
5
6
7
8
9
10
11
12



https://dbdiagram.io/
https://dbdiagram.io/embed?c=VGFibGUgY3VzdG9tZXJzIHsKICBjdXN0b21lcl9pZCBpbnQgW3BrXQogIGZpcnN0X25hbWUgdmFyY2hhciBbbm90IG51bGxdCiAgbGFzdF9uYW1lIHZhcmNoYXIgW25vdCBudWxsXQogIGVtYWlsIHZhcmNoYXIgW3VuaXF1ZV0KICBzdHJlZXQgdmFyY2hhcgogIHN0cmVldF9udW1iZXIgdmFyY2hhcgogIGxvY2F0aW9uX2lkIGludAp9CgpUYWJsZSBvcmRlcnMgewogIG9yZGVyX2lkIGludCBbcGtdCiAgY3VzdG9tZXJfaWQgaW50IFtyZWY6ID4gY3VzdG9tZXJzLmN1c3RvbWVyX2lkXQogIG9yZGVyX2RhdGUgZGF0ZQogIHRvdGFsX2Ftb3VudCBkZWNpbWFsKDEwLDIpCiAgc3RhdHVzIHZhcmNoYXIKfQoKVGFibGUgcHJvZHVjdHMgewogIHByb2R1Y3RfaWQgaW50IFtwa10KICBwcm9kdWN0X25hbWUgdmFyY2hhciBbbm90IG51bGxdCiAgcHJpY2UgZGVjaW1hbCgxMCwyKQp9CgpUYWJsZSBvcmRlcl9pdGVtcyB7CiAgb3JkZXJfaXRlbV9pZCBpbnQgW3BrXQogIG9yZGVyX2lkIGludCBbcmVmOiA%2BIG9yZGVycy5vcmRlcl9pZF0KICBwcm9kdWN0X2lkIGludCBbcmVmOiA%2BIHByb2R1Y3RzLnByb2R1Y3RfaWRdCiAgcXVhbnRpdHkgaW50CiAgbGluZV90b3RhbCBkZWNpbWFsKDEwLDIpCn0%3D

-- TODO: Verbinden Sie customers, orders, order_items, products

-- Hinweis: Sie brauchen 3 WHERE-Bedingungen!

SELECT

 c.first_name || ' ' || c.last_name AS customer,

 o.order_id,

 p.product_name,

 oi.quantity

FROM customers c, orders o, order_items oi, products p

WHERE c.customer_id = o.customer_id

 AND o.order_id = oi.order_id

 AND oi.product_id = p.product_id

ORDER BY o.order_id

6 rows

Das funktioniert, aber:

Das Problem mit der impliziten Syntax
Diese Methode wird implizite Join-Syntax genannt. Sie hat mehrere Nachteile:

Alice Anderson 101 Monitor 1

Alice Anderson 102 Mouse 2

Alice Anderson 102 Keyboard 1

Bob Brown 103 Laptop 1

Carol Clark 104 Notebook 5

David Davis 105 Desk Chair 1

Die WHERE-Bedingungen mischen Join-Logik mit Filter-Logik

Bei 4 Tabellen sind das schon 3 Bedingungen – bei 10 Tabellen?

Vergessen Sie eine Bedingung → versehentliches kartesisches Produkt!

Unleserlich: Was ist Join, was ist Filter?

1

2

3

4

5

6

customer order_id product_name quantity

Unleserlich
Join-Bedingungen vermischt mit
Filter-Bedingungen

WHERE a.id = b.id AND
b.status = 'active'

Fehleranfällig
Vergessene Bedingung →
kartesisches Produkt

FROM t1, t2, t3 WHERE
t1.id = t2.id (t3 fehlt!)

Kein
LEFT/RIGHT

Outer Joins nicht möglich (ohne
proprietary Syntax)

Oracle: (+) Notation

Veraltet
SQL-92 Standard hat explizite
JOIN-Syntax eingeführt

Vor 30+ Jahren!

Deshalb gilt heute: Nutzen Sie immer die explizite JOIN-Syntax! Die ist moderner, klarer und mächtiger.

Warum Sie das trotzdem kennen müssen
Warum habe ich Ihnen dann die implizite Syntax gezeigt? Drei Gründe:

1. Legacy-Code verstehen

Viele alte Datenbanken und Anwendungen nutzen diese Syntax noch. Wenn Sie bestehenden Code warten,
werden Sie ihr begegnen.

2. Kartesisches Produkt verstehen

Die explizite JOIN-Syntax versteckt, was wirklich passiert. Mit FROM + WHERE sehen Sie: SQL erzeugt
zunächst alle Kombinationen, dann filtert es. Das hilft beim Performance-Verständnis.

3. CROSS JOIN erkennen

Wenn Sie versehentlich mehrere Tabellen auflisten ohne JOIN-Bedingung, passiert ein CROSS JOIN
(kartesisches Produkt). Sie müssen das erkennen können!

-- ❌ Versehentlicher CROSS JOIN (häufiger Fehler!):
SELECT * FROM customers, orders;
-- 5 × 5 = 25 Zeilen, meist ungewollt!

-- ✅ Expliziter CROSS JOIN (wenn gewollt):
SELECT * FROM customers CROSS JOIN orders;

Problem Beschreibung Beispiel

1
2
3
4
5
6



-- ❌ Versehentlicher CROSS JOIN (häufiger Fehler!):

SELECT * FROM customers, orders

1 Alice Anderson alice@email.com Unter den

Linden

42

1 Alice Anderson alice@email.com Unter den

Linden

42

2 Alice Anderson alice@email.com Unter den

Linden

42

3 Alice Anderson alice@email.com Unter den

Linden

42

4 Alice Anderson alice@email.com Unter den

Linden

42

null Alice Anderson alice@email.com Unter den

Linden

42

1 Bob Brown bob@email.com Reeperbahn 15

1 Bob Brown bob@email.com Reeperbahn 15

2 Bob Brown bob@email.com Reeperbahn 15

3 Bob Brown bob@email.com Reeperbahn 15

4 Bob Brown bob@email.com Reeperbahn 15

null Bob Brown bob@email.com Reeperbahn 15

1 Carol Clark carol@email.com Marienplatz 8

1 Carol Clark carol@email.com Marienplatz 8

2 Carol Clark carol@email.com Marienplatz 8

3 Carol Clark carol@email.com Marienplatz 8

4 Carol Clark carol@email.com Marienplatz 8

null Carol Clark carol@email.com Marienplatz 8

1 David Davis david@email.com Hohe

Straße

123

1 David Davis david@email.com Hohe

Straße

123

2 David Davis david@email.com Hohe

Straße

123

3 David Davis david@email.com Hohe

Straße

123

4 David Davis david@email.com Hohe

Straße

123

null David Davis david@email.com Hohe

Straße

123

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

customer_id first_name last_name email street street_numbe

30 rows

-- 5 × 5 = 25 Zeilen, meist ungewollt!

-- ✅ Expliziter CROSS JOIN (wenn gewollt):

SELECT * FROM customers CROSS JOIN orders

1 Emma Evans emma@email.com Zeil 99

1 Emma Evans emma@email.com Zeil 99

2 Emma Evans emma@email.com Zeil 99

3 Emma Evans emma@email.com Zeil 99

4 Emma Evans emma@email.com Zeil 99

null Emma Evans emma@email.com Zeil 99

25

26

27

28

29

30

1 Alice Anderson alice@email.com Unter den

Linden

42

1 Alice Anderson alice@email.com Unter den

Linden

42

2 Alice Anderson alice@email.com Unter den

Linden

42

3 Alice Anderson alice@email.com Unter den

Linden

42

4 Alice Anderson alice@email.com Unter den

Linden

42

null Alice Anderson alice@email.com Unter den

Linden

42

1 Bob Brown bob@email.com Reeperbahn 15

1 Bob Brown bob@email.com Reeperbahn 15

2 Bob Brown bob@email.com Reeperbahn 15

3 Bob Brown bob@email.com Reeperbahn 15

4 Bob Brown bob@email.com Reeperbahn 15

null Bob Brown bob@email.com Reeperbahn 15

1 Carol Clark carol@email.com Marienplatz 8

1 Carol Clark carol@email.com Marienplatz 8

2 Carol Clark carol@email.com Marienplatz 8

3 Carol Clark carol@email.com Marienplatz 8

4 Carol Clark carol@email.com Marienplatz 8

null Carol Clark carol@email.com Marienplatz 8

1 David Davis david@email.com Hohe

Straße

123

1 David Davis david@email.com Hohe

Straße

123

2 David Davis david@email.com Hohe

Straße

123

3 David Davis david@email.com Hohe

Straße

123

4 David Davis david@email.com Hohe

Straße

123

null David Davis david@email.com Hohe

Straße

123

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

customer_id first_name last_name email street street_numbe

30 rows

Vergleich: Implizit vs. Explizit
Schauen wir uns beide Syntaxen direkt nebeneinander an – für die gleiche Aufgabe.

FROM customers c, orders o
FROM customers c INNER JOIN
orders o

WHERE c.customer_id =
o.customer_id

ON c.customer_id =
o.customer_id

Filter UND Join vermischt Join getrennt von Filter

Kein LEFT/RIGHT JOIN möglich Alle Join-Typen verfügbar

Kartesisches Produkt bei Fehler Fehler bei fehlender ON-Bedingung

Faustregel: Implizite Syntax = INNER JOIN ohne ON . Mehr geht nicht.

Übung: Implizit
Aufgabe: Zeigen Sie Vorname, Stadt und Bestelldatum für alle abgeschlossenen Bestellungen.

1 Emma Evans emma@email.com Zeil 99

1 Emma Evans emma@email.com Zeil 99

2 Emma Evans emma@email.com Zeil 99

3 Emma Evans emma@email.com Zeil 99

4 Emma Evans emma@email.com Zeil 99

null Emma Evans emma@email.com Zeil 99

Implizite Syntax (veraltet) Explizite Syntax (modern)

25

26

27

28

29

30

dbdiagram.io

-- Gegeben (implizit):
SELECT
 c.first_name,
 l.city,
 o.order_date
FROM customers c, locations l, orders o
WHERE c.location_id = l.location_id
 AND c.customer_id = o.customer_id
 AND o.status = 'completed';

1
2
3
4
5
6
7
8
9



https://dbdiagram.io/
https://dbdiagram.io/embed?c=VGFibGUgbG9jYXRpb25zIHsKICBsb2NhdGlvbl9pZCBpbnQgW3BrXQogIGNpdHkgdmFyY2hhciBbbm90IG51bGxdCiAgcG9zdGFsX2NvZGUgdmFyY2hhciBbbm90IG51bGxdCiAgY291bnRyeSB2YXJjaGFyIFtkZWZhdWx0OiAnR2VybWFueSddCn0KClRhYmxlIGN1c3RvbWVycyB7CiAgY3VzdG9tZXJfaWQgaW50IFtwa10KICBmaXJzdF9uYW1lIHZhcmNoYXIgW25vdCBudWxsXQogIGxhc3RfbmFtZSB2YXJjaGFyIFtub3QgbnVsbF0KICBlbWFpbCB2YXJjaGFyIFt1bmlxdWVdCiAgc3RyZWV0IHZhcmNoYXIKICBzdHJlZXRfbnVtYmVyIHZhcmNoYXIKICBsb2NhdGlvbl9pZCBpbnQgW3JlZjogPiBsb2NhdGlvbnMubG9jYXRpb25faWRdCn0KClRhYmxlIG9yZGVycyB7CiAgb3JkZXJfaWQgaW50IFtwa10KICBjdXN0b21lcl9pZCBpbnQgW3JlZjogPiBjdXN0b21lcnMuY3VzdG9tZXJfaWRdCiAgb3JkZXJfZGF0ZSBkYXRlCiAgdG90YWxfYW1vdW50IGRlY2ltYWwoMTAsMikKICBzdGF0dXMgdmFyY2hhcgp9

-- Gegeben (implizit):

SELECT

 c.first_name,

 l.city,

 o.order_date

FROM customers c, locations l, orders o

WHERE c.location_id = l.location_id

 AND c.customer_id = o.customer_id

 AND o.status = 'completed'

4 rows

Zusammenfassung: FROM mit mehreren Tabellen
Was passiert intern:

Warum explizite JOINs besser sind:

Best Practice: Nutzen Sie immer JOIN ... ON statt FROM ..., ... WHERE !

Jetzt, wo Sie verstehen, was im Hintergrund passiert, schauen wir uns die ersten echten Abfrage-Techniken
an: Subqueries!

Technik 1: Subqueries (Verschachtelte SELECT)

Alice Berlin 2024-01-15

Alice Berlin 2024-02-20

Bob Hamburg 2024-01-22

David Cologne 2024-03-15

1.

2.

3.

SQL erzeugt das kartesische Produkt aller Tabellen im FROM

WHERE filtert dann die gewünschten Kombinationen

Das ist ineffizient – aber so funktioniert die logische Verarbeitung

✅ Klar getrennt: Join-Bedingungen (ON) vs. Filter (WHERE)

✅ Alle Join-Typen verfügbar (LEFT , RIGHT , FULL OUTER)

✅ Weniger fehleranfällig (kein versehentliches kartesisches Produkt)

✅ Bessere Performance-Optimierung durch Query Planner

1

2

3

4

first_name city order_date

Der erste Ansatz, um Daten aus verschiedenen Tabellen zu kombinieren, sind Subqueries – verschachtelte
SELECT-Statements. Das fühlt sich natürlich an: „Ich brauche Daten aus Tabelle B, um Tabelle A zu filtern.“

Aber was ist eine Subquery genau? Und wo können wir sie überall einsetzen?

Was ist eine Subquery?
Eine Subquery ist ein SELECT-Statement, das innerhalb eines anderen SQL-Statements ausgeführt wird. Statt
erst eine Query auszuführen, das Ergebnis zu notieren und dann in einer zweiten Query zu verwenden,
verschachteln wir beide.

Konzept:

-- Ohne Subquery (zwei Schritte):
-- Schritt 1: Welche customer_ids haben Bestellungen?
SELECT DISTINCT customer_id FROM orders;
-- Ergebnis: 1, 2, 3, 4

-- Schritt 2: Zeige diese Kunden
SELECT * FROM customers WHERE customer_id IN (1, 2, 3, 4);

1
2
3
4
5
6
7



-- Ohne Subquery (zwei Schritte):

-- Schritt 1: Welche customer_ids haben Bestellungen?

SELECT DISTINCT customer_id FROM orders

5 rows

-- Ergebnis: 1, 2, 3, 4

-- Schritt 2: Zeige diese Kunden

SELECT * FROM customers WHERE customer_id IN (1, 2, 3, 4)

4 rows

Mit Subquery (ein Schritt):

1

2

3

4

null

1 Alice Anderson alice@email.com Unter den

Linden

42

2 Bob Brown bob@email.com Reeperbahn 15

3 Carol Clark carol@email.com Marienplatz 8

4 David Davis david@email.com Hohe

Straße

123

SELECT * FROM "TABLE"
WHERE id IN (
 SELECT ... FROM "OTHER TABLE"
);

1

2

3

4

5

1

2

3

4

customer_id

customer_id first_name last_name email street street_number



dbdiagram.io

-- TODO: Schreiben sie die Bestellung um und ermitteln sie alle Kunden
 eine Bestellung haben.
SELECT *
FROM customers c, orders o
WHERE c.customer_id = o.customer_id;

1

2
3
4



https://dbdiagram.io/
https://dbdiagram.io/embed?c=VGFibGUgY3VzdG9tZXJzIHsKICBjdXN0b21lcl9pZCBpbnQgW3BrXQogIGZpcnN0X25hbWUgdmFyY2hhciBbbm90IG51bGxdCiAgbGFzdF9uYW1lIHZhcmNoYXIgW25vdCBudWxsXQogIGVtYWlsIHZhcmNoYXIgW3VuaXF1ZV0KICBzdHJlZXQgdmFyY2hhcgogIHN0cmVldF9udW1iZXIgdmFyY2hhcgogIGxvY2F0aW9uX2lkIGludAp9CgpUYWJsZSBvcmRlcnMgewogIG9yZGVyX2lkIGludCBbcGtdCiAgY3VzdG9tZXJfaWQgaW50IFtyZWY6ID4gY3VzdG9tZXJzLmN1c3RvbWVyX2lkXQogIG9yZGVyX2RhdGUgZGF0ZQogIHRvdGFsX2Ftb3VudCBkZWNpbWFsKDEwLDIpCiAgc3RhdHVzIHZhcmNoYXIKfQ%3D%3D

-- TODO: Schreiben sie die Bestellung um und ermitteln sie alle Kunden, die eine

Bestellung haben.

SELECT *

FROM customers c, orders o

WHERE c.customer_id = o.customer_id

5 rows

Die innere Query (Subquery) wird zuerst ausgeführt. Ihr Ergebnis wird dann von der äußeren Query
verwendet.

Subquery-Typen: Übersicht
Je nachdem, was eine Subquery zurückgibt, unterscheiden wir verschiedene Typen:

Scalar
Subquery

Ein einzelner Wert = , > , <
Durchschnitt,
Maximum vergleichen

Row Subquery
Eine Zeile (mehrere
Spalten)

= (col1,
col2)

Selten, Multi-Column-
Vergleich

Table
Subquery

Mehrere Zeilen, eine
Spalte

IN , ANY ,
ALL

Filtern mit Liste

Derived Table
Mehrere
Zeilen/Spalten

Im FROM
Komplexe
Aggregationen

Correlated
Referenziert äußere
Query

Mit Spalte aus
äußerer Q.

Pro-Zeile-Berechnung

1 Alice Anderson alice@email.com Unter den

Linden

42

1 Alice Anderson alice@email.com Unter den

Linden

42

2 Bob Brown bob@email.com Reeperbahn 15

3 Carol Clark carol@email.com Marienplatz 8

4 David Davis david@email.com Hohe

Straße

123

Subquery-Typ Rückgabewert
Beispiel-
Operator

Use Case

1

2

3

4

5

customer_id first_name last_name email street street_number

Schauen wir uns jetzt die wichtigsten dieser Typen im Detail an, beginnend mit dem häufigsten: WHERE
Subqueries.

WHERE Subqueries: Filtern mit Ergebnissen aus anderen
Tabellen
Die häufigste Form: Eine Subquery im WHERE liefert Werte zum Filtern.

Aufgabe: Zeigen Sie alle Kunden, die mindestens eine Bestellung haben.

-- Ohne Subquery (zwei Schritte):
-- Schritt 1: Welche customer_ids haben Bestellungen?
SELECT DISTINCT customer_id FROM orders;
-- Ergebnis: 1, 2, 3, 4

-- Schritt 2: Zeige diese Kunden
SELECT * FROM customers WHERE customer_id IN (1, 2, 3, 4);

1
2
3
4
5
6
7



-- Ohne Subquery (zwei Schritte):

-- Schritt 1: Welche customer_ids haben Bestellungen?

SELECT DISTINCT customer_id FROM orders

5 rows

-- Ergebnis: 1, 2, 3, 4

-- Schritt 2: Zeige diese Kunden

SELECT * FROM customers WHERE customer_id IN (1, 2, 3, 4)

4 rows

1

2

3

4

null

1 Alice Anderson alice@email.com Unter den

Linden

42

2 Bob Brown bob@email.com Reeperbahn 15

3 Carol Clark carol@email.com Marienplatz 8

4 David Davis david@email.com Hohe

Straße

123

SELECT
 column_1,
 column_2,
 ...
FROM table_1
WHERE column_x IN (
 -- Subquery
 SELECT column
 FROM table_n
 WHERE condition
);

1

2

3

4

5

1

2

3

4

customer_id

customer_id first_name last_name email street street_number



dbdiagram.io

-- TODO: Verändern sie die folgende Query, sodass sie eine Subquery im
 nutzt,
SELECT
 c.customer_id,
 c.first_name,
 c.last_name,
 c.email
FROM customers c, orders o
WHERE c.customer_id = o.customer_id;

1

2
3
4
5
6
7
8



https://dbdiagram.io/
https://dbdiagram.io/embed?c=VGFibGUgY3VzdG9tZXJzIHsKICBjdXN0b21lcl9pZCBpbnQgW3BrXQogIGZpcnN0X25hbWUgdmFyY2hhciBbbm90IG51bGxdCiAgbGFzdF9uYW1lIHZhcmNoYXIgW25vdCBudWxsXQogIGVtYWlsIHZhcmNoYXIgW3VuaXF1ZV0KICBzdHJlZXQgdmFyY2hhcgogIHN0cmVldF9udW1iZXIgdmFyY2hhcgogIGxvY2F0aW9uX2lkIGludAp9CgpUYWJsZSBvcmRlcnMgewogIG9yZGVyX2lkIGludCBbcGtdCiAgY3VzdG9tZXJfaWQgaW50IFtyZWY6ID4gY3VzdG9tZXJzLmN1c3RvbWVyX2lkXQogIG9yZGVyX2RhdGUgZGF0ZQogIHRvdGFsX2Ftb3VudCBkZWNpbWFsKDEwLDIpCiAgc3RhdHVzIHZhcmNoYXIKfQ%3D%3D

-- TODO: Verändern sie die folgende Query, sodass sie eine Subquery im WHERE

nutzt,

SELECT

 c.customer_id,

 c.first_name,

 c.last_name,

 c.email

FROM customers c, orders o

WHERE c.customer_id = o.customer_id

5 rows

Wie funktioniert das?

Das ist einfach zu lesen und zu verstehen. Aber Emma (customer_id = 5) fehlt – die hat keine Bestellung.
Subqueries im WHERE sind gut für „zeige mir nur die mit...“

Scalar Subqueries: Einzelwerte berechnen
Eine Subquery kann auch einen einzelnen Wert zurückgeben – zum Vergleichen oder Berechnen.

1 Alice Anderson alice@email.com

1 Alice Anderson alice@email.com

2 Bob Brown bob@email.com

3 Carol Clark carol@email.com

4 David Davis david@email.com

1.

2.

3.

Die innere Query (Subquery) wird zuerst ausgeführt: SELECT customer_id FROM orders

Ergebnis: Liste von customer_ids, die Bestellungen haben: (1, 1, 2, 3, 4)

Die äußere Query filtert damit: WHERE customer_id IN (1, 1, 2, 3, 4)

SELECT
 column_a,
 column_b,
 ...,
 (
 -- Subquery: liefert einen Wert (z. B. Durchschnitt)
 SELECT AGG(target_column)
 FROM source_table
) AS computed_value
FROM main_table
WHERE filter_column > (

-- Subquery: derselbe Wert für die WHERE-Bedingung

1

2

3

4

5

customer_id first_name last_name email



Aufgabe: Zeigen Sie alle Produkte, die teurer sind als der Durchschnittspreis.

dbdiagram.io

 Subquery: derselbe Wert für die WHERE Bedingung
 SELECT AGG(target_column)
 FROM source_table
);

SELECT
 product_id,
 product_name,
 price,
 (SELECT AVG(price) FROM products) AS avg_price
FROM products
WHERE price > (SELECT AVG(price) FROM products);

1
2
3
4
5
6
7



https://dbdiagram.io/
https://dbdiagram.io/embed?c=VGFibGUgcHJvZHVjdHMgewogIHByb2R1Y3RfaWQgaW50IFtwa10KICBwcm9kdWN0X25hbWUgdmFyY2hhciBbbm90IG51bGxdCiAgcHJpY2UgZGVjaW1hbCgxMCwyKQp9

SELECT

 product_id,

 product_name,

 price,

 (SELECT AVG(price) FROM products) AS avg_price

FROM products

WHERE price > (SELECT AVG(price) FROM products)

3 rows

Problem: Wir berechnen den Durchschnitt zweimal! Subquery in SELECT UND in WHERE. Das ist ineffizient
und schwer wartbar.
Scalar Subqueries sind nützlich, aber wenn Sie denselben Wert mehrfach brauchen, wird es unübersichtlich.
Später sehen wir, wie CTEs dieses Problem lösen.

Subqueries in SELECT: Spalten aus anderen Tabellen
Sie können Subqueries auch nutzen, um zusätzliche Spalten zu berechnen.

Aufgabe: Zeigen Sie für jeden Kunden die Anzahl seiner Bestellungen.

1 Laptop 999.99 187.7677777777777778

4 Monitor 299.99 187.7677777777777778

5 Desk Chair 199.99 187.7677777777777778

SELECT
 column_1,
 column_2,
 ...,
 (
 -- Subquery: berechnet einen Wert pro Zeile der äußeren Tabelle
 SELECT AGG(*)
 FROM inner_table
 WHERE inner_table.foreign_key = outer_table.primary_key
) AS computed_value
FROM outer_table;

1

2

3

product_id product_name price avg_price



dbdiagram.io

SELECT
 c.customer_id,
 c.first_name,
 c.last_name,
 (
 SELECT COUNT(*)
 FROM orders o
 WHERE o.customer_id = c.customer_id
) AS order_count
FROM customers c;

1
2
3
4
5
6
7
8
9
10



https://dbdiagram.io/
https://dbdiagram.io/embed?c=VGFibGUgY3VzdG9tZXJzIHsKICBjdXN0b21lcl9pZCBpbnQgW3BrXQogIGZpcnN0X25hbWUgdmFyY2hhciBbbm90IG51bGxdCiAgbGFzdF9uYW1lIHZhcmNoYXIgW25vdCBudWxsXQogIGVtYWlsIHZhcmNoYXIgW3VuaXF1ZV0KICBzdHJlZXQgdmFyY2hhcgogIHN0cmVldF9udW1iZXIgdmFyY2hhcgogIGxvY2F0aW9uX2lkIGludAp9CgpUYWJsZSBvcmRlcnMgewogIG9yZGVyX2lkIGludCBbcGtdCiAgY3VzdG9tZXJfaWQgaW50IFtyZWY6ID4gY3VzdG9tZXJzLmN1c3RvbWVyX2lkXQogIG9yZGVyX2RhdGUgZGF0ZQogIHRvdGFsX2Ftb3VudCBkZWNpbWFsKDEwLDIpCiAgc3RhdHVzIHZhcmNoYXIKfQ%3D%3D

SELECT

 c.customer_id,

 c.first_name,

 c.last_name,

 (

 SELECT COUNT(*)

 FROM orders o

 WHERE o.customer_id = c.customer_id

) AS order_count

FROM customers c

5 rows

Das ist eine correlated Subquery – sie referenziert die äußere Query (c.customer_id). Für jeden
Kunden wird die Subquery neu ausgeführt.

Funktioniert, aber: Bei 10.000 Kunden wird die Subquery 10.000 Mal ausgeführt! Performance-Problem.

Subquery-Grenzen: Wann wird es problematisch?
Subqueries sind intuitiv, aber sie haben Grenzen:

Verschachtelte Queries sind
schwer zu verstehen

3+ Ebenen
Verschachtelung

Berechnete Werte können nicht
mehrfach genutzt werden

Durchschnitt 2×
berechnen

Correlated Subqueries werden oft
wiederholt ausgeführt

10.000 Kunden = 10.000
Subqueries

Schwierig, Spalten aus mehreren
Tabellen parallel zu zeigen

Kunde + Bestellung +
Produkt

1 Alice Anderson 2

2 Bob Brown 1

3 Carol Clark 1

4 David Davis 1

5 Emma Evans 0

Unleserlich

Nicht
wiederverwendbar

Performance

Keine parallelen
Spalten

Beschreibung BeispielProblem

1

2

3

4

5

customer_id first_name last_name order_count

Es muss einen besseren Weg geben! Und den gibt es: CTEs (Common Table Expressions).

Technik 2: CTEs (WITH) – Benannte Zwischenergebnisse
CTEs sind „benannte Subqueries“. Sie machen Queries lesbarer und wiederverwendbar. Statt alles in einer
verschachtelten Monster-Query zu schreiben, teilen Sie es in logische Schritte auf.

CTE-Syntax: WITH … AS
Die Syntax ist einfach: WITH name AS (SELECT ...) .

Aufgabe: Durchschnittspreis berechnen und wiederverwenden.

WITH avg_price_cte AS (

 SELECT AVG(price) AS avg_price FROM products

)

SELECT

 p.product_id,

 p.product_name,

 p.price,

 (SELECT avg_price FROM avg_price_cte) AS avg_price,

 p.price - (SELECT avg_price FROM avg_price_cte) AS difference

FROM products p

WHERE p.price > (SELECT avg_price FROM avg_price_cte)

3 rows

Vorteil: Der Durchschnitt wird nur einmal in der CTE berechnet. Die Query ist lesbar: „Was ist avgpricecte?
Schaue am Anfang!“

WITH avg_price_cte AS (
 SELECT AVG(price) AS avg_price FROM products
)
SELECT
 p.product_id,
 p.product_name,
 p.price,
 (SELECT avg_price FROM avg_price_cte) AS avg_price,
 p.price - (SELECT avg_price FROM avg_price_cte) AS difference
FROM products p
WHERE p.price > (SELECT avg_price FROM avg_price_cte);

1 Laptop 999.99 187.7677777777777778 812.2222222222222222

4 Monitor 299.99 187.7677777777777778 112.2222222222222222

5 Desk Chair 199.99 187.7677777777777778 12.2222222222222222

1
2
3
4
5
6
7
8
9
10
11

1

2

3

product_id product_name price avg_price difference



Multiple CTEs: Logische Schritte
Sie können mehrere CTEs definieren – jede kann auf vorherige zugreifen.

Aufgabe: Finden Sie alle Produkte, die teurer sind als der durchschnittliche Preis in ihrer Kategorie.

WITH product_with_categories AS (
 SELECT
 p.product_id,
 p.product_name,
 p.price,
 pc.category_id
 FROM products p, product_categories pc
 WHERE p.product_id = pc.product_id
),
category_avg_prices AS (
 SELECT
 category_id,
 AVG(price) AS avg_price
 FROM product_with_categories
 GROUP BY category_id
)
SELECT
 pwc.product_name,
 pwc.price,
 pwc.category_id,
 (SELECT avg_price FROM category_avg_prices cap WHERE cap.category_i
 pwc.category_id) AS category_avg
FROM product_with_categories pwc
WHERE pwc.price > (SELECT avg_price FROM category_avg_prices cap WHER
 .category_id = pwc.category_id);

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

22
23



WITH product_with_categories AS (

 SELECT

 p.product_id,

 p.product_name,

 p.price,

 pc.category_id

 FROM products p, product_categories pc

 WHERE p.product_id = pc.product_id

),

category_avg_prices AS (

 SELECT

 category_id,

 AVG(price) AS avg_price

 FROM product_with_categories

 GROUP BY category_id

)

SELECT

 pwc.product_name,

 pwc.price,

 pwc.category_id,

 (SELECT avg_price FROM category_avg_prices cap WHERE cap.category_id =

pwc.category_id) AS category_avg

FROM product_with_categories pwc

WHERE pwc.price > (SELECT avg_price FROM category_avg_prices cap WHERE

cap.category_id = pwc.category_id)

6 rows

Das ist jetzt viel lesbarer!

Jeder Schritt ist klar benannt. Die Logik ist in kleine, verständliche Blöcke aufgeteilt.

Laptop 999.99 1 284.9900000000000000

Laptop 999.99 4 276.6566666666666667

Monitor 299.99 1 284.9900000000000000

Monitor 299.99 4 276.6566666666666667

Desk Chair 199.99 2 124.9900000000000000

Notebook 9.99 3 7.4900000000000000

1.

2.

3.

product_with_categories : Produkte mit ihren Kategorien verknüpfen

category_avg_prices : Durchschnittspreis pro Kategorie berechnen

Hauptquery: Zeigt Produkte, die teurer als der Kategorie-Durchschnitt sind

1

2

3

4

5

6

product_name price category_id category_avg

CTEs vs. Subqueries: Wann was?

Lesbarkeit Schlecht bei Verschachtelung Gut (logische Schritte)

Wiederverwendung Nein Ja (mehrfach referenzierbar)

Performance Identisch Identisch (meist)

Komplexität Einfache Fälle ok Komplexe Queries besser

Faustregel: Bei mehr als einer Verschachtelungsebene → nutzen Sie CTEs!

CTEs: Die Grenze
CTEs sind großartig für komplexe Berechnungen und schrittweise Aggregationen, aber sie haben eine
Einschränkung: Das parallele Zusammenführen von Spalten aus mehreren Tabellen wird schnell
unübersichtlich.

Problem: Zeigen Sie für jede Bestellung den Kundennamen UND die bestellten Produkte.

-- Mit CTE und Subqueries: Umständlich!
WITH order_data AS (
 SELECT
 o.order_id,
 o.order_date,
 o.customer_id
 FROM orders o
)
SELECT
 od.order_id,
 od.order_date,
 (SELECT c.first_name || ' ' || c.last_name
 FROM customers c
 WHERE c.customer_id = od.customer_id) AS customer_name,
 (SELECT p.product_name
 FROM order_items oi, products p
 WHERE oi.order_id = od.order_id
 AND oi.product_id = p.product_id
 LIMIT 1) AS first_product
FROM order_data od;

Kriterium Subqueries CTEs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20



-- Mit CTE und Subqueries: Umständlich!

WITH order_data AS (

 SELECT

 o.order_id,

 o.order_date,

 o.customer_id

 FROM orders o

)

SELECT

 od.order_id,

 od.order_date,

 (SELECT c.first_name || ' ' || c.last_name

 FROM customers c

 WHERE c.customer_id = od.customer_id) AS customer_name,

 (SELECT p.product_name

 FROM order_items oi, products p

 WHERE oi.order_id = od.order_id

 AND oi.product_id = p.product_id

 LIMIT 1) AS first_product

FROM order_data od

6 rows

Problem mit diesem Ansatz:

CTEs helfen bei Komplexität und schrittweisen Berechnungen, aber für das elegante Zusammenführen von
Daten aus mehreren Tabellen brauchen wir ein besseres Werkzeug: Joins!

Zeit für Technik 3: Joins – die Lösung für genau dieses Problem!

101 2024-01-15 Alice Anderson Monitor

102 2024-02-20 Alice Anderson Mouse

103 2024-01-22 Bob Brown Laptop

104 2024-03-10 Carol Clark Notebook

105 2024-03-15 David Davis Desk Chair

106 2023-03-20 null USB Cable

Mehrere verschachtelte Subqueries – schwer zu lesen

Zeigt nur das erste Produkt pro Bestellung (LIMIT 1)

Performance: Subqueries werden für jede Zeile neu ausgeführt

Wenn eine Bestellung mehrere Produkte hat, fehlen diese

1

2

3

4

5

6

order_id order_date customer_name first_product

Technik 3: Joins – Die elegante Lösung
Joins sind das Werkzeug, um Spalten aus mehreren Tabellen parallel in einer Zeile zusammenzuführen. Statt
verschachtelt zu denken (Subqueries) oder in Schritten (CTEs), denken Sie horizontal: „Füge Tabellen
nebeneinander zusammen.“

Ein Join ist wie ein Reißverschluss: Sie haben zwei Listen und verbinden passende Einträge. Kunden und ihre
Bestellungen. Produkte und ihre Kategorien. Das Ergebnis? Eine Zeile mit Informationen aus beiden
Tabellen.

Aber es gibt verschiedene Arten von Joins – je nachdem, was Sie mit nicht-passenden Einträgen machen
wollen. Schauen wir uns die wichtigsten an.

Die JOIN-Syntax
Moderne Joins nutzen das Schlüsselwort JOIN mit einer ON -Bedingung. Das trennt die Join-Logik
sauber vom WHERE-Filter.

Bestandteile:

Wichtig: ON definiert die Beziehung, WHERE filtert das Ergebnis. Das nicht zu verwechseln macht Queries
klar und wartbar!

Überblick: Die 5 Join-Typen
Es gibt fünf Haupt-Join-Typen. Jeder beantwortet eine andere Frage.

SELECT
 spalten_aus_tabelle_a,
 spalten_aus_tabelle_b
FROM tabelle_a
JOIN_TYP tabelle_b ON tabelle_a.key = tabelle_b.key
WHERE weitere_filter;

JOIN_TYP : INNER JOIN, LEFT JOIN, RIGHT JOIN, FULL OUTER JOIN, CROSS JOIN

ON : Die Bedingung, wie Zeilen zusammenpassen (meist Foreign Key = Primary Key)

WHERE : Zusätzliche Filter (optional, nach dem Join)



INNER JOIN
Zeige nur Einträge, die in beiden
Tabellen existieren

Standard-Fall, nur Matches
wichtig

LEFT JOIN
Zeige alle aus Tabelle A, auch ohne
Match in B

„Wer hat KEINE Bestellung?“

RIGHT JOIN
Zeige alle aus Tabelle B, auch ohne
Match in A

Selten (meist LEFT
stattdessen)

FULL OUTER
JOIN

Zeige alles aus beiden Tabellen Vergleiche, Sync-Checks

CROSS JOIN
Zeige alle Kombinationen (kartesisches
Produkt)

Test-Kombinationen,
Kalender

In der Praxis machen INNER JOIN und LEFT JOIN etwa 95% aller Joins aus. Die anderen sind Spezialfälle.
Beginnen wir mit dem häufigsten: INNER JOIN.

INNER JOIN: Nur die Matches
INNER JOIN ist der Standard-Join. Er gibt nur Zeilen zurück, bei denen es in beiden Tabellen einen
passenden Eintrag gibt.

Visualisierung: Venn-Diagramm

Customers Orders

Join-Typ Frage Wann nutzen?

Denken Sie an die Überschneidung zweier Kreise: Nur der grüne Bereich (wo sich beide überlappen) kommt
ins Ergebnis. Alles andere wird ignoriert.

Konzept: Wie funktioniert INNER JOIN?
Stellen Sie sich zwei Listen vor:

sredrOsremotsuC

di_remotsucDIOemaNDI

ecilAuztssaP←1101ecilA1

ecilAuztssaP←1201boB2

boBuztssaP←2301loraC3

divaDuztssaP←4501ammE5

:di_remotsucNONIOJRENNI

✓101redrOecilA

✓201redrOecilA

✓301redrOboB

✓501redrOdivaD

!sinbegrEsniTHCINtmmok→gnulletseBeniektaH?ammE

SQL geht beide Tabellen durch und verbindet nur Zeilen, wo die customer_id übereinstimmt. Emma hat
keine Bestellung, also keine Übereinstimmung, also kein Ergebnis.

Beispiel 1: Kunden mit ihren Bestellungen
Zeigen Sie jeden Kunden zusammen mit seinen Bestellungen.

dbdiagram.io

SELECT
 c.first_name,
 c.last_name,
 o.order_id,
 o.order_date
FROM customers c
INNER JOIN orders o ON c.customer_id = o.customer_id
ORDER BY c.last_name, o.order_date;

1
2
3
4
5
6
7
8



https://dbdiagram.io/
https://dbdiagram.io/embed?c=VGFibGUgY3VzdG9tZXJzIHsKICBjdXN0b21lcl9pZCBpbnQgW3BrXQogIGZpcnN0X25hbWUgdmFyY2hhcgogIGxhc3RfbmFtZSB2YXJjaGFyCn0KClRhYmxlIG9yZGVycyB7CiAgb3JkZXJfaWQgaW50IFtwa10KICBjdXN0b21lcl9pZCBpbnQgW3JlZjogPiBjdXN0b21lcnMuY3VzdG9tZXJfaWRdCiAgb3JkZXJfZGF0ZSBkYXRlCiAgdG90YWxfYW1vdW50IGRlY2ltYWwKfQ%3D%3D

SELECT

 c.first_name,

 c.last_name,

 o.order_id,

 o.order_date

FROM customers c

INNER JOIN orders o ON c.customer_id = o.customer_id

ORDER BY c.last_name, o.order_date

5 rows

Was passiert hier?

Führen Sie die Query aus. Sie sehen: Alice erscheint zweimal (hat zwei Bestellungen), Emma fehlt komplett.

Beispiel 2: Bestellungen mit Produktnamen
Zeigen Sie für jede Bestellposition das Produkt mit Namen.

Alice Anderson 101 2024-01-15

Alice Anderson 102 2024-02-20

Bob Brown 103 2024-01-22

Carol Clark 104 2024-03-10

David Davis 105 2024-03-15

1.

2.

3.

4.

SQL nimmt jeden Kunden aus customers

Sucht alle passenden Bestellungen in orders (wo customer_id übereinstimmt)

Erstellt eine Zeile pro Match: Kunde + Bestellung

Emma hat keine Bestellung → erscheint nicht

1

2

3

4

5

first_name last_name order_id order_date

dbdiagram.io

SELECT
 oi.order_id,
 p.product_name,
 oi.quantity,
 p.price
FROM order_items oi
INNER JOIN products p ON oi.product_id = p.product_id
ORDER BY oi.order_id;

1
2
3
4
5
6
7
8



https://dbdiagram.io/
https://dbdiagram.io/embed?c=VGFibGUgb3JkZXJfaXRlbXMgewogIG9yZGVyX2l0ZW1faWQgaW50IFtwa10KICBvcmRlcl9pZCBpbnQKICBwcm9kdWN0X2lkIGludCBbcmVmOiA%2BIHByb2R1Y3RzLnByb2R1Y3RfaWRdCiAgcXVhbnRpdHkgaW50Cn0KClRhYmxlIHByb2R1Y3RzIHsKICBwcm9kdWN0X2lkIGludCBbcGtdCiAgcHJvZHVjdF9uYW1lIHZhcmNoYXIKICBwcmljZSBkZWNpbWFsCn0%3D

SELECT

 oi.order_id,

 p.product_name,

 oi.quantity,

 p.price

FROM order_items oi

INNER JOIN products p ON oi.product_id = p.product_id

ORDER BY oi.order_id

7 rows

Was sehen Sie?

Das ist die Essenz von Joins: Informationen aus verschiedenen Tabellen landen in einer Zeile. Praktisch!

Wann INNER JOIN nutzen?
INNER JOIN ist Ihre Standard-Wahl, wenn Sie nur an existierenden Beziehungen interessiert sind.

Typische Anwendungsfälle:

101 Monitor 1 299.99

102 Mouse 2 29.99

102 Keyboard 1 79.99

103 Laptop 1 999.99

104 Notebook 5 9.99

105 Desk Chair 1 199.99

106 USB Cable 5 14.99

Order 101: Monitor

Order 102: Mouse (2×) + Keyboard

Order 103: Laptop

…

Jede Zeile kombiniert Bestellposition mit Produktdetails

1

2

3

4

5

6

7

order_id product_name quantity price

Faustregel: INNER JOIN = „Zeige mir nur, wo beides existiert“

LEFT JOIN: Alle von links + Matches
LEFT JOIN (auch LEFT OUTER JOIN genannt) gibt alle Zeilen der linken Tabelle zurück – auch wenn es rechts
keinen Match gibt. Fehlende Matches werden mit NULL aufgefüllt.

Visualisierung: Venn-Diagramm

Customers Orders

LEFT

Alle Werte aus der linken Tabelle (Customer) + deren Matches (LEFT JOIN)

Der komplette linke Kreis ist grün – das bedeutet: ALLE Einträge aus der linken Tabelle kommen ins Ergebnis,
egal ob es rechts einen Match gibt.

Konzept: Wie funktioniert LEFT JOIN?
LEFT JOIN behält alle Zeilen der linken Tabelle und fügt passende Daten von rechts hinzu – oder NULL, wenn
nichts passt.

Bestellungen mit Kundendaten anzeigen (nur abgeschlossene Bestellungen)

Produkte mit Kategorien (nur kategorisierte Produkte)

Rechnungen mit Zahlungen (nur bezahlte Rechnungen)

Log-Einträge mit User-Details (nur bekannte User)

)sthcer(sredrO)sknil(sremotsuC

di_remotsucDIOemaNDI

hctaM←1101ecilA1

hctaM←1201boB2

hctaM←2301loraC3

hctaM←4501divaD4

)gnulletseBeniek(ammE5

:di_remotsucNONIOJTFEL

✓101redrOecilA

✓201redrOecilA

✓301redrOboB

✓501redrOdivaD

!LLUNdnisredleF-redrOreba,sinbegrEmitbielbammE←LLUNammE

Das ist der Schlüssel: Die linke Tabelle bestimmt, welche Zeilen im Ergebnis erscheinen. Die rechte Tabelle
ergänzt nur.

Beispiel 1: Alle Kunden (auch ohne Bestellungen)
Zeigen Sie ALLE Kunden – egal ob sie bestellt haben oder nicht.

dbdiagram.io

SELECT
 c.first_name,
 c.last_name,
 o.order_id,
 o.order_date,
 o.total_amount
FROM customers c
LEFT JOIN orders o ON c.customer_id = o.customer_id
ORDER BY c.last_name;

1
2
3
4
5
6
7
8
9



https://dbdiagram.io/
https://dbdiagram.io/embed?c=VGFibGUgY3VzdG9tZXJzIHsKICBjdXN0b21lcl9pZCBpbnQgW3BrXQogIGZpcnN0X25hbWUgdmFyY2hhcgogIGxhc3RfbmFtZSB2YXJjaGFyCn0KClRhYmxlIG9yZGVycyB7CiAgb3JkZXJfaWQgaW50IFtwa10KICBjdXN0b21lcl9pZCBpbnQgW3JlZjogPiBjdXN0b21lcnMuY3VzdG9tZXJfaWRdCiAgb3JkZXJfZGF0ZSBkYXRlCiAgdG90YWxfYW1vdW50IGRlY2ltYWwKfQ%3D%3D

SELECT

 c.first_name,

 c.last_name,

 o.order_id,

 o.order_date,

 o.total_amount

FROM customers c

LEFT JOIN orders o ON c.customer_id = o.customer_id

ORDER BY c.last_name

6 rows

Was sehen Sie?

Das ist der Unterschied zu INNER JOIN: Emma wird nicht ignoriert. Links bestimmt das Ergebnis!

Beispiel 2: Produkte mit Verkaufszahlen (auch unverkaufte)
Zeigen Sie alle Produkte – auch die, die noch nie verkauft wurden.

Alice Anderson 101 2024-01-15 299.99

Alice Anderson 102 2024-02-20 149.50

Bob Brown 103 2024-01-22 499.99

Carol Clark 104 2024-03-10 89.99

David Davis 105 2024-03-15 199.99

Emma Evans null null null

Alice, Bob, Carol, David: Jeweils mit ihren Bestellungen

Emma: Erscheint auch! Aber order_id , order_date , total_amount sind NULL

1

2

3

4

5

6

first_name last_name order_id order_date total_amount

dbdiagram.io

SELECT
 p.product_name,
 p.price,
 COUNT(oi.order_item_id) AS times_sold
FROM products p
LEFT JOIN order_items oi ON p.product_id = oi.product_id
GROUP BY p.product_id, p.product_name, p.price
ORDER BY times_sold DESC;

1
2
3
4
5
6
7
8



https://dbdiagram.io/
https://dbdiagram.io/embed?c=VGFibGUgcHJvZHVjdHMgewogIHByb2R1Y3RfaWQgaW50IFtwa10KICBwcm9kdWN0X25hbWUgdmFyY2hhcgogIHByaWNlIGRlY2ltYWwKfQoKVGFibGUgb3JkZXJfaXRlbXMgewogIG9yZGVyX2l0ZW1faWQgaW50IFtwa10KICBwcm9kdWN0X2lkIGludCBbcmVmOiA%2BIHByb2R1Y3RzLnByb2R1Y3RfaWRdCiAgcXVhbnRpdHkgaW50Cn0%3D

SELECT

 p.product_name,

 p.price,

 COUNT(oi.order_item_id) AS times_sold

FROM products p

LEFT JOIN order_items oi ON p.product_id = oi.product_id

GROUP BY p.product_id, p.product_name, p.price

ORDER BY times_sold DESC

9 rows

Was passiert hier?

LEFT JOIN ermöglicht es, fehlende Beziehungen zu finden. Das ist extrem wertvoll für Analysen!

Wann LEFT JOIN nutzen?
LEFT JOIN ist perfekt, wenn Sie fehlende Beziehungen identifizieren wollen.

Typische Anwendungsfälle:

Laptop 999.99 1

Mouse 29.99 1

Keyboard 79.99 1

Monitor 299.99 1

Desk Chair 199.99 1

Notebook 9.99 1

USB Cable 14.99 1

Desk Lamp 49.99 0

Paper 4.99 0

Produkte mit Verkäufen: times_sold > 0

Unverkaufte Produkte: times_sold = 0 (COUNT zählt NULL als 0)

Kunden ohne Bestellungen (Inaktive finden)

Produkte ohne Verkäufe (Ladenhüter)

Artikel ohne Übersetzungen (Content-Lücken)

Rechnungen ohne Zahlung (Offene Posten)

1

2

3

4

5

6

7

8

9

product_name price times_sold

Faustregel: LEFT JOIN = „Zeige alle von links, ergänze rechts wenn möglich“

Anti-Join: Fehlende finden mit IS NULL
Eine mächtige Technik: LEFT JOIN + WHERE IS NULL = „Zeige nur die OHNE Match“

Customers Orders

LEFT ANTI

Nur Customers, die KEINE passenden Orders haben (LEFT ANTI JOIN)

Frage: Welche Kunden haben noch NIE bestellt?

dbdiagram.io

SELECT
 c.customer_id,
 c.first_name,
 c.last_name
FROM customers c
LEFT JOIN orders o ON c.customer_id = o.customer_id
WHERE o.order_id IS NULL;

1
2
3
4
5
6
7



https://dbdiagram.io/
https://dbdiagram.io/embed?c=VGFibGUgY3VzdG9tZXJzIHsKICBjdXN0b21lcl9pZCBpbnQgW3BrXQogIGZpcnN0X25hbWUgdmFyY2hhcgogIGxhc3RfbmFtZSB2YXJjaGFyCn0KClRhYmxlIG9yZGVycyB7CiAgb3JkZXJfaWQgaW50IFtwa10KICBjdXN0b21lcl9pZCBpbnQgW3JlZjogPiBjdXN0b21lcnMuY3VzdG9tZXJfaWRdCn0%3D

SELECT

 c.customer_id,

 c.first_name,

 c.last_name

FROM customers c

LEFT JOIN orders o ON c.customer_id = o.customer_id

WHERE o.order_id IS NULL

1 rows

Trick: Nach dem LEFT JOIN filtern Sie auf NULL in der rechten Tabelle. Das sind exakt die Zeilen ohne Match!

Diese Technik heißt „Anti-Join“ und ist in der Praxis extrem häufig. Sie finden damit Lücken in Ihren Daten.

RIGHT JOIN: Alle von rechts + Matches
RIGHT JOIN ist das Spiegelbild von LEFT JOIN: Alle Zeilen der rechten Tabelle bleiben erhalten, links wird
ergänzt.

Visualisierung: Venn-Diagramm

Customers Orders

RIGHT

Alle Werte aus Orders + deren Matches (RIGHT JOIN)

Der komplette rechte Kreis ist grün. Alle Bestellungen kommen ins Ergebnis – auch wenn der Kunde
unbekannt ist (was eigentlich nicht passieren sollte, aber theoretisch möglich ist).

In der Praxis: Selten genutzt

5 Emma Evans1

customer_id first_name last_name

RIGHT JOIN wird in der Praxis kaum verwendet. Warum? Weil Sie fast immer eine LEFT JOIN Alternative
schreiben können, die leichter zu verstehen ist.

-- RIGHT JOIN:
SELECT * FROM customers c
RIGHT JOIN orders o ON c.customer_id = o.customer_id;

-- Gleichbedeutend mit LEFT JOIN (Reihenfolge getauscht):
SELECT * FROM orders o
LEFT JOIN customers c ON o.customer_id = c.customer_id;

1
2
3
4
5
6
7



-- RIGHT JOIN:

SELECT * FROM customers c

RIGHT JOIN orders o ON c.customer_id = o.customer_id

6 rows

-- Gleichbedeutend mit LEFT JOIN (Reihenfolge getauscht):

SELECT * FROM orders o

LEFT JOIN customers c ON o.customer_id = c.customer_id

6 rows

Beide Queries liefern identische Ergebnisse! Die zweite ist aber intuitiver: Links ist die Haupttabelle.

Mein Rat: Vermeiden Sie RIGHT JOIN. Schreiben Sie stattdessen LEFT JOIN mit vertauschter Reihenfolge. Das
ist Standard in den meisten Teams.

FULL OUTER JOIN: Alles aus beiden Tabellen

1 Alice Anderson alice@email.com Unter den

Linden

42

1 Alice Anderson alice@email.com Unter den

Linden

42

2 Bob Brown bob@email.com Reeperbahn 15

3 Carol Clark carol@email.com Marienplatz 8

4 David Davis david@email.com Hohe

Straße

123

null null null null null null

101 1 2024-01-15 299.99 completed 1 Alice

102 1 2024-02-20 149.50 completed 1 Alice

103 2 2024-01-22 499.99 completed 2 Bob

104 3 2024-03-10 89.99 pending 3 Carol

105 4 2024-03-15 199.99 completed 4 David

106 null 2023-03-20 79.99 completed null null

1

2

3

4

5

6

1

2

3

4

5

6

customer_id first_name last_name email street street_number

order_id customer_id order_date total_amount status customer_id first_n

FULL OUTER JOIN (oder nur FULL JOIN) kombiniert LEFT und RIGHT JOIN: Alle Zeilen aus beiden Tabellen
kommen ins Ergebnis. Matches werden verbunden, fehlende Matches mit NULL aufgefüllt.

Visualisierung: Venn-Diagramm

Customers Orders

FULL

Alle Werte aus Customers und Orders (FULL JOIN)

Beide Kreise sind komplett grün. Jede Zeile aus jeder Tabelle erscheint mindestens einmal – entweder mit
Match oder mit NULLs.

Konzept: Die vollständige Vereinigung
FULL OUTER JOIN ist wie: „Zeige mir alles – Matches, Nur-Links, Nur-Rechts.“

sredrOsremotsuC

ecilAtimhctaM←1101ecilA1

ecilAtimhctaM←1201boB2

!thcsölegedruwednuK←LLUN601ammE5

:NIOJRETUOLLUF

✓101redrOecilA

✓201redrOecilA

)gnulletseBeniektahboB(✓LLUNboB

)gnulletseBeniektahammE(✓LLUNammE

)nednuKnegitlügnutahgnulletseB(✓601redrOLLUN

Sie sehen: Sowohl Emma (Kunde ohne Bestellung) als auch Order 106 (Bestellung ohne Kunden) erscheinen
im Ergebnis. Nichts geht verloren!

Beispiel 1: Vollständiger Datenabgleich
Zeigen Sie ALLE Kunden und ALLE Bestellungen – auch wenn Kunden keine Bestellung haben ODER
Bestellungen keinen gültigen Kunden haben.

dbdiagram.io

SELECT
 c.customer_id,
 c.first_name || ' ' || c.last_name AS customer_name,
 o.order_id,
 o.order_date,
 o.total_amount
FROM customers c
FULL OUTER JOIN orders o ON c.customer_id = o.customer_id
ORDER BY c.customer_id, o.order_id;

1
2
3
4
5
6
7
8
9



https://dbdiagram.io/
https://dbdiagram.io/embed?c=VGFibGUgY3VzdG9tZXJzIHsKICBjdXN0b21lcl9pZCBpbnQgW3BrXQogIGZpcnN0X25hbWUgdmFyY2hhcgogIGxhc3RfbmFtZSB2YXJjaGFyCn0KClRhYmxlIG9yZGVycyB7CiAgb3JkZXJfaWQgaW50IFtwa10KICBjdXN0b21lcl9pZCBpbnQgW3JlZjogPiBjdXN0b21lcnMuY3VzdG9tZXJfaWRdCiAgb3JkZXJfZGF0ZSBkYXRlCiAgdG90YWxfYW1vdW50IGRlY2ltYWwKfQ%3D%3D

SELECT

 c.customer_id,

 c.first_name || ' ' || c.last_name AS customer_name,

 o.order_id,

 o.order_date,

 o.total_amount

FROM customers c

FULL OUTER JOIN orders o ON c.customer_id = o.customer_id

ORDER BY c.customer_id, o.order_id

7 rows

Was sehen Sie?

FULL OUTER JOIN ist perfekt für Datenqualitäts-Checks: „Zeige mir ALLES, damit ich Inkonsistenzen
erkenne.“ Hier sehen wir beide Probleme: Emma hat nicht bestellt UND Order 106 hat einen ungültigen
Kunden.

Wann FULL OUTER JOIN nutzen?
FULL OUTER JOIN ist selten, aber für spezielle Aufgaben perfekt.

Typische Anwendungsfälle:

1 Alice Anderson 101 2024-01-15 299.99

1 Alice Anderson 102 2024-02-20 149.50

2 Bob Brown 103 2024-01-22 499.99

3 Carol Clark 104 2024-03-10 89.99

4 David Davis 105 2024-03-15 199.99

5 Emma Evans null null null

null null 106 2023-03-20 79.99

Emma (customer_id = 5): Erscheint mit NULL bei Bestellungen → Kunde ohne Bestellung

Order 106: Erscheint mit NULL bei Kundendaten → Bestellung ohne gültigen Kunden (customer_id =
99 existiert nicht!)

Alle anderen: Normale Matches

1

2

3

4

5

6

7

customer_id customer_name order_id order_date total_amount

Faustregel: FULL OUTER JOIN = „Zeige alles aus beiden Welten“

In der Praxis wird FULL OUTER JOIN selten genutzt – oft kann man das Problem mit zwei LEFT JOINs +
UNION lösen. Aber wenn Sie ihn brauchen, ist er unschlagbar praktisch!

CROSS JOIN: Alle Kombinationen (Kartesisches Produkt)
CROSS JOIN ist der ungewöhnlichste Join: Er verbindet jede Zeile der ersten Tabelle mit jeder Zeile der
zweiten Tabelle. Keine Bedingung, keine Filter – alle Kombinationen.

Visualisierung: Venn-Diagramm

Customers Orders

Kartesisches Produkt: jede Zeile × jede Zeile

Die Kreise überlappen nicht – weil CROSS JOIN keine Beziehung braucht. Er erzeugt einfach alle
Kombinationen. Das nennt man kartesisches Produkt.

Konzept: Alle Kombinationen
CROSS JOIN ist wie eine Tabelle mit allen möglichen Paarungen erstellen.

Datenbank-Sync prüfen (Quelle vs. Ziel)

Soll-Ist-Vergleich (Plan vs. Realität)

Inkonsistenzen finden (Orphaned Records auf beiden Seiten)

Audit-Reports (vollständige Übersicht)

sroloCseziS

roloCeziS

deRS

eulBM

neerGL

:nenoitanibmoK9=3×3→NIOJSSORC

deRS

eulBS

neerGS

deRM

eulBM

neerGM

deRL

eulBL

neerGL

Jede Größe wird mit jeder Farbe kombiniert. Kein Filter, keine Bedingung – einfach alle Möglichkeiten.

Syntax: Zwei Varianten
CROSS JOIN kann explizit oder implizit geschrieben werden.

-- Explizit (empfohlen):
SELECT * FROM customers CROSS JOIN products;

-- Implizit (veraltet):
SELECT * FROM customers, products;

1
2
3
4
5



-- Explizit (empfohlen):

SELECT * FROM customers CROSS JOIN products

1 Alice Anderson alice@email.com Unter den

Linden

42

1 Alice Anderson alice@email.com Unter den

Linden

42

1 Alice Anderson alice@email.com Unter den

Linden

42

1 Alice Anderson alice@email.com Unter den

Linden

42

1 Alice Anderson alice@email.com Unter den

Linden

42

1 Alice Anderson alice@email.com Unter den

Linden

42

1 Alice Anderson alice@email.com Unter den

Linden

42

1 Alice Anderson alice@email.com Unter den

Linden

42

1 Alice Anderson alice@email.com Unter den

Linden

42

2 Bob Brown bob@email.com Reeperbahn 15

2 Bob Brown bob@email.com Reeperbahn 15

2 Bob Brown bob@email.com Reeperbahn 15

2 Bob Brown bob@email.com Reeperbahn 15

2 Bob Brown bob@email.com Reeperbahn 15

2 Bob Brown bob@email.com Reeperbahn 15

2 Bob Brown bob@email.com Reeperbahn 15

2 Bob Brown bob@email.com Reeperbahn 15

2 Bob Brown bob@email.com Reeperbahn 15

3 Carol Clark carol@email.com Marienplatz 8

3 Carol Clark carol@email.com Marienplatz 8

3 Carol Clark carol@email.com Marienplatz 8

3 Carol Clark carol@email.com Marienplatz 8

3 Carol Clark carol@email.com Marienplatz 8

3 Carol Clark carol@email.com Marienplatz 8

3 Carol Clark carol@email.com Marienplatz 8

3 Carol Clark carol@email.com Marienplatz 8

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

customer_id first_name last_name email street street_numbe

45 rows

-- Implizit (veraltet):

SELECT * FROM customers, products

3 Carol Clark carol@email.com Marienplatz 8

4 David Davis david@email.com Hohe

Straße

123

4 David Davis david@email.com Hohe

Straße

123

4 David Davis david@email.com Hohe

Straße

123

4 David Davis david@email.com Hohe

Straße

123

4 David Davis david@email.com Hohe

Straße

123

4 David Davis david@email.com Hohe

Straße

123

4 David Davis david@email.com Hohe

Straße

123

4 David Davis david@email.com Hohe

Straße

123

4 David Davis david@email.com Hohe

Straße

123

5 Emma Evans emma@email.com Zeil 99

5 Emma Evans emma@email.com Zeil 99

5 Emma Evans emma@email.com Zeil 99

5 Emma Evans emma@email.com Zeil 99

5 Emma Evans emma@email.com Zeil 99

5 Emma Evans emma@email.com Zeil 99

5 Emma Evans emma@email.com Zeil 99

5 Emma Evans emma@email.com Zeil 99

5 Emma Evans emma@email.com Zeil 99

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

1 Alice Anderson alice@email.com Unter den

Linden

42

1 Alice Anderson alice@email.com Unter den

Linden

42

1 Alice Anderson alice@email.com Unter den

Linden

42

1 Alice Anderson alice@email.com Unter den

Linden

42

1 Alice Anderson alice@email.com Unter den

Linden

42

1 Alice Anderson alice@email.com Unter den

Linden

42

1 Alice Anderson alice@email.com Unter den

Linden

42

1 Alice Anderson alice@email.com Unter den

Linden

42

1 Alice Anderson alice@email.com Unter den

Linden

42

2 Bob Brown bob@email.com Reeperbahn 15

2 Bob Brown bob@email.com Reeperbahn 15

2 Bob Brown bob@email.com Reeperbahn 15

2 Bob Brown bob@email.com Reeperbahn 15

2 Bob Brown bob@email.com Reeperbahn 15

2 Bob Brown bob@email.com Reeperbahn 15

2 Bob Brown bob@email.com Reeperbahn 15

2 Bob Brown bob@email.com Reeperbahn 15

2 Bob Brown bob@email.com Reeperbahn 15

3 Carol Clark carol@email.com Marienplatz 8

3 Carol Clark carol@email.com Marienplatz 8

3 Carol Clark carol@email.com Marienplatz 8

3 Carol Clark carol@email.com Marienplatz 8

3 Carol Clark carol@email.com Marienplatz 8

3 Carol Clark carol@email.com Marienplatz 8

3 Carol Clark carol@email.com Marienplatz 8

3 Carol Clark carol@email.com Marienplatz 8

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

customer_id first_name last_name email street street_numbe

45 rows

Achtung: Die implizite Syntax (FROM a, b) ist gefährlich! Wenn Sie vergessen, eine WHERE-
Bedingung hinzuzufügen, passiert ein versehentlicher CROSS JOIN.

Nutzen Sie immer die explizite Syntax – dann ist klar: „Ich WILL alle Kombinationen!“

3 Carol Clark carol@email.com Marienplatz 8

4 David Davis david@email.com Hohe

Straße

123

4 David Davis david@email.com Hohe

Straße

123

4 David Davis david@email.com Hohe

Straße

123

4 David Davis david@email.com Hohe

Straße

123

4 David Davis david@email.com Hohe

Straße

123

4 David Davis david@email.com Hohe

Straße

123

4 David Davis david@email.com Hohe

Straße

123

4 David Davis david@email.com Hohe

Straße

123

4 David Davis david@email.com Hohe

Straße

123

5 Emma Evans emma@email.com Zeil 99

5 Emma Evans emma@email.com Zeil 99

5 Emma Evans emma@email.com Zeil 99

5 Emma Evans emma@email.com Zeil 99

5 Emma Evans emma@email.com Zeil 99

5 Emma Evans emma@email.com Zeil 99

5 Emma Evans emma@email.com Zeil 99

5 Emma Evans emma@email.com Zeil 99

5 Emma Evans emma@email.com Zeil 99

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

Beispiel 1: Produktkombinationen generieren
Erstellen Sie alle möglichen Kombinationen von zwei Produkten (z.B. für Paket-Angebote).

dbdiagram.io

SELECT
 p1.product_name AS product_1,
 p2.product_name AS product_2,
 p1.price + p2.price AS bundle_price
FROM products p1
CROSS JOIN products p2
WHERE p1.product_id < p2.product_id -- Vermeidet Duplikate (A-B vs B-
ORDER BY bundle_price
LIMIT 5;

1
2
3
4
5
6
7
8
9



https://dbdiagram.io/
https://dbdiagram.io/embed?c=VGFibGUgcHJvZHVjdHMgewogIHByb2R1Y3RfaWQgaW50IFtwa10KICBwcm9kdWN0X25hbWUgdmFyY2hhcgogIHByaWNlIGRlY2ltYWwKfQ%3D%3D

SELECT

 p1.product_name AS product_1,

 p2.product_name AS product_2,

 p1.price + p2.price AS bundle_price

FROM products p1

CROSS JOIN products p2

WHERE p1.product_id < p2.product_id -- Vermeidet Duplikate (A-B vs B-A)

ORDER BY bundle_price

LIMIT 5

5 rows

Was passiert?

Das ist praktisch für Preis-Kombinationen, Test-Daten oder Kalender-Aufgaben!

Beispiel 2: Datumsreihen generieren
CROSS JOIN ist perfekt, um alle Kombinationen aus zwei Listen zu erzeugen – z.B. jeden Kunden mit jedem
Datum (für Reports).

Notebook Paper 14.98

USB Cable Paper 19.98

Notebook USB Cable 24.98

Mouse Paper 34.98

Mouse Notebook 39.98

Jedes Produkt wird mit jedem anderen kombiniert

WHERE p1.product_id < p2.product_id : Verhindert, dass „Laptop + Mouse“ und „Mouse
+ Laptop“ beide erscheinen

Ergebnis: Alle möglichen 2er-Pakete mit Gesamtpreis

-- Simuliere eine Datumsreihe mit VALUES
WITH dates AS (
 SELECT * FROM (VALUES
 ('2024-01-01'),
 ('2024-01-02'),
 ('2024-01-03')
) AS d(date)
)
SELECT
 c.customer_id,

c first name

1
2
3
4
5
6
7
8
9
10
11

1

2

3

4

5

product_1 product_2 bundle_price



-- Simuliere eine Datumsreihe mit VALUES

WITH dates AS (

 SELECT * FROM (VALUES

 ('2024-01-01'),

 ('2024-01-02'),

 ('2024-01-03')

) AS d(date)

)

SELECT

 c.customer_id,

 c.first_name,

 dates.date

FROM customers c

CROSS JOIN dates

ORDER BY dates.date, c.customer_id

LIMIT 10

10 rows

Ergebnis: Jeder Kunde erscheint für jedes Datum. Perfekt für Kalender-Grids oder A/B-Test-Setups!

Gefahr: Zeilen-Explosion!

 c.first_name,
 dates.date
FROM customers c
CROSS JOIN dates
ORDER BY dates.date, c.customer_id
LIMIT 10;

1 Alice 2024-01-01

2 Bob 2024-01-01

3 Carol 2024-01-01

4 David 2024-01-01

5 Emma 2024-01-01

1 Alice 2024-01-02

2 Bob 2024-01-02

3 Carol 2024-01-02

4 David 2024-01-02

5 Emma 2024-01-02

11
12
13
14
15
16

1

2

3

4

5

6

7

8

9

10

customer_id first_name date

CROSS JOIN kann schnell außer Kontrolle geraten.

6 30 ✓ OK

100 10.000 ⚠️ Vorsicht

1.000 1.000.000 ❌ Langsam

10.000 100.000.000 💥 Absturz

Best Practice: Nutzen Sie CROSS JOIN nur mit kleinen Tabellen oder mit LIMIT !

In Produktions-Datenbanken ist CROSS JOIN selten. Aber für Teszdaten-Generierung oder Kombinatorik ist
er unschlagbar.

Join-Zusammenfassung: Welchen wann?
Sie haben jetzt 5 Join-Typen kennengelernt. Hier ist ein Entscheidungsbaum:

In der Praxis machen INNER JOIN und LEFT JOIN etwa 95% aller Fälle aus. Die anderen sind
Spezialwerkzeuge.

Brauchen Sie eine Beziehung zwischen Tabellen?
│
├─ Ja, nur Matches wichtig
│ └─ INNER JOIN
│
├─ Ja, aber ALLE von links (auch ohne Match)
│ └─ LEFT JOIN
│
├─ Ja, aber ALLE von rechts (auch ohne Match)
│ └─ RIGHT JOIN (oder besser: LEFT JOIN mit getauschter Reihenfolge)
│
├─ Ja, ALLES aus beiden (für Vergleiche)
│ └─ FULL OUTER JOIN
│
└─ Nein, ich brauche ALLE Kombinationen
 └─ CROSS JOIN

5

100

1.000

10.000

Tabelle B Ergebnis StatusTabelle A



Quick Reference: Join-Cheat-Sheet

INNER Nur Matches
FROM a INNER JOIN b
ON a.id = b.id

Standard

LEFT
Alle A + Matches
B

FROM a LEFT JOIN b
ON a.id = b.id

Fehlende finden

RIGHT
Alle B + Matches
A

FROM a RIGHT JOIN b
ON a.id = b.id

Selten (nutze
LEFT)

FULL OUTER Alles aus beiden
FROM a FULL OUTER
JOIN b ON a.id =
b.id

Sync-Checks

CROSS
Alle
Kombinationen

FROM a CROSS JOIN
b

Test-
Kombinationen

Faustregel: Wenn unsicher → starte mit INNER JOIN. Fehlt etwas? → Probiere LEFT JOIN.

Mehrere Tabellen verbinden (Multi-Table Joins)
In der Realität joinen Sie selten nur zwei Tabellen. Oft sind es drei, vier oder mehr. Wie geht man das
systematisch an?

Die Kette: JOIN nach JOIN
Sie können beliebig viele Joins aneinanderhängen. Jeder neue JOIN baut auf dem vorherigen Ergebnis auf.

Wichtig: Die Reihenfolge ist logisch, nicht Performance-kritisch. Der Query Optimizer kann die beste
Reihenfolge selbst wählen.

SELECT spalten
FROM tabelle_a
JOIN tabelle_b ON a.id = b.id
JOIN tabelle_c ON b.id = c.id
JOIN tabelle_d ON c.id = d.id
-- ... und so weiter

Join-Typ Ergebnis Syntax Use Case



Beispiel: Vollständige Bestellung (4 Tabellen)
Zeigen Sie: Kunde → Bestellung → Positionen → Produkte – alles in einer Zeile.

dbdiagram.io

SELECT
 c.first_name || ' ' || c.last_name AS customer,
 o.order_id,
 o.order_date,
 p.product_name,
 oi.quantity,
 oi.quantity * p.price AS line_total
FROM customers c
INNER JOIN orders o ON c.customer_id = o.customer_id
INNER JOIN order_items oi ON o.order_id = oi.order_id
INNER JOIN products p ON oi.product_id = p.product_id
ORDER BY o.order_id, p.product_name;

1
2
3
4
5
6
7
8
9
10
11
12



https://dbdiagram.io/
https://dbdiagram.io/embed?c=VGFibGUgY3VzdG9tZXJzIHsKICBjdXN0b21lcl9pZCBpbnQgW3BrXQogIGZpcnN0X25hbWUgdmFyY2hhcgp9CgpUYWJsZSBvcmRlcnMgewogIG9yZGVyX2lkIGludCBbcGtdCiAgY3VzdG9tZXJfaWQgaW50IFtyZWY6ID4gY3VzdG9tZXJzLmN1c3RvbWVyX2lkXQp9CgpUYWJsZSBvcmRlcl9pdGVtcyB7CiAgb3JkZXJfaXRlbV9pZCBpbnQgW3BrXQogIG9yZGVyX2lkIGludCBbcmVmOiA%2BIG9yZGVycy5vcmRlcl9pZF0KICBwcm9kdWN0X2lkIGludCBbcmVmOiA%2BIHByb2R1Y3RzLnByb2R1Y3RfaWRdCiAgcXVhbnRpdHkgaW50Cn0KClRhYmxlIHByb2R1Y3RzIHsKICBwcm9kdWN0X2lkIGludCBbcGtdCiAgcHJvZHVjdF9uYW1lIHZhcmNoYXIKICBwcmljZSBkZWNpbWFsCn0%3D

SELECT

 c.first_name || ' ' || c.last_name AS customer,

 o.order_id,

 o.order_date,

 p.product_name,

 oi.quantity,

 oi.quantity * p.price AS line_total

FROM customers c

INNER JOIN orders o ON c.customer_id = o.customer_id

INNER JOIN order_items oi ON o.order_id = oi.order_id

INNER JOIN products p ON oi.product_id = p.product_id

ORDER BY o.order_id, p.product_name

6 rows

Was passiert hier?

Das Ergebnis: Jede Bestellposition mit allen relevanten Details in einer Zeile. Das ist die Power von Joins!

Best Practices für Multi-Table Joins
Wenn Sie viele Tabellen joinen, helfen diese Regeln:

1. Logische Reihenfolge einhalten

Joinen Sie in der Reihenfolge der Beziehungen: Kunde → Bestellung → Position → Produkt (nicht wild
durcheinander).

2. Aliase nutzen

Kurze Aliase machen Queries lesbarer: customers c , orders o , products p

Alice Anderson 101 2024-01-15 Monitor 1 299.99

Alice Anderson 102 2024-02-20 Keyboard 1 79.99

Alice Anderson 102 2024-02-20 Mouse 2 59.98

Bob Brown 103 2024-01-22 Laptop 1 999.99

Carol Clark 104 2024-03-10 Notebook 5 49.95

David Davis 105 2024-03-15 Desk Chair 1 199.99

1.

2.

3.

customers → orders: Welcher Kunde hat welche Bestellung?

orders → order_items: Welche Positionen gehören zur Bestellung?

order_items → products: Welches Produkt ist das?

1

2

3

4

5

6

customer order_id order_date product_name quantity line_total

3. Joins einrücken

Jeder JOIN eine eigene Zeile – so erkennen Sie die Struktur sofort!

4. Kommentare bei komplexen Joins

Abschluss: Joins meistern
Sie haben jetzt das wichtigste Werkzeug relationaler Datenbanken kennengelernt: Joins. Von INNER bis
CROSS, von einfachen 2-Tabellen-Joins bis zu komplexen Multi-Table-Queries.

Was Sie gelernt haben:

Nächste Schritte:

Joins sind das Herzstück von SQL. Mit diesem Wissen können Sie jetzt fast jede Abfrage in der Praxis lösen.
Zeit, es zu üben!

FROM customers c
 INNER JOIN orders o ON c.customer_id = o.customer_id
 INNER JOIN order_items oi ON o.order_id = oi.order_id

-- Hole Kundendaten
FROM customers c
 -- Füge Bestellungen hinzu
 INNER JOIN orders o ON c.customer_id = o.customer_id

✅ INNER JOIN: Nur Matches (Standard)

✅ LEFT JOIN: Alle links + Matches rechts (fehlende finden!)

✅ RIGHT JOIN: Alle rechts + Matches links (selten)

✅ FULL OUTER JOIN: Alles aus beiden (Sync-Checks)

✅ CROSS JOIN: Alle Kombinationen (Vorsicht!)

✅ Multi-Table Joins: Systematisch verketten

Übung 4: Hands-on mit komplexen Joins

Session 11: Row-Level Functions (String/Date/Number)

Session 12: Aggregation & Window Functions





